Note that since transpose switches moving boxes SW and NE, we have that $\lambda \geqslant \mu$ iff $\lambda^{\top} \triangleq \mu^{\top}$.

Cor $V_{\lambda \lambda}$ is the unique S_{n}-irrep such that

In fact, bon spaces are 1-d.
Pf Obviously $\lambda \leq \lambda$ and $\lambda^{T} \leqslant \lambda^{\top}$. In both causes, 1 SST of desired type, the "Super-standard tableau" ${ }^{1}=1 \bar{L}^{2}{ }^{3}$
On the other hand, if $\lambda \triangleleft \nu$, then $\nu^{\top} \triangleleft \lambda^{\top}$, 50
if $V_{\gamma}^{S_{\lambda}} \neq\left\{03\right.$, then $V_{\nu}^{S_{\lambda^{T}, \text { syn }}}=\{0\}$ and vice versa, if $\lambda \neq \gamma$.
Let $M^{\lambda}=\operatorname{Ind}_{s_{\lambda}}^{S_{n}}($ triv $)$ and $\tilde{M}^{\lambda}=\operatorname{Ind}_{S_{\lambda}}^{s_{n}}(\operatorname{sgn})$. Note that these are given by skew diagrams wi disconnected rows or columns respectively.
You'll sometinos see V_{x} constructed using this principle or the related one:
Cor V_{λ} is the unique simple swomodule a ppearing in both Ind $s_{S_{\lambda}}^{\prime}($ trim $)$ and $I_{n d} s_{s_{n}}\left(s_{\lambda_{n}} n\right)$, in both cases w/ malt 1. Thus any non-zero map Fuds $s_{\lambda}(t r i v) \rightarrow I_{n d} s_{\lambda_{n}}\left(s_{g n}\right)$ has image V_{λ}.
The Piers vale shows $\operatorname{dim} \operatorname{Hom}\left(M^{\lambda}, \tilde{M}^{\lambda^{\top}}\right)=1$, so undue up to scalar.
One way of doing this is to embed $S_{\lambda} \hookrightarrow S_{n} \longleftrightarrow S_{\lambda}{ }_{\lambda}$ as the subgroups of permutations of boxes preserving rows and columns. In this case, Ind $S_{\lambda}\left(\right.$ priv $\left.^{\prime}\right) \cong \mathbb{C} S_{n} a_{\lambda}$ where $a_{\lambda}=\sum_{\pi \in S_{\lambda}}^{\pi}$. Ind $S_{\lambda \pi}\left(S_{g n}\right) \cong \mathbb{C} S_{n} \cdot b_{\lambda}$ where $b_{\lambda}=\sum_{\pi \in S_{\lambda^{\top}}}(-1)^{l(n)} \pi$. Thus $\mathbb{C} S_{n} a_{\lambda} b_{\lambda} \cong V_{\lambda}$ is the image of $\operatorname{Such}^{\pi} \lambda^{\top} h$ map. $a_{\lambda} b_{y}$ is what's called the Young symmetrizes.

This strategy of analyzing S_{n}-reps via restriction to Young subgroups can also be applied to computing characters.

Strategy: Fix a partition Me only need to find character of TE $\left(1, \ldots, \mu_{1}\right)\left(\mu_{1}+1, \ldots, \mu_{1}+\mu_{2}\right) \cdot\left(\mu_{1}+\mu_{2}+1, \ldots, \mu_{1}+\mu_{2}+\mu_{3}\right) \ldots$.

$$
x_{v_{\lambda}}(\pi)=\sum_{\underline{\gamma}} M_{y} \cdot x_{v_{v_{1}}}\left(1 \cdots \mu_{1}\right) \cdot x_{v_{v_{2}}}\left(1 \cdots \mu_{2}\right) \cdots x_{v_{l}}\left(1 \cdots \mu_{l}\right)
$$

So we "only" reed to calculate M_{ν}, and the character of a single n-cycle on reps of S_{n}.

The latter is actually pretty easy:
Leman $X_{n} \cdots X_{2}=C_{n}$.
Pf. Let's induct. $C_{2} \cos _{2}=(12)=x_{2}$. Consider $C_{n-1} \in \mathbb{C} S_{n-1}=\varepsilon\left(1, i, \ldots, i_{n-2}\right) \cdot \sum(i, n)$. We have $\left(1, i_{1}, \ldots, i_{n-2}\right) \cdot\left(i_{k, n}\right)=\left(1, i_{1}, \ldots, i_{k-1}, n, i_{k}, \ldots i_{n-2}\right)$. That is, sum is our all ways of insetting a.

PC C_{n} acts by the scalar given by product of all contents, excluding the bottom corner. Thus is 0 if $(2,2)$ is in diagram, ie. mot a rook If it is a book $\left(k, 7^{n-k}\right)$ then we get $(-1)^{k}(k-1) \mid \cdot(n-k)$! There are $(n-1) \mid$ w(ydes so its trace is $(-1)^{k+1} \frac{1}{\left(n^{n-1}-k\right)} \cdot \operatorname{dim} V_{\left(1^{k}, n-k\right)}$ This latte dimension is gienby tableaux on this hook. $A^{k-1) s}$. These are in bijection at $S C[3, n]$ w/ $\#=n-k$ so, we get $(-1)^{k+1}$.
OK, so we just t heed to find $m_{\underline{\nu}}$ where all of these gays are hooks. We can calculate these sore what recursindy using skew diagrans.

Maybe better to thine that

$$
\chi_{\lambda}(\Pi)=\sum_{\substack{\lambda=\lambda^{(i)}, \ldots, \lambda^{i}=\varnothing \\ \# \lambda^{i} / \lambda^{(i-1)}}} \prod_{i=1}^{l} \chi_{V_{\left.\lambda^{(i)}\right) \lambda^{(i-1)}}\left(1 \cdots \mu_{i}\right) .}
$$

Lemma If $\lambda^{(i)} / \lambda^{(i-1)}$ is disconnected, ten $\chi_{\lambda^{i i} /(i-1)}\left(1 \cdots \mu_{i}\right)=0$.
 the two pieces. Note, $\left(1 \cdots \mu_{i}\right)$ is not $\mathrm{S}_{\left(1, \mu_{i}-k\right)}(\partial n j$ jugate to an gerent of this subgroup, so its character is 0 .
Lemma If $\mathbb{H}\left(\lambda^{(i)} / \lambda^{(i-1)}\right.$, then $\chi_{\lambda^{(i)}}^{\lambda^{(i-1)}}\left(1 \cdots-\mu_{i}\right)=0$.
Pf. Every summed of $V_{\lambda} i^{i} / \lambda^{(i-1)}$ is $V_{\gamma} w / \nu$ a partition which contains $母_{\text {, ie., is not }}$ a hook.

If $\lambda^{(i)} / \lambda^{(i-1)}$ is connected and contains no D^{\prime} ', then we call it a skew hook. Let $\left\langle\lambda^{(i)} / \lambda^{(i-1)}\right)$, the height of the skew hook be the number of rows containing boxes -1 . Fee. $\left\langle\left(n-k, 1^{k}\right)\right\rangle=k$.
is a skew hook of height S.
The $X_{\lambda^{(i)} / \lambda^{(i-1)}}\left(1, \ldots, \mu_{i}\right)= \begin{cases}0 & x^{(i)} / \lambda^{(i-1)} \text { not skew hook } \\ \left.(-1)^{\langle i /} / \lambda^{(i-1)}\right\rangle & x^{(i)} / \lambda^{(i-1)} \text { is a skew hook }\end{cases}$
P7 First case is covered by lemmata. For second, let $\lambda=$ Fill in skew hook: $\nu^{2} \sqrt{2}$. Then $a=\operatorname{Hom}_{\xi_{n}}\left(V_{\xi,} V_{\lambda / \gamma}\right) \cong H_{s_{(m, n)}}\left(V_{\gamma} \boxtimes V_{j,} \operatorname{Res}_{(m, n)}^{n+m} V_{\lambda}\right)$. Here $\nu \vdash m, \lambda \vdash m+n$. Nolo, use conjugacy of $S_{(m, n)}^{(n)}$ and $S_{(n, n)}^{S_{(n)}}$. Thus, $a=\operatorname{Hom}\left(V_{s} \otimes V_{\gamma}, \operatorname{Res} S_{(n, m}^{n+m} V_{\lambda}\right)$. Thus, if ξ is a look, then $a=0$, unless $\langle\xi\rangle=\left\langle\lambda^{(i)} / \lambda^{(i-1)}\right)$
In the case $\lambda / \zeta=\nu$, so, $a=\operatorname{aim} \operatorname{Hom}\left(V_{\nu}, v_{\nu}\right)=工$.
Thus $\chi_{\lambda^{i i}}^{(i+1)}\left(1-\mu_{i}\right)=\chi_{3}\left(1 \cdots \mu_{i}\right)=(-1)^{\langle i\rangle}$.
So, this tells us te Murnaghan - Nakayara rule: $X_{\lambda}(\pi)=\sum(-1)^{\langle s\rangle}$ where S ranges over chains $\lambda^{-(i)} \lambda^{(i-1)}->\lambda^{(0)}=\varnothing$ st. $\# \lambda^{(i)} / \lambda^{(i-1)}=\mu_{i}, \lambda^{(i)} \lambda^{(i-1)}$ is a skew took, and $\langle S\rangle=\sum\left\langle\lambda^{(i)} / \lambda^{(i-1)}\right\rangle$.
Probably better to twin inductively: $\chi_{\lambda}(\pi)=\sum_{\nu / \lambda}(-1)^{\langle/ / \nu\rangle} \chi_{\nu}\left(\pi^{\prime}\right)$ where

