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The basics

What are Coulomb branches? What are they good for?

Coulomb branches are very nice non-commutative algebras, with
a simple(ish) presentation.

Lots of interesting algebras show up this way: cyclotomic
Cherednik algebras, truncated shifted Yangians, hypertoric
enveloping algebras.

They connect to a lot of other interesting math: (weighted) KLR
algebras, knot homology, and the geometry of symplectic
resolutions.
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Why is the Weyl algebra so nice?

The most basic example to understand are the representations of the
Weyl algebra W generated by x, ∂ with the relations [∂, x] = 1. If we
let H = x∂, then note that we have

∂x = H + 1 xH = (H − 1)x ∂H = (H + 1)∂

For µ ∈ C and a rep V , let

Vµ = {v ∈ V | (H − µ)Nv = 0 for N ≫ 0}

be the generalized weight space for µ.

Definition

We call a W module generalized weight it is the sum of its
generalized weight spaces, and these spaces are finitely generated.
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Why is the Weyl algebra so nice?

Note that x : Vµ−1 → Vµ and ∂ : Vµ → Vµ−1.

These maps are isomorphisms unless µ = 0, since

H = x∂ : Vµ → Vµ H + 1 = ∂x : Vµ−1 → Vµ−1

both only have the eigenvalue µ.

Theorem

The functor sending a generalized weight module with integral
weights to the quiver representation

V−1 V0

x

∂

is an equivalence to the subcategory of nilpotent finite dimensional
quiver representations.
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Why is the Weyl algebra so nice?

Given such a quiver representation, we can build a representation V
over W by declaring that Vn ∼= V−1 if n < 0 and Vn ∼= V0 if n ≥ 0.

If µ ∕= 0, we let

∂ : Vµ → Vµ−1 act by the identity, and

x : Vµ−1 → Vµ act by multiplication by µ+ h where h is the
(nilpotent) action of the loop in the quiver representation.

You can easily check that this satisfies [∂, x] = 1 and that Vµ actually
is the generalized µ-weight space.
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Why is sl2 so nice?

The next example to understand is the representations of U(sl2) on
which C = EF + FE + H2/2 act by a fixed scalar 1

2α(α+ 2) with
ℜ(α) ≥ −1. In this case, the relations of sl2 become:

HE = E(H + 2) EF = −1
4
(H − α− 2)(H + α)

HF = F(H − 2) FE = −1
4
(H − α)(H + α+ 2)

Taking associated graded, I get functions on nilpotent 2 × 2 matrices,
with coordinates given by

󰁶
h/2 e

f −h/2

󰁷
.

For µ ∈ C and a rep V , let

Vµ = {v ∈ V | (H − µ)Nv = 0 for N ≫ 0}

be the generalized weight space for µ.
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Why is sl2 so nice?

On a generalized weight module, Lusztig’s idempotented version
doesn’t act. Instead, we let 󰓝U(sl2)α be
U(sl2)α = U(sl2)/〈C − 1

2α(α+ 2)〉 with idempotents 1µ for µ ∈ C
added, allowing formal power series in H − µ acting on 1µ.

In particular, a polynomial p(H) acts invertibly on Vµ if and only if
p(µ) ∕= 0. Thus, we can define

H′1µ = (H − µ)1µ

F′1µ =

󰁆
󰁌󰁌󰁌󰁌󰁊

󰁌󰁌󰁌󰁌󰁈

−F 4
(H−α−2)(H+α)1µ µ /∈ {α+ 2,−α}

−F 4
(H−α−2)1µ µ = −α ∕= α+ 2

−F 4
(H+α)1µ µ = α+ 2 ∕= −α

−4F1µ µ = α+ 2 = −α
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Why is sl2 so nice?

These satisfy the relations:

[H′,E] = 0 EF′1µ =

󰁆
󰁌󰁊

󰁌󰁈

1µ µ /∈ {α+ 2,−α}
H′1µ µ ∈ {α+ 2,−α},−α ∕= α+ 2
(H′)21µ µ = α+ 2 = −α

[H,F′] = 0 F′E1µ =

󰁆
󰁌󰁊

󰁌󰁈

1µ µ /∈ {α,−α− 2}
H′1µ µ ∈ {α,−α− 2},−α− 2 ∕= α

(H′)21µ µ = α = −α− 2

Thus, we can define a equivalence relation on C by µ ∼ µ− 2 if
µ /∈ {−α,α+ 2}; if two numbers are equivalent, the corresponding
weight spaces are isomorphic in all representations.

For each set µ, there’s a unique simple with Vµ′ ∼= C for µ′ ∼ µ and
Vµ′ = 0 if µ′ ∕∼ µ.
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Why is sl2 so nice?

These sets are always of the form

{α,α− 2, . . . ,−α} (if α ∈ Z≥0),

{−α− 2,−α− 4, . . . } or (if α /∈ Z≥0) {α,α− 2, . . . }
{. . . ,α+ 4,α+ 2} or (if α /∈ Z≥0) {. . . ,−α+ 2,−α}
{. . . , µ+ 2, µ, µ− 2, . . . } (if µ± α /∈ 2Z).

Each coset µ+ 2Z is a union of 1, 2 or 3 of these, and we can easily
draw a quiver with relations that describes the category.

Philosophy

I’ve gone through this case in a lot of detail, because I want to
generalize it, and be able to wave my hands a bit. The secret story
here is that U(sl2)α is a quantum Coulomb branch.
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Abelian Coulomb branches

Let T be a torus acting on a v. s. V . Let ϕ1, . . . ,ϕd be the weights.

Now, draw a picture of tR and draw in all the hyperplanes
ϕi(X) ∈ Z+ 1/2. For D ⊂ GL(2) acting on C2 ⊕ C2, the weights are
ϕ1 = ϕ2 = 󰂑1,ϕ3 = ϕ4 = 󰂑2

󰂑1

󰂑2
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Abelian Coulomb branches

The coordinate ring of the Coulomb branch has an explicit description
in these terms:

Theorem

C[M] := A is a Sym(t∗) algebra with free basis rν for ν ∈ tZ, and
multiplication rule

rνrµ =
󰁧

ϕ
ρi(µ,ν)
i rµ+ν

where ρi(µ, ν) is the number of hyperplanes ϕi(X) ∈ Z+ 1/2 crossed
twice by the path 0 → µ → µ+ ν.

If G = C∗, and V = C2 with the scalar action, then e = r1, f = r−1
and h/2 = ϕ1 = ϕ2, the weight 1, then we get the relation
ef = −h2/4 again, and thus get the functions on the sl2 nilcone.
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Abelian Coulomb branches

For example:

r(−2,−2)r(1,2) = ϕ1ϕ2ϕ
2
3ϕ

2
4 · r(−1,0)

󰂑1

󰂑2
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Abelian Coulomb branches

For example:
r(−2,−2)r(1,2) = 󰂑2

1󰂑
4
2 · r(−1,0)

󰂑1

󰂑2
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Quantization

The quantized Coulomb branch has a very similar presentation; the
only difference is that we pay attention to where the hyperplanes are.
We fix scalars m1, . . . ,md. These are the flavors.

Theorem

Ac is a Sym(t∗) algebra with free basis rν for ν ∈ tZ, and
multiplication rules

rνrµ = rµ+ν

󰁧

n∈Dν,µ

(ϕi + mi + n)

(ϕ− 〈ϕ, ν〉)rν = rνϕ

where D(µ, ν) is the set of values of ϕi on hyperplanes
ϕi(X) ∈ Z+ 1/2 crossed twice by the path 0 → µ → µ+ ν.

If you shift mi 󰄳→ mi + 〈ϕi, ν〉 for some ν ∈ t, the result will be
isomorphic.
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Quantization

Let G = C∗, and V = C, and we let

x = r1 ∂ = r−1 H = ϕ+ m1.

Proposition

The quantum Coulomb branch for this representation is W with
isomorphism given by the formulas above.
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Quantization

Similarly, let G = C∗, and V = C, and we let

E = r1 F = r−1
1
2

H = ϕ.

Proposition

The quantum Coulomb branch with m1 = 1
2(α+ 1) and

m2 = − 1
2(α+ 1) is U(sl2)α with isomorphism given by the formulas

above. See sl2

As noted, if we shift mi 󰄳→ mi + p for any p, we get an isomorphic
algebra, so we can always just take α = m1 − m2 − 1.
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Quantization

For example if m1 = m3 = 1/2,m2 = m4 = −1/2, then we have

r(−2,−2)r(1,2) = r(−1,0)ϕ1(ϕ2 − 1)ϕ3(ϕ3 − 1)(ϕ4 − 1)(ϕ4 − 2)

󰂑1

󰂑2
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Quantization

For example if m1 = m3 = 1/2,m2 = m4 = −1/2, then we have

r(−2,−2)r(1,2) = r(−1,0)󰂑1(󰂑1 − 1)󰂑2(󰂑2 − 1)2(󰂑2 − 2)

󰂑1

󰂑2
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Weight modules

This presentation is particularly well suited to understanding the
action of this algebra on weight modules.

Definition

An A module is called a weight module if Sym(t∗) acts locally
finitely, with finite dimensional (generalized) eigenspaces.

For ∈ t, the (generalized) ν-weight space for A is

Mν = {m ∈ M | for all µ ∈ t∗, we have (µ−〈ν, µ〉)Nm = 0 for N ≫ 0}.

Proposition

The operator µ− β for µ ∈ t∗ and β ∈ C is invertible on Mν if and
only if 〈ν, µ〉 ∕= β.
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Weight modules

Now consider the (finite) arrangement A where you only keep
hyperplanes of the form ϕi = −mi. Define an equivalence relation on
tZ by ν ∼ ν ′ if they lie in the same chamber of A.

Theorem (Musson-van der Bergh)

The simple weight modules with all weights in ν ′ ∈ tZ are classified
up to isomorphism by the chambers in A which contain elements of tZ,
i.e. by equivalence classes. The weight spaces all have dimension 1.

Ben Webster UW/PI

Representation theory and the Coulomb branch



The Weyl algebra case The abelian case The nonabelian case The quiver case

Weight modules

In our running example, the hyperplane arrangement A is:

󰂑1

󰂑2

so there are 9 different projectives.

If instead m1 = π, one of these hyperplanes will vanish, and there will
only be 6.
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Weight modules

In our running example, the hyperplane arrangement A is:
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Weight modules

This leads to a presentation of the endomorphisms of these
projectives:

Theorem (Musson-van der Bergh)

The category of weight modules with weights in ν ′ ∈ tZ is equivalent
to the category of modules over the Sym(t∗)-algebra Y generated by
r(C,C′) for C,C′ chambers in A, with the multiplication rule

r(C,C′)r(C′,C′′) = r(C,C′′)
󰁧

i

ϕ
ρi(C,C′,C′′)
i .

where ρi(C,C′,C′′) is the number of hyperplanes labeled by ϕi

crossed twice by the path C → C′ → C′′.

You can check this matches the presentation from before using
E,H′,F′. See sl2
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Nonabelian Coulomb branches

Let G be a (nonabelian) group acting on V with T its maximal torus.

Usually, we can think of the non-abelian case as abelian + Weyl
group, but with a few extra kinks.

For the Coulomb branch, we have to account for the fact that the
affine Grassmannian of T is a discrete set of points in the affine
Grassmanian of G; we have to incorporate the tangent spaces to these
points.

Define the Demazure operator ∂α : Sym(t∗) → Sym(t∗) by

∂α(f ) =
sαf − f

α
.
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Nonabelian Coulomb branches

To construct the non-abelian Coulomb branch, take the picture from
the abelian case, and add in the hyperplanes α ∈ Z. We’ll now change
our running example to GL(2) acting on C2 ⊕ C2:

The basis vectors of our algebra over now correspond not just to paths
but paths precomposed with an element of the Weyl group. You can
think of the relations as concatenating and then a straightening
process:

Paths and w ∈ W commute by the usual action.

Undoing two crossings of a weight hyperplane multiplies by ϕi

and two crossings of a root hyperplane gives 0.

When a polynomial commutes past a root hyperplane, same rule
for commuting a polynomial past a Demazure operator.

Sliding the path through an intersection of a root and a weight
hyperplane has a correction term.
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Nonabelian Coulomb branches

r(−2,−2)sr(1,2)s = r(−2,−2)r(2,1) = ϕ2
1ϕ

2
2ϕ3ϕ4 · r(0,−1)

󰂑1

󰂑2

s

s
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Nonabelian Coulomb branches

r(−2,−2)sr(1,2)s = r(−2,−2)r(2,1) = 󰂑4
1󰂑

1
2 · r(0,−1)

󰂑1

󰂑2

s

s
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Nonabelian Coulomb branches

The resulting algebra E ⊃ C[Mab] is now noncommutative.

Definition

The coordinate ring C[M] := Z(E) ∼= eEe of the Coulomb branch is
the centralizer of the idempotent e projecting to Sym(t∗)W .

As in the abelian case, we can construct a quantization Ec ⊃ Ac,ab
where c is compatible with G.

This comes from paying attention to where the hyperplane is, and
shifting the weights. Ec contains a “projection” idempotent e.

Theorem

The algebra Ac = eEce is a quantization of the Coulomb branch.
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Nonabelian Coulomb branches

Examples:

If G = GL(n) and V = (Cn)⊕ℓ ⊕ Mn×n(C), then Ac is the
spherical rational Cherednik algebra for G(ℓ, 1, n).
(Braverman-Etingof)

If Γ is a Dynkin quiver w/ dimension vectors di,wi, and
G =

󰁟
i GL(i) and

V =
󰁛

i→j

Hom(Cdi ,Cdj)⊕
󰁛

i

(Cdi)⊕wi ,

then Ac is a truncated shifted Yangian for G for the highest
weight λ =

󰁞
wiωi and weight space for µ = λ−

󰁞
diαi.

(Braverman-Finkelberg-Kamnitzer-Kodera-Nakajima-W.-
Weekes)
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Weight modules

Rather than working with eEce, I’d rather stick with Ec. This will be
Morita equivalent via the functor M 󰄳→ eM.

One reason this is better is that Ac,ab ⊂ Ec. In particular, I still have a
copy of Sym(t∗) to serve as my “torus.”

Definition

We call a Ec-module M a weight module, if it is a weight module
restricted to Ac,ab. Similarly, the (generalized) weight space Mν is as
before.
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Weight modules

Since we have the Weyl group action, the weight spaces in tZ are
isomorphic if they lie in the same chamber of A up to the action of the
Weyl group. Thus we only need one Weyl chamber:

1

0

0

0

0

00

1

0

2

0

00

1

1

0

2

00

0

1

0

0

2

The weight multiplicities in simples are much more complicated now
though.
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Weight modules
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Weight modules

We can run the Musson-van der Bergh argument again in the
non-abelian case. The result Y is:

We have operators e(C), r(C,C′) and Sym(t∗) for chambers of
the hyperplane arrangement A discussed before in the positive
Weyl chamber (possibly for a Levi).

When we hit the wall of the positive Weyl chamber defined by α,
we can act by ψα(C), which commutes past polynomials like a
Demazure operator.

Theorem (W.)

The generalized representations of Ec with weights in a fixed coset
tZ + ν are equivalent to the representations of the algebra Y, sending
each weight space Vµ to the image of the idempotent e(C) for the
corresponding chamber.

Ben Webster UW/PI

Representation theory and the Coulomb branch



The Weyl algebra case The abelian case The nonabelian case The quiver case

Quivers and KLR

In the quiver case, this algebra is already well-known (to me, at least).

You represent a chamber by using the coordinates in t ⊂ ⊕igl(di) as
positions of black dots on the line, with labels corresponding to the
factor. The values of mi are represented by red dots.

You change your chamber when you pass a black dot past a red, or
two black dots with adjacent labels. You cross a root hyperplane when
two points with the same label pass.

Theorem

The algebra which appears is a reduced weighted KLR algebra for Γ
depending on the choice of weights mi.

This is a “symplectic dual” appearance of KLR to the usual way of
getting it from representations of quivers.
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Quivers and KLR
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Quivers and KLR

generators:

· · ·· · ·

󰂑i

· · ·· · ·

∂i

· · ·· · ·

r(C,C′)

· · ·· · ·

r(C′,C)

relations:

= + =

= +

= 0 = =
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Affine Grassmannians

The Coulomb branches in this case have a lot of identities:

Proposition (BFKKNWW)

The Coulomb branch for a Dynkin quiver is a slice to Grµ in Grλ in
the affine Grassmannian of that Dynkin type. The Coulomb
quantization is a truncated shifted Yangian.

Corollary

The tensor product categorifications for all tensor products of simples
over g of type ADE can be realized as category O over a truncated
shifted Yangian.
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Affine Grassmannians

Witten proposed a construction of knot homology for arbitrary
representations using gauge theory, by considering Morse homology
of solutions to certain PDEs with boundary conditions. This is
manifestly topologically invariant but not very practical.

However, dimensional reduction suggests we can calculate it by
looking at A-branes in these Coulomb branches for quiver gauge
theories.

I don’t know much about A-branes, but I do know that they are
roughly the same thing as modules over quantizations, and now we all
know something about those.

So, Witten’s work suggests one should able to construct a
homological knot invariant using functors between modules over
these quantizations.
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Affine Grassmannians

Given a horizontal slice of a labeled knot, we let Λ be the sum of
weights on the strands, and let

Λ =
󰁦

wiωi =
󰁦

viαi.

Theorem

For each tangle T, there is a complex of bimodules between Coulomb
quantizations for the dimension vectors defined above (for integral
parameters depending on the order when reading the slice), which are
functorial in this tangle.

The action of these on the category of finite dimensional modules over
the Coulomb branch categorifies the actions of tangles on the
invariants of tensor product representations, and provide
categorifications of the Reshetikhin-Turaev invariants.
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Affine Grassmannians

Thanks.
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