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Related recent talks:

m More on GT modules for g/,: youtu.be/tWyFM-Fbcc0

m More on the physics perspective: youtu.be/CfyNLZeP5iU
and www.fields.utoronto.ca/video-archive/
static/2019/11/2541-21802/mergedvideo.ogv
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s and geometry

Geometry and diagrams

For many years, my research has had two related but different looking
tracks:

geometric and diagrammatic

m homology
m perverse sheaves

® quantum coherent sheaves

How are these things related?
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KLR algebras and geometry

€00
Quiver geometry

One connection: let I' be a quiver, and v: I = V(I') — Z>p a
dimension vector. Let

Ny = PHom(C",C%) Gy = [ 6L(C)

i—j
The quotient Yy = Ny /Gy is the moduli space of quiver
representations of dimension v.

Consider a word i = (iy, ..., i) € I" where i € I appears v; times.
We say that a homogeneous complete flag F on @), ; C" has type i if

dim(F, N C") = dim(F—1 N CY) + ;.

Let X; be the moduli space of quiver representations equipped with a
flag of subrepresentations of type i.
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KLR algebras and geometry

000
Quiver geometry

Basic geometric object to consider:
Ry = P HEY (X; xy, Xj) = Ext* (D m.Cx,)
ij i
as an algebra under convolution.
Theorem (Varagnolo-Vasserot, Rouquier)

The algebra Ry is generated by the homology classes:
B the diagonal in X; Xy, X;

1 AR i; :‘L} "\g

\
m the Ist Chern class of the tautological bundle ‘ o * o ‘
m push-pull from a partial flag version ‘ . >< . ‘
modulo the relations on the next page:
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s and geometry

Quiver geometry

KLR relations:

Ben Webster UW/PI

“oulomb bran



KLR algebras and geometry
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Generalizations

To generalize KLR algebra, need to give more geometric definition:

Consider a generic cocharacter £ : C* — G; we have a resulting
complete flag {F,,} of some type i given by the sum of vectors of
weight < w for each w.

Let N;~ be the elements of Ny of negative weight under §. Let
P;” C Gy be the subgroup preserving the flag Fl.

Proposition

We have an isomorphism X; = N; /Py .
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Generalizations

Can do this for any representation N and group G.
Important twist: can consider the different {: C* — Normg; y)(G)
which lift a fixed C*-action on Y = N/G.
Can similarly define X¢ = N /P, and consider
R = @HEM(XE Xng/) = EXt*(@ W*ng).
I3 1

Of course, there are infinitely many &, but only finitely many N, ¢ upto
conjugacy.

Theorem (Sauter, W.)
The algebra R always has a “KLR-type” presentation.
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KLR algebras and geometry
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Generalizations

To obtain the algebras of ultimate interest to us, we have to add w;
copies of the representation C" to Ny (i.e. Hom(C"i, C"7)). This is
sometimes called “framing.”

Moduli spaces of framed quiver representations are closely related to
Nakajima quiver varieties.

We’ll want to choose ¢: C* — [[ GL(C") C Autg(Ny ). This puts
an order on the basis vectors of the C"i’s, which we can record as a
word in / with w; copies of i.

A choice of ¢ corresponds to interleaving this with a word in /
containing v; copies of i.
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Generalizations

The corresponding KLRW algebra has a very similar presentation.
The red strands can never cross (since ¢ is fixed), and it’s optional
whether to allow dots on them. Relations:

#,

S‘J

L
|
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Generalizations

I was interested in these algebras to construct categorifications of
tensor products and knot invariants, and their connections to quiver
varieties.

I’ll say more about this later, but let me just mention that the
bimodules that correspond to braiding can be gotten by taking Ext
between pushforwards for different ¢’s.

But then I learned that there was a quite different lens to view them
through: Coulomb branches.
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Coulomb branches defined

Now affinize everything:

Taylor series C = C[[7]] | G=G][t]] | N = N[[{]]
Laurent series C = C((7)) | §

Relevant spaces:

Y =N/G = Map(D = SpecC — N/G)

Y =N/G = Map(D* = SpecC — N/G)

These can be interpreted as spaces of principal G bundles with a
section of the associated N-bundle on D and D*.

Thus, the fiber product Y xy Y is the space of such bundles on the
“raviolo” gluing two copies of D along D*.
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Coulomb branches defined

Previous experience tells us it would be fun to consider

A= HfM(Y Xy Y)
Using factorization arguments, we can see that A is a commutative
C-algebra of finite type.

Definition

The Coulomb branch is the spectrum 9t = Spec A.

This definition has some motivation in 3d QFT (it’s the local
operators in a topological twist of a gauge theory), but it’s also

recognizable as an affine version of our construction of KLR algebras,
so it should have a KLR type presentation.
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The quiver case

In the case of N = Ny and G = Gy from before,
m N/§G is the moduli of quiver representations over the field C.

m N/G is the moduli of such quiver representations with a choice
of lattice A; = C" C " that gives a subrepresentation.

But our KLR presentation comes from being able to switch
consecutive spaces in a flag, so we want flags, not lattices.

Definition

An affine flag in C" is a sequence of a lattices F;, C C™ for k € 7
such that

"'CFkCFkCFk+1C--~ tF = Fr_p

Objects describing affine flags are periodic (periodic permutations for
Schubert cells, etc.)
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The quiver case

So, we can now let i be a periodic word: a map i: Z — I such that
ix = ix+m for all k for m = > v; such that any m consecutive entries
contain v; copies of i.

Any homogeneous affine flag Fe C €D;; C" has a periodic word as
its type, defined by

dim(Fy N €% /Fr_y N €Y) = &3,

Let X be the moduli space of quiver reps over C, together with a
choice of affine flag of subreps of type i.

Ben Webster UW/PI

Coulomb branches and cylindrical KLR



Coulomb branches
[e]e] le]

The quiver case

Theorem

The convolution algebra

R= @HEM(xi xy X|) = Ext*(@ m.Cx,)
1) |

has a presentation by cylindrical KLR diagrams with local relations
unchanged.
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The quiver case

To get Coulomb branch A, need to integrate out finite flag variety back
down to a single lattice. This corresponds to having a thick strand
bringing together all with label i for each i at top and bottom of

diagram (but general CKLR diagram in the mlddle)
Jdo  — K= :

— — J— .

(

|
S

N J K
This result generalizes to the KLRW case with addition of red strands.
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The talk thus far
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Representation theory
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Examples of Coulomb branches

Why am I interested in this construction? Mainly because lots of
examples recover interesting varieties, always symplectic:
m my favorite: nilcone of gl,

(D - O3

m more generally, Slodowy slices in type A

MG a S

m symmetric power Sym"(C?/Z;)

[B-)

All of these varieties are Nakajima quiver varieties, but for potentially
different quivers and dimension vectors. The quiver variety and
Coulomb branch for a given quiver should be related by “3d mirror
symmetry”/“symplectic duality.”

Ben Webster UW/PI

Coulomb branches and cylindrical KLR



Representation theory

O®0000

Examples of Coulomb branches

The disk D has a C* action by rotation (so the parameter ¢ has weight
1). Combining this with the action on N/G via ¢, we obtain
compatible C*-actions on Y, Y, X;.

An=HMC Y <y Y. Ry = @ HM (X xy X))
i

Relations only change to account for the fact that Fy/F;_; and
Fitm/Fiim—1 are isomorphic, but have different C*-weight.
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Examples of Coulomb branches

The parameters i (Y) = C[g, h]¢ give a maximal commutative
subalgebra S of Ay,.

These result in well-known quantizations of these varieties; we get
more familiar algebras if we consider the specialization A; setting
h=1.

m my favorite: U(sl,) with S the Gelfand-Tsetlin subalgebra

RO

m more generally, W-algebras in type A

m spherical Cherednik algebras for S, or G(¢, 1, n), with S the
subalgebra generated by the Dunkl-Opdam operators. J:@.—
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Examples of Coulomb branches

Definition

We call an A1-module M Gelfand-Tsetlin if the subalgebra S acts
locally finitely on M, i.e. dim(S - m) < oo for allm € M.

Theorem

The category of Gelfand-Tsetlin A-modules with “integral weights”
is equivalent to the category of weakly graded (gradeable after
passing to associated graded) R-modules.

So, passing to GT A;-modules undoes the affinization!
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Examples of Coulomb branches

A few words on the proof:

m a GT module satisfies M = P W, (M) for

~yEMaxSpec(S)
Wy (M) ={m € M | mJm = 0 forall N > 0}.

Note that we can think of v € MaxSpec(S) as a conjugacy class
of cocharacters C* — Ngy(v)(G). (integrality!)

m The category is thus controlled by natural transformations
Wq/ — WW"

m We have an isomorphism (by localization in equivariant
homology)

Hom(W.,, W) = HM (X, xy X,)
m This gives the desired R-action.
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Examples of Coulomb branches

Applications:

m Gives Koszul duality between categories O for Coulomb
branches and quiver varieties/hyperkéhler quotients attached to a
given (G, N).

m First classification of GT modules for gl,, and character

formulae for them (Kamnitzer-Tingley-W.-Weekes- Yacobi,
Silverthorne-W.).

m analogous classification for modules over Cherednik algebras of
G(¢,p,n). (LePage-W.)

m Categorified knot invariants have two Koszul dual constructions;
Coulomb side construction seems to be “A-branes on Hecke
modifications” proposed by Witten.

m Connection to coherent sheaves next time!
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Thanks

Thanks for listening.
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