Coulomb branches and cylindrical KLRW algebras II

Ben Webster

University of Waterloo
Perimeter Institute for Mathematical Physics

September 17, 2020
Related recent talks:

- **Part I of this talk:** youtu.be/ZGO9wC-L0ho
- **More on GT modules for \(\mathfrak{gl}_n \):** youtu.be/tWyFM-Fbcc0
- **a recent talk of Mina Aganagić on knot homology from the physics perspective:** youtu.be/4TxtJzcRn0U
The usual KLR (+KLRW variations) algebras appear as convolution algebras for moduli of quiver representations on finite dimensional \mathbb{C}-vector space with compatible flags:

$$R_v = \bigoplus_{i,j} H_{BM}^*(X_i \times_{Y_v} X_j) \cong \text{Ext}^*(\bigoplus_i \pi_* \mathbb{C}_{X_i})$$

The Coulomb branch is an affine version of this: switch to quiver representations over $\mathcal{C} = \mathbb{C}((t))$ and replace flags with $\mathcal{C} = \mathbb{C}[[t]]$-lattices:

$$A = H_{BM}^*(Y \times_y Y)$$

More KLR-like to consider affine flags instead of lattices:

$$R = \bigoplus_{i,j} H_{BM}^*(X_i \times_y X_j).$$
These affinized algebras have a similar geometric presentation, just incorporating wrapping around a cylinder/periodic permutations.
Why am I interested in this construction? Mainly because lots of examples recover interesting varieties, always symplectic:

- my favorite: nilcone of \mathfrak{gl}_n

 ![Diagram of nilcone of gl_n]

- more generally, Slodowy slices in type A

 ![Diagram of Slodowy slice in type A]

- symmetric power $\text{Sym}^n(\mathbb{C}^2/\mathbb{Z}_\ell)$

 ![Diagram of symmetric power]

All of these varieties are Nakajima quiver varieties, but for potentially different quivers and dimension vectors. The quiver variety and Coulomb branch for a given quiver should be related by “3d mirror symmetry”/“symplectic duality.”
What do we learn from thinking about these familiar varieties as Coulomb branches?

BFN construct resolutions of examples: Springer resolution and Hilbert scheme. This works for (G, N) an affine type A quiver gauge theory, but not in most other cases.

These varieties also have non-commutative resolutions:

Definition

A noncommutative symplectic resolution of a symplectic singularity $\mathcal{M} = \text{Spec} A$ is a ring R such that $A = eRe$ for some idempotent, and the functor $M \mapsto eM : R\text{-mod} \to A\text{-mod}$ “looks like” pushforward by a crepant resolution of singularities.

For a symplectic singularity, symplectic resolution=crepant resolution.
Theorem

Whenever a BFN resolution exists, the ring R is a non-commutative symplectic resolution of A and $D^b(R\text{-mod}) \cong D^b(\text{Coh}(\tilde{M}))$ for \tilde{M} any symplectic resolution of the Coulomb branch $\text{Spec} A$.

- “Noncommutative Springer resolution” in type A is a special case; this gives such resolutions for all parabolic Slodowy slices in type A.
- In the case of Hilbert scheme (or more generally, affine type A) need to account for extra \mathbb{C}^* acting by scaling on the loop (symplectic \mathbb{C}^* on \mathbb{C}^2). Need to use “weighted” version of R. Recovers BFG resolution based on Cherednik algebra.
It’s a long road to get these resolutions, but it starts with a noncommutative deformation of A and R.

The disk $D = \text{Spec } \mathbb{C}$ has a \mathbb{C}^* action by rotation (so the parameter t has weight 1). Combining this with the action on N/G via φ, we obtain compatible \mathbb{C}^*-actions on $Y = N/G$, $\mathcal{Y} = N/\mathcal{G}$, X_i. We can thus consider deformed versions of these algebras, with \hbar the equivariant parameter for \mathbb{C}^*:

$$A_{\hbar} = H_{BM, \mathbb{C}^*}^* (Y \times_\mathcal{Y} Y), \quad R_{\hbar} = \bigoplus_{i,j} H_{BM, \mathbb{C}^*}^* (X_i \times_\mathcal{Y} X_j)$$
Relations only change to account for the fact that F_k/F_{k-1} and F_{k+m}/F_{k+m-1} are isomorphic, but have different \mathbb{C}^*-weight.

We also, to account for the action of φ, have to deform red strand relations by adding θ_i, weight of \mathbb{C}^* on the corresponding basis vector in \mathbb{C}^{w_i}.
The parameters $H^{BM}_{\ast, \mathbb{C}^*} (Y) \cong \mathbb{C}[g, \hbar]^G$ give a maximal commutative subalgebra S of A_{\hbar}.

These result in well-known quantizations of these varieties; we get more familiar algebras if we consider the specialization A_1 setting $\hbar = 1$.

- **my favorite:** $U(\mathfrak{sl}_n)$ with S the Gelfand-Tsetlin subalgebra

- more generally, W-algebras in type A

- spherical Cherednik algebras for S_n or $G(\ell, 1, n)$, with S the subalgebra generated by the Dunkl-Opdam operators.
Definition

*We call an A_1-module M **Gelfand-Tsetlin** if the subalgebra S acts locally finitely on M, i.e. $\dim(S \cdot m) < \infty$ for all $m \in M$.*

Theorem

Over a base field \mathbb{k} of characteristic 0, the category of Gelfand-Tsetlin A_1-modules with “integral weights” is equivalent to the category of weakly graded (gradeable after passing to associated graded) R-modules.

So, passing to GT A_1-modules undoes the affinization!
A few words on the proof:

- a GT module satisfies $M = \bigoplus_{\gamma \in \text{MaxSpec}(S)} W_{\gamma}(M)$ for

\[W_{\gamma}(M) = \{ m \in M \mid m^{N}_{\gamma} m = 0 \text{ for all } N \gg 0 \}. \]

Note that we can think of $\gamma \in \text{MaxSpec}(S)$ as a conjugacy class of cocharacters $\mathbb{C}^{*} \to N_{GL(V)}(G)$. (integrality!)

- The category is thus controlled by natural transformations $W_{\gamma} \to W_{\gamma'}$.

- We have an isomorphism (by localization in equivariant homology)

\[\text{Hom}(W_{\gamma}, W_{\gamma'}) \cong H_{BM}^{\bullet}(X_{\gamma'} \times_{Y} X_{\gamma}) \]

- This gives the desired R-action.
Slight complication: if ϕ_k’s encoding φ aren’t generic, you might not be able to get every i with an integral weight, so some simple R-modules might be lost.

This can be fixed by considering R_1 in place of A_1. Always have $A_1 = eR_1e$, but might not be a Morita equivalence.

For a fixed periodic word i, we can again consider weight functors

$$W_{i,a}(M) = \{m \in e(i)M | (y_k - a_k)^N m = 0 \text{ for all } N \gg 0\}.$$
In this context, there’s a reasonable algebraic proof.

- If $a_k \neq a_{k+1}$, then acts invertibly, and the functor $W_{i,a}$ is unchanged by the permutation $(k, k + 1)$.

- If we extend by $a_{k+m} = a_k - 1$, then pulling one strand around the cylinder shows that $W_{i,a}$ is unchanged by shifts of the sequences i and a.

- For a red strand, if $a_i \neq \phi_j$, we can also do a swap.

Combining all these observations, we can reduce to the cases where all $a_i = \theta_j = 0$, and use inclusion $R \to \mathbb{R}$.
Applications:

- Gives Koszul duality between categories \mathcal{O} for Coulomb branches and quiver varieties/hyperähler quotients attached to a given (G, N).
- First classification of GT modules for \mathfrak{gl}_n, and character formulae for them (Kamnitzer-Tingley-W.-Weekes-Yacobi, Silverthorne-W.).
- Analogous classification for modules over Cherednik algebras of $G(\ell, p, n)$. (LePage-W.)
For any φ, φ', there is a bimodule relating the two different quantizations where we wrap the red lines around the cylinder the appropriate number of times.

Because of the shift when a dot goes around, we need to change θ_i.

Derived tensor product with this bimodule gives “twisting functors.”

This is a special case of a construction for all symplectic resolutions.
Theorem

Twisting functors give a (finite) braid group action on the categories of modules over different quantizations.

This can be upgraded to an action of tangles; the resulting link homology $\mathcal{D}_q(K)$ recovers my old work on categorified Reshetikhin-Turaev (in particular, Khovanov-Rozansky in type A).

In type A, can even upgrade this to an action of the foam category.

This seems to be a version of Witten’s prediction of a knot homology constructed with A-branes on a space of Hecke modifications.
For different people, this next part will have different motivations:

- You might want to understand coherent sheaves on a resolution of $\text{Spec } A$.
- You might be the kind of person who says “what if \Bbbk had characteristic p”?
- You might have gone to some recent talks of Aganagić and gotten confused once cigars came up.

Interestingly, either way, you should do the same thing.
Over \mathbb{F}_p, you can try to analyze finite dimensional modules over A_1 by diagonalizing S again. Again, let’s restrict to integral maximal ideals.

Problem?

If we wrap a strand around the cylinder p times, the shift of the dot is trivial.

Theorem

Let $k = \mathbb{F}_p$. For generic φ (and p big enough), the category of finite dimensional A_1-modules with “integral weights” is equivalent to the category of finite dimensional weakly graded R_0-modules.

So, still affinized, but resolved now.

Ben Webster
Coulomb branches and cylindrical KLRW algebras II
Similar arguments to last time:

- **geometric proof**: localization to \(\mu_p \)-fixed points on \(Y \).
- **algebraic proof**: same calculations as last time, but now we have natural transformations \(W_{i,0} \rightarrow W_{j,0} \) as endomorphisms given by any diagram on the cylinder with \(i \) where all strands have winding number divisible by \(p \).
Why does this have anything to do with coherent sheaves?

Fancy char \(p \) stuff: there’s a quantum Frobenius map \(A_0 \to Z(A_1) \). This is actually the sections of a map of sheaves \(\mathcal{O}_{\tilde{M}} \to \mathcal{O}_{\tilde{M}} \) of structure sheaf to a localization of \(A_1 \) on any resolution \(\tilde{M} \).

Applying results of Bezrukavnikov and Kaledin, we can construct a very special vector bundle \(\mathcal{T} \) on \(\tilde{M} \) by “diagonalizing the action of \(S \subset A_1 \).”

A lift of this vector bundle also exists in char 0, so can forget about characteristic \(p \) story.
A tilting generator is a vector bundle T such that $\text{Ext}^0(T, T) = 0$, and $\langle T \rangle = D^b\text{Coh}(\tilde{M})$.

Theorem

Assume that G is a torus, or (G, N) corresponds to an affine type A quiver gauge theory. The vector bundle T is a tilting generator for \tilde{M} and $\text{End}(T) = R$.

The fact that R is a non-commutative resolution is a corollary.
While all commutative and non-commutative resolutions are derived equivalent, these equivalences are not unique. Instead, they generate an action of the affine braid group on this category; these descend from twisting functors in char p:

Theorem

The twisting affine braid group action on $D^b(\mathcal{R} \text{-mod})$ is generated by cylindrical versions of R-matrix bimodules.
In fact, this extends to an action of affine tangles, by affine versions of the cup and cap bimodules, and in type A to affine foams. This gives a link homology $\mathcal{D}_{coh}(K)$.

Theorem

The following link homologies are all the same:

- $\mathcal{D}_{coh}(K)$, constructed from the affine tangle action above.
- $\mathcal{D}_{q}(K)$, constructed from the tangle action on quantum coherent sheaves.
- the invariant constructed in *my older knot homology work (which matches Khovanov-Rozansky in type A).*
- Aganagić’s physical construction.
Thanks for listening.