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Abstract. This paper gives a new perspective on the theory of principal Galois
orders as developed by Futorny, Ovsienko, Hartwig and others. Every principal Galois
order can be written as eFe for any idempotent e in an algebra F , which we call a
flag Galois order; and in most important cases we can assume that these algebras
are Morita equivalent. These algebras have the property that the completed algebra
controlling the fiber over a maximal ideal has the same form as a subalgebra in a skew
group ring, which gives a new perspective to a number of result about these algebras.

We also discuss how this approach relates to the study of Coulomb branches in the
sense of Braverman-Finkelberg-Nakajima, which are particularly beautiful examples
of principal Galois orders. These include most of the interesting examples of principal
Galois orders, such as U(gln). In this case, all the objects discussed have a geometric
interpretation which endows the category of Gelfand-Tsetlin modules with a graded
lift and allows us to interpret the classes of simple Gelfand-Tsetlin modules in terms
of dual canonical bases for the Grothendieck group. In particular, we classify Gelfand-
Tsetlin modules over U(gln) and relate their characters to a generalization of Leclerc’s
shuffle expansion for dual canonical basis vectors.

1. Introduction

Let Λ be a Noetherian commutative ring, and Ŵ a monoid acting faithfully on Λ; let

L = Frac(Λ) be the fraction field of Λ. Assume that Ŵ is the semi-direct product of a
finite subgroup W and a submonoidM and that #W is invertible in Λ. For simplicity,
we assume throughout the introduction that M has finite stabilizers in its action on
MaxSpec(Λ).

A principal Galois order (Def. 2.1) is an subalgebra of invariants of the skew group
ring (L#M)G equipped with (amongst other structure) an inclusion of Γ = ΛW as a
subalgebra (usually called the Gelfand-Tsetlin subalgebra) and a faithful action on Γ.

We call a finitely generated module Gelfand-Tsetlin if it is locally finite under the
action of Γ, and thus decomposes as a direct sum of generalized weight spaces. An
important motivating question for a great deal of work in recent years has been the
question:

Question A. Given a principal Galois order U , classify the simple Gelfand-Tsetlin
modules and describe the dimensions of their generalized weight spaces for the different
maximal ideals of Γ.

Work of Drozd-Futorny-Ovsienko [DFO94, Th. 18] shows that the “fiber” over a

maximal ideal mγ of Γ is controlled by a pro-finite length algebra Ûγ , which naturally
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acts on the corresponding generalized weight space for any U -module and whose simple
modules are the γ-generalized weight spaces of the different simple Gelfand-Tsetlin mod-
ules where this generalized weight space is non-zero. Thus, we can rephrase Question A
as the question of how to understand these algebras in specific special cases.

One perspective shift we want to strongly emphasize is that taking invariants for a
group action is a very bad idea, and that we should instead consider subalgebras F in the
skew group ring of the semi-direct product L#(W nM), which we call principal flag
orders (Def. 2.2). So, now the algebra Γ is replaced by the smash product Λ#W , which
in particular contains W . If we let e ∈ Z[ 1

#W ][W ] be the symmetrization idempotent,

then for any principal flag order F , the centralizer U = eFe is a principal Galois order,
and every principal Galois order appears this way.

One can easily check that Λ will be a Harish-Chandra subalgbra (in the sense of
[DFO94, §1.3]) and so we can apply the results of that paper in this situation as well.

Thus, for any maximal ideal mλ ⊂ Λ, we have an algebra F̂λ which controls the mλ-

weight spaces for different modules. Let Ŵλ ⊂ Ŵ be the stabilizer of λ ∈ MaxSpec(Λ)

and Λ̂ the completion of Λ with respect to this maximal ideal.

Theorem B. The algebra F̂λ is a principal flag order for the ring Λ̂ and the group Ŵλ,

that is, it is a subalgebra of the skew group ring K̂#Ŵλ such that F̂λ ⊗Λ̂
K̂ ∼= K̂#Ŵλ,

with an induced action on Λ̂.

The difference between F̂λ and Ûγ for mγ = mλ∩Γ is controlled by the stabilizer Wλ of

λ in W . We have that Ûγ = eλF̂λeλ for the symmetrizing idempotent eλ in Z[ 1
#W ][Wλ].

Thus, generically these algebras will simply be the same.

In particular, by [FO10, Th. 4.1(4)], the center of F̂λ is the invariants Λ̂λ = Λ̂Ŵλ and

any simple module over F̂λ will factor through the quotient F
(1)
λ by the unique maximal

ideal of the center. Thus, this gives a canonical way choosing a finite dimensional

quotient of F̂λ through which all simples factor.
Note, the situation will be simpler if we work in the context of [FGRZ18], where we

assume that:

(?) The algebra Λ is the symmetric algebra on a vector space V , the group W is a
complex reflection group acting on V , M is a subgroup of translations, and F
is free as a left Λ-module.

In this case, we can always choose F so that U and F are Morita equivalent via

the bimodules eF and Fe, and the dimension of F
(1)
λ is easy to calculate: it is just

(#Ŵλ)2. Furthermore, the quotient by the maximal ideal mλ has dimension #Ŵλ, and
every simple module as a quotient. In particular, the sum of the dimensions of the

λ-generalized weight space for all simple Gelfand-Tsetlin-modules is ≤ #Ŵλ.

If we consider how the results apply to Ûγ , then they are almost unchanged, except

that we replace the order of the group Ŵλ with the number of cosets S(γ) = #Ŵλ
#Wλ

for

any maximal ideal mλ lying over mγ in Λ; this is the same statistic called S(mγ ,mγ)

in [FO14]. With the assumptions (?), the algebra U
(1)
γ is S(γ)2-dimensional, and the
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sum of the dimensions of the γ-generalized weight space for all simple Gelfand-Tsetlin-
modules is ≤ S(γ). This seems to be implicit in the results of [FO14] (in particular,
Cor. 6.1) but this perspective makes the result manifest.

1.1. Coulomb branches. These results however are fairly abstract and give no indica-

tion of how to actually compute the algebras U
(1)
γ and understand their representation

theory. However, the most interesting examples of principal Galois orders actually arise
from a geometric construction: the Coulomb branches of Braverman, Finkelberg and
Nakajima [Nak, BFNb]. These include the primary motivating example, the orthogonal
Gelfand-Zetlin1 algebras of Mazorchuk [Maz99] (including U(gln)), and a number of ex-
amples that seem to have escaped the notice of experts, such as the spherical Cherednik
algebras of the groups G(`, 1, n) and hypertoric enveloping algebras.

The Coulomb branch is an algebra constructed from the data of a gauge group G and
matter representation N . For example:

• In the case where G is abelian and N arbitrary, the Coulomb branch is a hyper-
toric enveloping algebra as defined in [BLPW12]; the isomorphism of this with
a Coulomb branch (defined at a “physical level of rigor”) is proven in [BDGH,
§6.6.2]; it was confirmed this matches the BFN definition of the Coulomb branch
in [BFNb, §4(vii)].
• In the case where G = GLn and N = gln ⊕ (Cn)⊕`, the Coulomb branch is a

spherical Cherednik algebra of the group G(`, 1, n) by [KN]. We’ll confirm in
forthcoming work with LePage that the spherical Cherednik algebra for G(`, p, n)
is also a principal Galois order.
• In the case where

G = GLv1 × · · · ×GLvn−1(1.1a)

N = Mvn,vn−1(C)⊕Mvn−1,vn−2(C)⊕ · · · ⊕Mv2,v1(C),(1.1b)

the Coulomb branch is an orthogonal Gelfand-Zetlin algebra associated to the
dimension vector (v1, . . . , vn) as shown in [Wee, §3.5]. In particular, U(gln) arises
from (1, 2, 3, . . . , n).

In this case, the algebras U
(1)
γ also have a geometric interpretation in terms of convolution

in homology:

Theorem C. The Coulomb branch for any group G and representation N is a principal
Galois order with Λ = Sym•(t)[h], the symmetric algebra on the Cartan of G with an

extra loop parameter h and Ŵ the affine Weyl group of G acting naturally on this space.

1As any savvy observer knows, there is no universally agreed-upon spelling of Гельфанд-Цетлин
in the Latin alphabet; in fact it’s not even spelled consistently in Russian, since some authors write
Цейтлин, a different transliteration of the same Yiddish name. We will write “Tsetlin” as this is the
spelling that will elicit the most correct pronunciation from an English-speaker. However, since ”OGZ”
is well-established as an acronym, we will not change the spelling of these algebras.
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For each maximal ideal mγ of Γ, there is a Levi subgroup Gγ ⊂ G, with parabolic P γ
and a P γ-submodule N−γ ⊂ N such that

U (1)
γ
∼= HBM

∗ ({(gPγ , g′Pγ , n) ∈ Gγ/Pγ ×Gγ/Pγ ×N | n ∈ gN−γ ∩ g′N−γ })

U
(1)
S
∼=

⊕
γ,γ′∈S

HBM
∗ ({(gPγ , g′Pγ′ , n) ∈ Gγ/Pγ ×Gγ′/Pγ′ ×N | n ∈ gN−γ ∩ g′N−γ′})

(1.2)

for any set S contained in a single Ŵ -orbit, where the right hand side is endowed with
the usual convolution multiplication (as in [CG97, (2.7.9)]).

This is a Steinberg algebra in the sense of Sauter [Sau]. One notable point to consider

is that this algebra is naturally graded. Thus, for any choice of (G,N) and Ŵ -orbit S ,

this give a graded lift Г̃Ц(S ) of the category of Gelfand-Tsetlin modules supported on
this orbit. It’s a consequence of the Decomposition theorem that the classes of simple

modules form a dual canonical basis of the Grothendieck group K0(Г̃Ц(S )).
Algebras in this style have appeared numerous places in the literature. In particu-

lar, in the case of (1.1a–1.1b), the algebras that appear are already well-known: they

are very closely related to the Stendhal algebras T̃vT̃ as defined in [Web17, Def. 4.5]
corresponding to the Lie algebra sln, with its Dynkin diagram identified as usual with
the set {1, . . . , n− 1}. These algebras correspond to a list of highest weights, which we
will take to be vn copies of the n− 1st fundamental weight ωn−1; the dimension vector
(v1, . . . , vn−1) determining the number times each Dynkin node appears as a label on

a black strand. The author has proven in [Webc, Cor. 4.9] that the ring T̃ is an equi-
variant Steinberg algebra for the space appearing in (1.2). These are algebras closely
related to KLR algebras [KL09], but instead of categorifying the universal enveloping
algebra U(n) of the strictly lower triangular matrices in gln, by [Web17, Prop. 4.39],
they category the tensor product of U(n) with the vnth tensor power of the defining
representation of gln. In particular, the classes of simples modules over this algebra
match the dual canonical basis in this space (which is proven in the course of the proof
of [Web15, Th. 8.7]).

The center of the algebra T̃vT̃ is a copy of

Γ = H∗(BGLv1 × · · · ×BGLvn−1) ∼=
n−1⊗
i=1

C[yi,1, . . . , yi,vi ]
Svi .

Quotienting out by the unique graded maximal ideal in this ring gives a quotient T̃ ′;
this quotient is, of course, the non-equivariant convolution algebra that appears in (1.2).
That is:

Corollary D. For S the set of integral elements of MaxSpec(Γ), the algebra U
(1)
S is

Morita equivalent to the algebra T̃ ′.

This gives a new way of interpreting the results of [KTW+, §6]; in particular, Corollary
D is effectively equivalent to Theorem 6.4 of loc. cit. In particular, this gives us a
criterion in terms of which weight spaces are not zero that classifies the different simple
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Gelfand-Tsetlin modules with integral weights for an orthogonal Gelfand-Zetlin algebra
(Theorem 5.9).
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2. Generalities on Galois orders

Following the notation of [Har], let Λ be a noetherian integrally closed domain, L its
fraction field. Note that this implies Hartwig’s condition (A3), and we lose no generality
in assuming this by [Har, Lem. 2.1]. Let W be a finite group2 acting faithfully on Λ
and Γ = ΛW ,K = LW . Let M be a submonoid of Aut(Λ) which is normalized by W ,

and let Ŵ =MnW , which we also assume acts faithfully (this implies Hartwig’s (A1)
and (A2)). Let L be the smash product L#M, F = L#W , and K = LW . Note that L
is a L module in the obvious way, and thus K is a K-module.

The more general notion of Galois orders was introduced by Futorny and Ovsienko
[FO10], but we will only be interested in a special class of these considered in Hartwig
in [Har], which makes these properties easy to check.

Definition 2.1 ([Har, Def 2.22 & 2.24]). The standard order is the subalgebra

KΓ = {X ∈ K | X(Γ) = Γ}.
A subalgebra A ⊂ KΓ is a principal Galois order if KA = K.

It is a well-known principle in the analysis of quotient singularities that taking the
smash product of an algebra with group acting on it is a much better behaved operation
than taking invariants. Similarly in the world of Galois orders, there is a larger algebra
that considerably simplifies the analysis of these algebras.

Definition 2.2. The standard flag order is the subalgebra

FΛ = {X ∈ F | X(Λ) = Λ}.
A subalgebra F ⊂ FΛ is called a principal flag order if KF = F and W ⊂ F .

2Note that this is a departure from [Har], where this group is denoted G. We will be most interested
in the case where W is the Weyl group of a semi-simple Lie group acting on the Cartan, so we prefer to
save G for the name of this group.
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It’s an easy check, via the same proofs, that the analogues of [Har, Prop. 2.5, 2.14 &
Thm 2.21] hold here: that is F is a Galois order inside F with Λ maximal commutative;
in order to match the notation of [FO10], we must take G = {1} and M = W nM.

Let e = 1
#W

∑
w∈W w ∈ FΛ. Note that K ⊂ F via the obvious inclusion, and that

given k ∈ K, the element eke ∈ F acts on Γ by the same operator as k. Thus, k 7→ eke
is an algebra isomorphism K ∼= eFe.

Lemma 2.3. The isomorphism above induces an isomorphism KΓ
∼= eFΛe.

Proof. If a ∈ FΛ, then eaeΓ = eaΓ ⊂ eΛ = Γ, so eae ∈ eKΓe. On the other hand, eKΓe
acts trivially on the elements of Λ that transform by any non-trivial irrep, and sends Λ
to Λ, so indeed, this lies in eFΛe. �

Thus, we have that for any flag order F , the centralizer algebra U = eFe is a principal
Galois order. As usual with the centralizer algebra of an idempotent:

Lemma 2.4. The category of U -modules is a quotient of the category of F -module via
the functor M 7→ eM ; that is, this functor is exact and has right and left adjoints
N 7→ Fe⊗U N and N 7→ HomU (eF ,N) that split the quotient functor.

Furthermore, every principal Galois order appears this way. Consider the smash
product Λ#W ⊂ EndΛW (Λ), and let D be a subalgebra satisfying Λ#W ⊂ D ⊂
EndΓ(Λ) ⊂ L#W . Note that in this case, eDe = Γ, since this is true when D = Λ#W
or D = EndΓ(Λ). Let FD = De⊗ΓU⊗Γ eD endowed with the obvious product structure
(using the map eD ⊗D De→ Γ).

Lemma 2.5. For any principal Galois order U , and any D as above, the obvious algebra
map FD → FΛ makes FD into a principal Galois order such that U = eFDe.

Proof. First, note that since D ⊂ L#W , can identify eD and De with Λ-submodules of
L ∼= e(L#W ) = (L#W )e. Since the natural map (L#W )e ⊗K K ⊗K e(L#W ) → F is
an isomorphism, this shows that FD injects into F , and this is clearly an algebra map.
Thus, we will use the same symbol to denote the image.

First, note that FD is a principal flag order, since KFD ⊃ KΛW = LW = F and by
assumption FD contains the smash product Λ#W . Furthermore,

eFDe = eDe⊗Γ U ⊗Γ eDe = Γ⊗Γ U ⊗Γ Γ = U

so we have all the desired properties. �

2.1. Gelfand-Tsetlin modules. Now, fix a flag Galois order F ⊂ FΛ. We wish to
understand the representation theory of this algebra. Consider the weight functors

Wλ(M) = {m ∈M | mN
λ m = 0 for some N � 0}

for λ ∈ MaxSpec(Λ). The reader might reasonably be concerned about the fact that
this is a generalized eigenspace; in this paper, we will always want to consider these, and
thus will omit “generalized” before instances of “weight.”

Definition 2.6. We call a finitely generated F -module M a weight module or Gelfand-
Tsetlin module if M =

⊕
λ∈MaxSpec(Λ) Wλ(M).
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Remark 2.7. One subtlety here is that we have not assumed that Wλ(M) is finite

dimensional. We’ll see below that this holds automatically if the stabilizer of λ in Ŵ is
finite.

Since many readers will be more interested in the Galois order U = eFe, let us
compare the weight spaces of a module M with those of the U -module eM . Of course,
in U , we only have an action of Γ. Let γ ∈ MaxSpec(Γ) be the image of λ under the
obvious map and

Wγ(N) = {m ∈ eM | mN
γ m = 0 ∀N � 0}.

Lemma 2.8. If M is a Gelfand-Tsetlin F -module, then eM is a Gelfand-Tsetlin U -
module with

Wγ(eM) ∼= eλWλ(M).

Proof. Let mγ = Γ ∩ mλ; by standard commutative algebra, the other maximal ideals
lying over mγ are those in the orbit W · λ. Thus, we have that

Wγ(eM) = e ·

( ⊕
λ′∈Wλ

Weiλ′(M)

)
.

This space
⊕

λ′∈WλWeiλ′(M) has a W -action induced by the inclusion W ⊂ F , and is

isomorphic to the induced representation IndWWλ
Wλ(M) since it is a sum of subspaces

which it permutes like the cosets of this subgroup. Thus, its invariants are canonically
isomorphic to the invariants for Wλ on Wλ(M). �

2.2. The fiber for a flag order.

Definition 2.9. Fix an integer N . The universal Gelfand-Tsetlin module of weight
λ and length N is the quotient F/FmN

λ .

This is indeed a Gelfand-Tsetlin-module by [Har, Lem. 3.2]. Obviously, this repre-
sents the functor of taking generalized weight vectors killed by mλ

N :

HomF (F/Fmλ
N ,M) = {m ∈M | mλ

Nm = 0}.
In particular, every simple Gelfand-Tsetlin-module with Wλ(S) 6= 0 is a quotient of
F/Fmλ, since it must have a vector killed by mλ. Taking inverse limit lim←−F/Fm

N
λ , we

obtain an universal (topological) Gelfand-Tsetlin module of arbitrary length. Consider
the algebra

F̂λ = lim←−F/
(
FmN

λ + mN
λ F
)

As noted in [DFO94, Th. 18], this algebra controls the λ weight spaces of all modules,
and in particular simple modules.

Let Ŵλ be the subgroup of Ŵ = W nM which fixes λ. For the remainder of this

section, we assume that Ŵλ is finite. This implies that Λ is finitely generated over

Λλ = ΛŴλ .

Definition 2.10. Let Fλ be the intersection F ∩K · Ŵ λ ⊂ K = KŴ with the K-span

of Ŵλ. Since Fλ is the intersection of two subalgebras, it is itself a subalgebra.

This has an obvious left and right module structure over Λ but Λ is not central.
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Lemma 2.11. The image of Fλ spans F/
(
FmN

λ + mN
λ F
)

for all N .

Proof. This is essentially just a restatement of the proof of [FO14, Lemma 5.3]. The
quotient F/

(
FmN

λ +mN
λ F
)

is finitely generated as a Λ-Λ-bimodule, and thus generated
by the images of finitely many elements f1, . . . , fn of F . Thus, there is some finite set T

given by the union of the supports in Ŵ of these elements. We induct on the number

of elements of T that don’t lie in Ŵλ.
If t is such an element, then there is some polynomial p ∈ mN

λ which does not vanish

at p(t−1 ·λ) for any t ∈ T ; that is, pt is a unit mod mN
λ . Thus, pt⊗1−1⊗p acts invertibly

on the quotient F/
(
FmN

λ + mN
λ F
)
, so the elements ptfk − fkp are still generators, but

their support now lies in T \ {t} by [FO10, Lem. 5.2]. Applied inductively, this achieves
the result. �

Lemma 2.12. The ring Fλ is finitely generated as a left module and as a right module

over Λ and satisfies FλΛ = ΛFλ = K · Ŵλ. In fact, Fλ is a Galois order for the group

M = Ŵλ and commutative ring Λ, using the notation of [FO10].

This shows in particular that Λ is big at λ in the terminology of [DFO94].

Proof. The finite generation is an immediate consequence of the fact that F is an order.
Similarly, that Fλ has the order property, i.e. its intersection with any finite dimensional

K-subspace for the left/right action of K ·Ŵλ is finitely generated for the left/right action
of Λ is an immediate consequence of the same property for F .

Thus, it only remains to show that FλΛ = ΛFλ = K · Ŵλ. Since F = ΛF , for any

w ∈ Ŵλ, we have w =
∑
kifi for ki ∈ K, and fi ∈ F . As in the proof of 2.11 above, we

can assume that the fi’s have support in some set T , and if t ∈ T but not in Ŵλ, then
we have a polynomial p as before, vanishing at λ, but not at t−1 · λ. Note that we have
w = 1

pwt−pw (pwtw−wp), with the pt− p being non-zero in K since it does not vanish at

λ. Substituting in our formula for w, we have

w =
ki

pwt − pw
(pwtfi − fip)

Thus, we can inductively reduce the size of T until T ⊂ Ŵλ, so we can assume that
fi ∈ Fλ. �

This shows that F̂λ is the completion of Fλ with respect to the topology induced by
the basis of neighborhoods of the identity Fλm

N
λ + mN

λ Fλ. Alternatively, we can think

about this topology by noting that Fλ is finitely generated over Λλ = ΛŴλ . Furthermore,

Λλ is central in Fλ, since it commutes with K · Ŵ λ; in fact, by Lemma 2.12 above and
[FO10, Th. 4.1(4)], it is the full center of this algebra. Let nλ = mλ ∩ Λλ. Since λ is

fixed by Ŵ λ (by definition), the ideal nλΛ still only vanishes at λ, that is, nλΛ ⊃ mk
λ for

some k.
Thus, if we let Λ̂ and Λ̂λ be the completion with of the respective rings in the mλ-adic

and nλ-adic topologies, then:

Lemma 2.13. We have an isomorphism of topological rings

F̂λ = Fλ ⊗Λλ Λ̂λ
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and the ring F̂λ is a Galois order for M = Ŵλ and the ring Λ̂.

Proof. The tensor product Fλ⊗Λλ Λ̂λ is the completion of Fλ with respect to the topology
with basis of 0 given by the 2-sided ideals Fλn

N
λ . Since Λnλ ⊃ mk

λ for some k, we have
that

Fλm
kN
λ + mkN

λ Fλ ⊂ FλnNλ ⊂ FλmN
λ + mN

λ Fλ

which shows the equivalence of the topologies, and thus the isomorphism of completions.
Faithful base changes by a central subalgebra obviously preserves the properties of being
a Galois order, so this follows from Lemma 2.12. �

We can use these result to also understand the fiber for U as well for any principal
Galois order. By Lemma 2.5, we can choose a principal flag order with U = eFe. The
algebra Fλ contains the stabilizer Wλ and its symmetrizing idempotent eλ. As before,

let γ be the image of λ in MaxSpec(Γ). Let Uγ = eλFλeλ, and Ûγ the completion
lim←−U/

(
UmN

γ + mN
γ U
)
.

Lemma 2.14. The algebra Uγ surjects onto U/
(
UmN

γ +mN
γ U
)

for any N , and thus has

dense image in Ûγ ∼= eλF̂λeλ.

This is sufficiently similar to Lemma 2.11 and [FO14, Lemma 5.3] that we leave it as
an exercise to the reader.

2.3. Universal modules. While this is largely redundant with [DFO94], it will be
helpful to explain how we construct simple Gelfand-Tsetlin modules

Definition 2.15. Fix an integer N . The central universal Gelfand-Tsetlin module

of weight λ and length N is the quotient P
(N)
λ = F/FnNλ .

Consider the quotient algebra F
(N)
λ := F λ/F λn

N
λ .

Theorem 2.16. The module P
(N)
λ is a Gelfand-Tsetlin module such that

Wλ(P
(N)
λ ) ∼= End(P

(N)
λ ) ∼= F

(N)
λ .

More generally, we have that

(2.1) HomF (P
(N)
λ ,M) = {m ∈M | nNλ m = 0}.

Note that “length N” refers to the maximal length of a Jordan block of an element

of nλ, not of mλ. Since nλ is central in Fλ, the ideal nNλ acts trivially on P
(N)
λ . On the

other hand the nilpotent length of the action of mλ on F λ/F λmλ
N is typically more

than N .

Proof. Equation (2.1) is a basic property of left ideals. This is a Gelfand-Tsetlin module
by [Har, Lem. 3.2].

Note that the map Fλ →Wλ(P
(N)
λ ) is surjective by 2.11. Of course, the kernel of this

map is Fλ ∩FnNλ = Fλn
N
λ . This shows that Wλ(P

(N)
λ ) ∼= F λ/F λn

N
λ . Since nNλ is central

in F λ, it acts trivially on this weight space, and the identification with End(P
(N)
λ ) follows

from (2.1). �
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It follows immediately from [DFO94, Th. 18] that:

Theorem 2.17. The map sending S 7→ Wλ(S) is a bijection between the isoclasses of

simple Gelfand-Tsetlin F -modules in the fiber over λ and simple F
(1)
λ -modules.

Since Fλ ⊗Γ K is (#Ŵλ)2 dimensional over K, we have that F
(1)
λ is at least length

(#Ŵλ)2 over Λ. and U
(N)
γ = eλFλ

(N)eλ

Similarly, we can define a U -module Q
(N)
γ = eP

(N)
λ eλ = e(P

(N)
λ )Wλ such that

Wγ(Q(N)
γ ) ∼= End(Q(N)

γ ) ∼= U
(N)
λ = eλF

(N)
λ eλ.

More generally, we have that

(2.2) HomF (Q
(N)
λ ,M) = {n ∈ N | (ΛnNλ ∩ Γ)m = 0}.

Applying [DFO94, Th. 18] again shows that the map sending S 7→Wγ(S) is a bijection
between the isoclasses of simple Gelfand-Tsetlin U -modules in the fiber over γ and

simple U
(1)
γ -modules.

2.4. Weightification and canonical modules. There is another natural way to try to

construct Gelfand-Tsetlin modules. Consider any F -module M , and fix an Ŵ -invariant
subset S ⊂ MaxSpec(Λ).

Definition 2.18. Consider the sums

MS =
⊕
λ∈S

{m ∈M | nλm = 0} MS =
⊕
λ∈S

M/nλM

Theorem 2.19. The action of F on M induces a Gelfand-Tsetlin F -module structure
on MS and MS .

Note that even if M is a finitely generated module, the modules MS and MS may
not be finitely generated, though the individual weight spaces

Wλ(MS ) = {m ∈M | nλm = 0} Wλ(MS ) = M/nλM

will be finitely generated over Λ
(1)
λ = Λ/Λnλ.

Proof. Consider any element f ∈ F . By the Harish-Chandra property, ΛfΛ is finitely

generated as a right Λ-module, so ΛfΛ⊗Λ Λ
(1)
λ is a finite length left Λ-module. Thus, we

can assume without loss of generality that the image of f in the quotient is a generalized
weight vector of weight µ.

Let µW λ be the set of elements of Ŵ such that w · λ = µ. Let µF λ = F ∩K · µW λ

be the elements of F which are in the K-span of µW λ. Thus, we can reduce to the case
where f ∈ µF λ. Every element of µW λ induces the same isomorphism σ : Λλ → Λµ such
that σ(nλ) = nµ, so we have that for any a ∈ nλ, then af = fσ−1(a).

Thus, if nλm = 0, we have that nµfm = 0, so fnλm = 0 and fm ∈ Wλ(MS ). This
shows that we have an induced action. Similarly, given m ∈ M/nλM , the image fm is
thus a well-defined element of M/nµM . This completes the proof. �
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We could similarly consider “thicker” versions of these modules where we replace
nλ with powers of this ideal, and direct/inverse limits of the resulting modules. Since
we have no application in mind for these modules, we will leave discussion of them to
another time.

One particularly interesting module to apply this result to is Λ itself. In this case,

ΛS is a Gelfand-Tsetlin module such that Wλ(ΛS ) = Λ
(1)
λ for all λ ∈ S . This same

module has been constructed by Mazorchuk and Vishnyakova [MV, Th. 4]. The dual
version of this construction given by taking the vector space dual Λ∗ = Homk(Λ,k)
for some subfield k and considering (Λ∗)S has been studied by several authors, in-
cluding Early-Mazorchuk-Vishnyakova [EMV], Hartwig [Har] and Futorny-Grantcharov-
Ramirez-Zadunaisky [FGRZ18]; in particular, it appears to the author that e(Λ∗)S is

precisely the U = eFe module V (Ω, T (v)) defined in [FGRZ18, Def. 7.3] when S = Ŵ ·v
and Ω is a base of the group Ŵλ for any λ ∈ S .

Based on the structure of this module, we can construct a “canonical” module as in
[EMV, Har]; the author is not especially fond of this name as the embedding of F in F
is not itself canonical, if the algebra F is the object of interest. For every λ ∈ S , we
can consider the submodule C ′λ of ΛS generated by Wλ(ΛS ) which is clearly finitely (in
fact, cyclically) generated.

Lemma 2.20. The submodule C ′λ has a unique simple quotient Cλ, and corresponds to

the unique simple quotient of Λ
(1)
λ as a F

(1)
λ -module under Theorem 2.17.

Proof. Given any proper submodule M ⊂ C ′λ, consider M ∩Wλ(ΛS ) ⊂ Λ
(1)
λ . This must

be a proper submodule, because Wλ(ΛS ) generates. As a Λ
(1)
λ -module, Λ

(1)
λ has a unique

maximal submodule, the ideal mλ/nλ, which thus contains M ∩Wλ(ΛS ). Thus, the sum
of two proper submodules has the same property and thus is again proper. This shows
there is a unique maximal proper submodule, and thus a unique simple quotient. �

In the terminology of [Har], the canonical module is actually the right module C∗λ
obtained by dualizing this construction with respect to a subfield k. Note that since we
avoid dualizing, our result here is both a bit stronger and a bit weaker than [Har, Thm.

3.3]. That result does not depend on the finiteness of Ŵλ, though as a result, one pays
the price of not knowing whether Wλ is finite dimensional. However, our construction
applies when Λ is arbitrary, making no assumption on characteristic or linearity over a
field.

2.5. Interaction between weight spaces. In this section, we continue to assume that

every weight considered has finite stabilizer in Ŵ . Of course, we are also interested in
the overall classification of modules. Consider two different weights λ and µ.

Let λWµ be the set of elements of Ŵ such that w ·µ = λ. Let λFµ = F ∩K · λWµ be
the elements of F which are in the K-span of λWµ. This is clearly a Fλ -Fµ-bimodule,
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and we have a multiplication λFµ⊗FµµF ν → λF ν . Thus, we can define a matrix algebra:

(2.3) F (λ1, . . . , λk) =


F λ1 λ1F λ2 · · · λ1F λk
λ2F λ1 F λ2 · · · λ2F λk

...
...

. . .
...

λkF λ1 λkF λ2 · · · F λk


More generally, for any subset S ⊂ MaxSpec(Λ), we let F (S ) be the direct limit of
this matrix algebra over all finite subsets. Note that if S is not finite, this is not a
unital algebra, but is locally unital. This acts by natural transformations on the functor⊕

λ∈S Wλ.

Note that if λ and µ are not in the same orbit of Ŵ , then λFµ = 0, so F (S) naturally

breaks up as a direct sum over the different Ŵ orbits these weights lie in.
If λ and µ are in the same orbit, then we have a canonical isomorphism Λλ ∼= Λµ

induced by any element of λWµ, which identifies the ideals nλ and nµ. Thus for S a

Ŵ -orbit, we can identify these with a single algebra ΛS ⊃ n.

Proposition 2.21. If S ⊂ S , then ΛS is the center of F (S).

Proof. As discussed before Fλ ⊗Γ K ∼= Ŵλ n L, and λ1F λ2 ⊗Γ K is just the bimodule
induced by an isomorphism between these algebras. Thus F (S)⊗K is Morita equivalent

to Ŵλ n L, and its center is the subfield LŴλ ⊂ L. We have that Z(F (λ1, . . . , λk)) =

F (S) ∩ Z(Ŵλ n L) = ΛS . �

Let

F (N)(S) = F (S)/nNF (S)

F̂ (S) = F (S)⊗ΛS
Λ̂S .

As a consequence of [DFO94, Th. 17], we can easily extend Theorem 2.17 to incor-
porate any number of weight spaces.

Theorem 2.22. The simple Gelfand-Tsetlin F -modules S such that Wλ(S) 6= 0 for

some λ ∈ S are in bijection with simple modules over F (1)(S), sending S 7→
⊕

λ∈S Wλ(S).

We can also extend this to an equivalence of categories: let ГЦ(S) be the category of
all Gelfand-Tsetlin modules modulo the subcategory of modules such that Wλi(M) = 0
for all i, and ГЦ(S ) the category of Gelfand-Tsetlin modules where if λ /∈ S , we have
Wλ(M) = 0.

For any finite set S, we have that:

Theorem 2.23. The functor S 7→ ⊕ki=1Wλi(S) gives an equivalence between ГЦ(S) and

finite dimensional modules over the completion F̂ (S).

As before, let S be a Ŵ -orbit in MaxSpec(Λ).

Definition 2.24. We call a set of weights S ⊂ S complete for the orbit S if ГЦ(S) =
ГЦ(S ), that is, if any module M with Wλi(M) = 0 for all i satisfies Wλ(M) = 0 for
all λ ∈ S .
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Note that if S is a finite complete set for the orbit S , then ГЦ(S ) ∼= F̂ (S) -fdmod.
Of course, many readers will be more interested in understanding modules of the

original principal Galois order. For simplicity, assume that S only contains at most one
element of each W -orbit. We can derive weight spaces of U from those of F by taking

invariants under the stabilizer Wλ. Let eλ be the idempotent in F̂ λ which projects to

the invariants of W λ, and eλ ∈ F̂ (S) the matrix with these as diagonal entries for the

different λ ∈ S. Let U (1)(S) = eλF
(1)(S)eλ.

Theorem 2.25. The simple Gelfand-Tsetlin U -modules S such that Wγ(S) 6= 0 for

γ in the image of S are in bijection with simple modules over U (1)(S), sending S 7→
⊕λ∈SeλWλ(S).

3. The reflection case

While we worked in Section 2 in the same generality as [Har] so the results we can
prove in this generality are available there, we wish to specialize to a much simpler case.
Let V be a C-vector space with an action of a complex reflection group W , and M a
finitely generated (over Z) subgroup of V ∗. We assume from now on that Λ = Sym•(V )
is the symmetric algebra on this vector space, with the obvious inducedM-action. Note

that the stabilizer Ŵλ for any λ ∈ V ∗ is finite, and in fact a subgroup of W via the

usual quotient map Ŵ → W . It is generated by the M-translates of root hyperplanes
containing λ, and thus is again a complex reflection group, acting by the translation of
a linear action.

This simplifies matters in one key way: the module Λ is a free Frobenius extension
over Λλ and over Γ. Recall that we call a ring extension A ⊂ B free Frobenius if B is
a free A-module, and HomA(B,A) is a free B module of rank 1; a Frobenius trace is
a generator of HomA(B,A).

The fact that Λ is free Frobenius over Γ is well-known, and easily derived from results
in [Bro10]: following the notation of loc. cit., we have a map Λ→ Γ defined by D(J∗),
which is the desired trace. In slightly more down to earth terms, we have a unique
element J ∈ Λ of minimal degree that transforms under the determinant character for
the action on V ∗; this obtained by taking a suitable power of the linear form defining
each root hyperplane. The Frobenius trace is uniquely characterized by sending this
element to 1 ∈ Γ and killing all other isotypic components for the action of W .

In particular, this means that D = EndΓ(Λ), the nilHecke algebra of W , is Morita
equivalent to Γ; see for example [Gin18, Lemma 7.1.5].

Definition 3.1. We call a flag order F Morita if the symmetrization idempotent gives
a Morita equivalence between U = eFe and F ; that is if F = FeF .

Recall that for a fixed principal Galois order U , we have an associated flag Galois
order FD. Since D = DeD when D = EndΓ(Λ) in the complex reflection case, we have
that the flag order FD is Morita for any principal Galois order in this case.

Thus, for any principal Galois order, we can study the representation theory of the
corresponding flag order instead. This approach is implicit in much recent work in the
subject, which uses the nilHecke algebra, such as [FGRZ, FGR16, RZ18], but many
issues are considerably simplified if we think of the flag order as the basic object.
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It’s easy to see how Gelfand-Tsetlin modules behave under this equivalence. We can
strengthen Lemma 2.8 to:

Lemma 3.2. If F is Morita, then we have isomorphisms

Wγ(eM) ∼= Wλ(M)Wλ Wλ(M) ∼= (Wγ(eM))⊕#Wλ .

The additional information we learn from the fact that F is Morita is that Wλ(M) is
free as a CWλ-module.

Note that Λ
(1)
λ = Λ/Λnλ is a local commutative subalgebra of F

(1)
λ . Thus, in any

simple F
(1)
λ -module, there is a vector where mλ acts trivially. As discussed before, this

means that:

Proposition 3.3. Any simple F
(1)
λ -module appears as a quotient of Fλ/Fλmλ. If F̂λ is

a free module over Λ̂ (necessarily of rank #Ŵλ) then dimFλ/Fλmλ = #Ŵλ.

Combining this with Theorem 2.17 above, we have that:

Corollary 3.4. The dimensions of the λ-weight spaces in the simples over F in the

fiber over λ have sum ≤ dimFλ/Fλmλ, and thus ≤ #Ŵλ if Fλ is a free module over Λ.
The dimensions of the γ-weight spaces in the simple U -modules in the fiber over γ

have sum ≤ 1
#Wλ

dimFλ/Fλmλ, and thus ≤ #Ŵλ
#Wλ

if Fλ is a free module over Λ.

As mentioned in the introduction, this is essentially a repackaging of the techniques
in [FO14].

The reflection hypothesis also allows us to define a dual version of the canonical
module C;λ. We can consider the quotient C̃ ′λ of the module ΛS by all submodules
having trivial intersection with Wλ(ΛS ).

The algebra Λ
(1)
λ is a Frobenius algebra, so its socle as a Λ

(1)
λ -module is 1-dimensional,

and every non-zero submodule of C̃ ′λ has non-trivial intersection with Wλ(ΛS ), and thus
contains this socle. This shows that the intersection of all non-zero submodules is non-
trivial, giving a simple socle C̃λ ⊂ C̃ ′λ This will sometimes be isomorphic to Cλ, and
sometimes not.

3.1. Special cases of interest.

Definition 3.5. We call a weight non-singular if Ŵλ = {1} and more generally p-

singular if Ŵλ has a minimal generating set of p reflections.

Corollary 3.6. If λ is non-singular, there is a unique simple Gelfand-Tsetlin module
S with Wλ(S) ∼= C and for all other simples S′ we have Wλ(S) = 0.

Of course, a natural question to consider is when two non-singular weights λ, µ have
the same simple, and when they do not. Of course, they can only give the same simple

if µ = w · λ for some w ∈ Ŵ . In this case, µF λ is the elements of the form w`, and
similarly λFµ the elements of the form w−1`′.

Corollary 3.7. Given λ and µ as above, we have a simple Gelfand-Tsetlin module S
with Wλ(S) ∼= Wµ(S) ∼= C if and only if λFµ · µF λ 6⊂ mλ.



GELFAND-TSETLIN MODULES IN THE COULOMB CONTEXT 15

Now assume λ is 1-singular and Fλ is a free module over Λ. In this case, Ŵλ
∼= S2, so

F
(1)
λ is 4-dimensional. Thus, there are 3 possibilities for the behavior of such a weight:

Corollary 3.8. Exactly 1 of the following holds:

(1) F
(1)
λ
∼= M2(C) and there is a unique simple Gelfand-Tsetlin module S with

Wλ(S) ∼= C2 and for all other simples it is 0.

(2) the Jacobson radical of F
(1)
λ is 2-dimensional and there are two simple Gelfand-

Tsetlin modules S1, S2 with Wλ(Si) ∼= C and for all other simples it is 0.

(3) the Jacobson radical of F
(1)
λ is 3-dimensional and there is a unique simple Gelfand-

Tsetlin module S with Wλ(S) ∼= C and for all other simples it is 0.

4. Coulomb branches

4.1. Coulomb branches and principal orders. One extremely interesting example
of principal Galois orders are the Coulomb branches defined by Braverman, Finkelberg
and Nakajima [BFNb]. These algebras have attracted considerable interest in recent
years, and subsume most examples of interesting principal Galois orders known to the
author.

There is a Coulomb branch attached to each connected reductive complex group G
and representation N . Let G[t] be the Taylor series points of the group G, and G((t))
its Laurent series points. Let

Y = (G((t))×N [t])/G[t],

equipped with its obvious map π : Y → N((t)); we can think of this as a vector bundle
over the affine Grassmannian G((t))/G[t]. Readers who prefer moduli theoretic inter-
pretations can think of this as the moduli space of principal bundles on a formal disk
with choice of section and trivialization away from the origin.

Let H = NGL(N)(G)◦ be the connected component of the identity in the normalizer of
G. Let TG, TH be compatible maximal tori in the two groups, and BG, BH compatible
choices of Borels, and G ⊂ Q ⊂ H the subgroup generated by G and TH . Note that Y has
an H-action via h · (g(t), n(t)) = (hg(t)h−1, hn(t)). It also carries a canonical principal
Q-bundle YQ given by the quotient G((t))×Q×N [t] via the action g(t) ·(g′(t), q, n(t)) =
(g′(t)g−1(t), qg−1(0), g(t)n(t). We can extend this to an action of Q×C∗ where the factor
of C∗ acts by the loop scaling.

Definition 4.1. The (quantum) Coulomb branch is the convolution algebra

A = HQ×C∗
∗ (π−1(N [t])),

It might not be readily apparent what the algebra structure on this space is. However,

it is unique determined by the fact that it acts on HQ×C∗
∗ (N [t]) = H∗Q×C∗(∗) by

(4.1) a ? b = π∗(a ∩ ι(b))
where ι is the inclusion of this algebra into A as the Chern classes of the principal
bundle YQ and the obvious inclusion of C[h] ∼= HC∗

∗ (N [t]). We further obtain a module
structure on the Q× C∗-equivariant homology of any G[t]-invariant subvariety in N [t];
applying this to {0}, we obtain an action on Γ, which sends the subalgebra discussed



16 BEN WEBSTER

above to multiplication operators. Obviously there are a lot of technical issues that are
being swept under the rug here; a reader concerned on this point should refer to [BFNb]
for more details.

Let TF = Q/G = TH/TG, and tF the Lie algebra of this group. The subalgebra
H∗Q/G×C∗(∗) = Sym(t∗F )[h] ⊂ A induced by the Q × C∗-action is central; borrowing

terminology from physics, we call these flavor parameters. We can thus consider
the quotient of A by a maximal ideal in this ring. This quotient is what is called the
“Coulomb branch” in [BFNb, Def. 3.13] and our Definition 4.1 matches the deformation
constructed in [BFNb, §3(viii)]. We’ll distinguish this situations by referring to them
fixed/generic flavor parameters.

We let W be the Weyl group of G (which is also the Weyl group of Q), let V = t∗H⊕C·h
where tH is the (abstract) Cartan Lie algebra of H and letM the cocharacter lattice of
TG, acting by the h-scaled translations

χ · (ν + kh) = ν + k〈χ, ν〉+ kh.

Note that the action has finite stabilizers on any point where h 6= 0, but any point with
h = 0 will have infinite stabilizer. We’ll ultimately only be interested in modules over
the specialization h = 1, so this will not cause an issue for the moment. Note that

Λ ∼= H∗TH×C∗(∗) = Sym•(tH)[h] Γ ∼= H∗Q×C∗(∗) = Sym•(tH)W [h],

and M nW is the extended affine Weyl group of Q. Localization in equivariant coho-
mology shows that the action of (4.1) induces an inclusion A ↪→ KΓ for the data above;
see [BFNb, (5.18) & Prop. 5.19]. Thus, it immediately follows that:

Proposition 4.2. The Coulomb branch is a principal Galois order for this data.

If we fix the flavor parameters, the result will also be a principal Galois order for
appropriate quotient of Λ.

The flag order attached to this data also has an interpretation as the flag BFN algebra
from [Weba, Def. 3.2]. Let X = (G((t)) × N [t])/I, where I is the standard Iwahori,
πX : X→ N((t)) the obvious map and 0X0 = π−1

X (N [t]).

Definition 4.3. The Iwahori Coulomb branch is the convolution algebra

F = HTH×C∗
∗ (0X0).

This is the Morita flag order FD associated to A with D = EndΓ(Λ) the nilHecke
algebra of W , as is shown in [Weba, Thm. 3.3].

As mentioned before, we wish to consider the specializations of these algebras where
h = 1. These are again principal/flag Galois orders in their own right, but are harder
to interpret geometrically. Note that by homogeneity, the specializations of this algebra
at all different non-zero values of h are isomorphic. The specialization h = 0 is quite
different in nature, since in this case, the action of M is trivial.

4.2. Representations of Coulomb branches. In this case, the algebra F
(1)
λ has a

geometric interpretation. Since we assume that h = 1, when we interpret λ as an
element of the Lie algebra tH ⊕ C, the second component is 1. Let Gλ be the Levi
subgroup of G which only contains the roots which are integral at λ, and Nλ the span of
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the weight spaces for weights integral on λ. Let Bλ be the Borel in Gλ such that Lie(Bλ)
is generated by the roots α such that 〈λ, α〉 is negative and those in the fixed Borel bG
such that 〈λ, α〉 = 0; this is the unique Borel in glsP laλ such that Gλ ∩Bλ = Gλ ∩BG.

The element λ integrates to a character acting on Nλ. Let N−λ be the subspace of Nλ

which is non-positive for the cocharacter corresponding to λ; this subspace is preserved
by the action of Bλ. Consider the associated vector bundle Xλ = (Gλ × N−λ )/Bλ and
pλ the associated map p : Xλ → Nλ. If Wλ 6= {1}, then there is also a parabolic
version of these spaces. Let P λ ⊂ Gλ be the parabolic corresponding to Wλ, and let
Yλ = (Gλ ×N−λ )/P λ.

As usual, we have associated Steinberg varieties:

Xλ = Xλ ×Nλ
Xλ = {(g1Bλ, g2Bλ, n) | n ∈ g1N

−
λ ∩ g2N

−
λ }

λXµ = Xλ ×Nλ
Xµ = {(g1Bλ, g2Bµ, n) | n ∈ g1N

−
λ ∩ g2N

−
µ }

Yλ = Yλ ×Nλ
Yλ = {(g1P λ, g2P λ, n) | n ∈ g1N

−
λ ∩ g2N

−
λ }

λYµ = Yλ ×Nλ
Yµ = {(g1P λ, g2Pµ, n) | n ∈ g1N

−
λ ∩ g2N

−
µ }

Recall that the Borel-Moore homology of an algebraic variety X over C is the hyper-
cohomology of the dualizing sheaf DCX indexed backwards. We use the same convention
for equivariant Borel-Moore homology:

HBM
i (X) = H−i(Xan;DCX) HBM,G

i (X) = H−iG (Xan;DCX).

Note that this convention makes HBM,G
∗ (X) into a module over H∗G(X) which is ho-

mogenous when this ring is given the negative of its usual homological grading; similarly,

the group HBM,G
i (X) must be 0 if i > dimRX, but this can be non-zero in infinitely

many negative degrees. We let ĤBM,Gλ
∗ (X) denote the completion of Gλ-equivariant

Borel-Moore homology this respect to its grading, with all elements of degree ≤ k being
a neighborhood of the identity for all k.

The Borel-Moore homologyHBM
∗ (Xλ) has a convolution algebra structure, andHBM

∗ (λXµ)
a bimodule structure defined by [CG97, (2.7.9)].

Theorem 4.4. We have isomorphisms of algebras and bimodules

F
(1)
λ
∼= HBM

∗ (Xλ) λF
(1)
µ
∼= HBM

∗ (λXµ)(4.2)

F̂λ ∼= ĤBM,Gλ
∗ (Xλ) λF̂µ ∼= ĤBM,Gλ

∗ (λXµ)(4.3)

U
(1)
λ
∼= HBM

∗ (Yλ) λU
(1)
µ
∼= HBM

∗ (λYµ)(4.4)

Ûλ ∼= ĤBM,Gλ
∗ (Yλ) λÛµ ∼= ĤBM,Gλ

∗ (λYµ)(4.5)

This theorem is a consequence of [Weba, Thm. 4.2], which is proven purely alge-
braically. H. Nakajima has also communicated a more direct geometric proof to the
author. We will include a sketch of that argument here, but there are some slightly
subtle points about infinite dimensional topology which we will skip over.

Proof (sketch). Note first how the left and right actions of Λ on F operate. The left
action is simply induced by the equivariant cohomology of a point, whereas the right
action is by the Chern classes of tautological bundles on G((t))/I.
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Consider the 1-parameter subgroup T of G×C∗ obtained by exponentiating λ. By the
localization theorem in equivariant cohomology, the completion lim−→F/nNλ F is isomor-

phic to the completion of the TH -equivariant Borel-Moore homology of 0X
T
0 , completed

with respect to the usual grading. This is easily seen from [GKM98, (6.2)(1)]: the
TH -equivariant Borel-Moore homology of the complement of the fixed points is a tor-
sion module whose support avoids λ, since the action of T is locally free. Thus, after
completion, the long exact sequence in Borel-Moore homology gives the desired result.
Note that here we also use that since the action of T on the fixed points is trivial, the
completion at any point in t gives the same result.

First note that the fixed points N [t]T are isomorphic to N−λ via the map τλ : Nλ →
N((t)) sending an element n of weight −a in Nλ to tan.

We can also apply this to the adjoint representation, and find that the fixed points
of the 1-parameter subgroup on g((t)); this is a copy of gλ, embedded according the
description above. Accordingly, the centralizer of this 1-parameter subgroup in G((t))

is a copy of Gλ generated by the roots SL2’s of the roots t−〈λ,α〉α. The Borel Bλ is the
intersection of this copy of Gλ with the Iwahori I.

Now consider the fixed points of T in G((t))/I. Each component of this space is a

Gλ-orbit, and these components are in bijection with elements of the orbit Ŵ · λ; that
is, wI and w′I are in the same orbit if and only if w ·λ = w′ ·λ. If w is of minimal length
with µ = w ·λ, the stabilizer of wI under the action of Gλ is the Borel Bµ. Considering
the vector bundles induced by the tautological bundles shows that elements of nµ act

by elements with trivial degree 0 term, i.e. that the homology of this component is λF̂µ
Thus, the fixed points XT break into components corresponding to these orbits as

well, with the fiber over gwI for g ∈ Gλ and w as defined above is given by gN−µ , via

the map g · τµ. The map πX maps this to N((t)) via the map τλ ◦ τ−1
µ ◦ g−1, so its

intersection with the preimage of N [t] is N−λ ∩ gN
−
µ .

The relevant TH -equivariant homology group is thus

HTH
∗ ({(gBµ, x) | g ∈ Gµ, x ∈ N−λ ∩ gN

−
µ }) ∼= HGλ

∗ (λXµ).

Taking quotient by nλ, we obtain the non-equivariant Borel-Moore homology of this
variety as desired. This shows that we have a vector space isomorphism in (4.2).

The row of isomorphisms (4.4) follow from the same argument applied to π−1(N [t])
and the affine Grassmannian.

Note that we have not checked that the resulting isomorphism is compatible with
multiplication, and doing so is somewhat subtle. For a finite dimensional manifold X,
we have two isomorphisms between HT

∗ (X) and HT
∗ (XT) after completion at any non-

zero point in t: pullback (defined using Poincaré duality) and pushforward, which differ
by the (invertible) Euler class of the normal bundle by the adjunction formula. To
obtain an isomorphism HT

∗ (X×X) and HT
∗ (XT×XT) that commutes with convolution,

one must take the middle road between these, using pullback times the inverse of the
Euler class of the normal bundle along the first factor, which is the same as the inverse
of pushforward times the Euler class of the normal bundle along the second factor
(effectively, we use the pushforward isomorphism in the first factor, and the pullback
in the second factor). Due to the infinite dimensionality of the factors X and Y, and
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the nature of the cycles we use, neither the pushforward nor the pullback isomorphisms
make sense, but this intermediate isomorphism does.

As we said above, we will not give a detailed account of this isomorphism, since we
have already constructed a ring isomorphism using the algebraic arguments of [Weba].
Savvy readers will notice the Euler class we need to invert in [Weba, (4.3a)] �

The stabilizer Ŵλ is always isomorphic to a parabolic subgroup of the original Weyl
group W .

Definition 4.5. We call an orbit integral if Ŵλ
∼= W and N = Nλ.

One especially satisfying consequence of Theorem 4.4 is that the category of modules
with weights in the non-integral orbit is equivalent to that same category for integral
orbit but of the Coulomb branch for the corresponding Levi subgroup Gλ and subrep-
resentation Nλ.

More precisely, fix an orbit S of Ŵ , and let G′ = Gλ and N ′ = Nλ for arbitrary

λ ∈ S . Let S ′ ⊂ S be an orbit of the subgroup Ŵ ′ ⊂ Ŵ generated by the Weyl
group of G′ and the subgroupM. Let ГЦ′(S ′) be the category of weight modules with
all weights concentrated S ′for the Coulomb branch of (G′, N ′). Note that since all the
orbits of S ′ ⊂ S are conjugate under the action of W , this category only depends on
S . Of course, for this smaller group, S ′ is an integral orbit. By Theorem 4.4, we have
that:

Corollary 4.6. We have an equivalence of categories ГЦ(S ) ∼= ГЦ′(S ′).

This equivalence does not change the underlying vector space and its weight space
decomposition; it simply multiplies the action of elements of F by elements of the
appropriate completion of Γ to adjust the relations. This can be proven in the spirit
of Theorem 4.4 by presenting the Coulomb branch of (Gλ, Nλ) as the homology of the
fixed points of the torus action, and noting that the Euler class of the normal bundle
acts invertibly on all the modules in the relevant subcategory.

4.3. Gradings. This is a particularly nice description since the convolution algebras in
question are graded, and a simple geometric argument shows that they are graded free

over the subalgebra Λ
(1)
λ , with the degrees of the generators read off from the dimensions

of the preimages of the orbits in Xλ. For reasons of Poincaré duality, we grade HBM
∗ (Xλ)

so that a cycle of dimension d has degree dimXλ− d, and HBM
∗ (λXµ) so that a cycle of

dimension d has degree
dimXλ+dimXµ

2 − d. This is homogeneous by [CG97, (2.7.9)].

Proposition 4.7. F
(1)
λ has a set of free generators with degrees given by dim(N−λ ) −

dim(wN−λ ∩N
−
λ )− `(w) ranging over w ∈ Ŵλ, identified with the Weyl group of Gλ.

Proof. The product (Gλ/Bλ)2 breaks up into finitely many Gλ-orbits, each one of which

contains (Bla,wBλ) for a unique w ∈ Ŵλ. This orbit is isomorphic to an affine bun-
dle over Gλ/Bλ with fiber Bλ/(Bλ ∩ wBλw

−1), which is an affine space of dimension
`(w). Furthermore, the preimage of this orbit in Xλ is a vector bundle of dimension
dim(wN−λ ∩ N

−
λ ). his means that under the usual grading on the convolution algebra,

the fundamental class has degree equal to dimXλ minus the dimension of this orbit.
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These fundamental classes give free generators over Λ
(1)
λ , since the homology of each of

these vector bundles is free of rank 1. �

In particular, if these degrees are always non-negative, then all elements of positive
degree are in the Jacobson radical.

Corollary 4.8. If dim(N−λ ) − dim(wN−λ ∩ N
−
λ ) − `(w) ≥ 0 for all w ∈ Ŵλ, then the

sum of (dimWλ(S))2 over all simple Gelfand-Tsetlin modules is

≤ #{w ∈ Ŵλ | dim(N−λ )− dim(wN−λ ∩N
−
λ ) = `(w)}.

Note that the fact that the algebra F (1)(S) is graded allows us to define a graded

lift Г̃Ц of the category of Gelfand-Tsetlin modules by considering graded modules over
F (1)(λ1, . . . , λk).

Following Ginzburg and Chriss [CG97, 8.6.7], we can restate Theorem 4.4 as

F
(1)
λ
∼= Ext• ((pλ)∗CXλ , (pλ)∗CXλ)

(4.6) F (1)(S) ∼= Ext•

(
k⊕
i=1

(pλi)∗CXλi ,
k⊕
i=1

(pλi)∗CXλi

)
The geometric description of (4.6) has an important combinatorial consequence when

combined with the Decomposition Theorem of Beilinson-Bernstein-Deligne-Gabber [CG97,
Thm. 8.4.8]:

Theorem 4.9. The simple Gelfand-Tsetlin modules S such that Wλi(S) 6= 0 for some
i are in bijection with simple perverse sheaves IC(Y, χ) appearing as summands up to
shift of ⊕i(pλi)∗CXλi , with the dimension of Wλi(S) being the multiplicity of all shifts

of IC(Y, χ).

Note that this result is implicit in [CG97, §8.7] and [Sau, pg. 9] but unfortunately is
not stated clearly in either source.

Proof. By the Decomposition Theorem, (pλ)∗CXλ is a direct sum of shifts of simple
perverse sheaves. In the notation of [CG97, Thm. 8.4.8], we have

(pλ)∗CXλ ∼=
⊕

(i,Y,χ)

LY,χ(i, λ)⊗ IC(Y, χ)[i].

Let LY,χ ∼= ⊕i,λjLY,χ(i, λj) be the Z-graded vector space obtained by summing the

multiplicity spaces. Thus, the algebra F (1)(S) is Morita equivalent to

A = Ext•
( ⊕
LY,χ 6=0

IC(Y, χ)
)

B = Ext•
(⊕

j

(pλj )∗CXλj ,
⊕

LY,χ 6=0

IC(Y, χ)
)

via the bimodule B. By [CG97, Cor. 8.4.4], this algebra is a positively graded basic
algebra with irreps indexed by pairs (Y, χ) such that LY,χ 6= 0. Thus, the simple

representations of F (1)(S) are the images of these 1-dimensional irreps under the Morita
equivalence, that is, the multiplicity spaces LY,χ, with the dimension of the different
weight spaces is given by dimLY,χ(∗, λ), the multiplicity of all shifts of IC(Y, χ) in
(pλ)∗CXλ . �
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The additive category of perverse sheaves given by sums of shifts of summands of
(pλi)∗CXλ satisfies the hypotheses of [Web15, Lem. 1.18], and so by [Web15, Lem. 1.13
& Cor. 2.4], we have that (as proven in [Weba, Cor. 2.20]):

Theorem 4.10. The classes of the simple Gelfand-Tsetlin modules form a dual canon-

ical basis (in the sense of [Web15, §2]) in the Grothendieck group of Г̃Ц.

For those who dislike geometry, we only truly need the Decomposition theorem to
prove a single purely algebraic, but extremely non-trivial fact:

Corollary 4.11. The graded algebra F (1)(S) is graded Morita equivalent to an algebra
which is non-negatively graded and semi-simple in degree 0.

This property is called “mixedness” in [BGS96, Web15]; the celebrated recent work of
Elias and Williamson [EW] gives an algebraic proof of this fact in some related contexts
and could possibly be applied here as well.

4.4. Applications. As before, this description is particularly useful in the 1-singular
case. In this case, we must have Gλ/Bλ

∼= P1.

Corollary 4.12. For a 1-singular weight, we are in situation (1) of Corollary 3.8 if
N−λ = sN−λ , situation (2) if N−λ ∩ sN

−
λ is codimension 1 in N−λ , and situation (3)

otherwise.

Geometrically, these correspond to the situations where the map Xλ → Gλ · N−λ is

(1) the projection Xλ = P1 ×N−λ → N−λ , (2) strictly semi-small or (3) small.
Of course, in the non-singular case, there is no difficulty in classifying the simple

modules where a given weight appears: there is always a unique one. However, it is still
an interesting question when these simples are the same for 2 different weights. Note

that if λ, µ are in the same orbit of Ŵ , then Nλ = Nµ, but the positive subspaces are
not necessarily equal.

Corollary 4.13. Assume that λ, µ are non-singular and in the same Ŵ -orbit. Then
there is a simple Gelfand-Tsetlin module with Wλ(S) and Wµ(S) both non-zero if and
only if N−λ = N−µ .

Outside the non-singular case, we have that:

Lemma 4.14. If λ, µ are non-singular and in the same Ŵ -orbit, Bλ = Bµ and N−λ =
N−µ , then the weight spaces Wλ(M) and Wµ(M) are canonically isomorphic for all

modules M .

Proof. The diagonal class (Gλ ×N−λ )/Bλ gives the desired isomorphism. �

Since only finitely many subspaces may appear as N−λ as λ ranges over an orbit of

Ŵ :

Corollary 4.15. Every Ŵ -orbit has a finite complete set in the sense of Definition
2.24.
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Note that this result is not true for a general principal Galois order.
A seed is a weight γ ∈ MaxSpec(Γ) which is the image of λ ∈ MaxSpec(Λ) such that

P λ = Gλ.

Theorem 4.16. If λ is a seed, there is a unique simple Gelfand-Tsetlin U -module S
with Wγ(S) ∼= C, and for all other simples S′ we have Wγ(S′) = 0. The weight spaces
of S satisfy dimWγ′(S) ≤ #W λ/W λ′, and this bound is sharp if N−λ = N−λ′.

Proof. First, we note that U
(1)
λ
∼= C, so this shows the desired uniqueness. The module

eP
(1)
λ is a weight module with S as cosocle satisfying dimWγ′(eP

(1)
λ ) ≤ #W λ/W λ′

whenever λ′ ∈ Ŵ · λ. This shows that desired upper bound.
We has that dimWγ′(S) = #W λ/W λ′ if and only if S is also the only Gelfand-Tsetlin

module with this weight space non-zero, i.e. if and only if λU
(1)
λ′ is a Morita equivalence.

This is clear if N−λ = N−λ′ , since in this case F
(1)
λ = F

(1)
λ′ with λF

(1)
λ′ giving the obvious

Morita equivalence. �

Note that this shows that the module S discussed above has all the properties proven
for the socle of the tableau module in [FGRZ, Th. 1.1]. Using the numbering of that
paper,

(ii) The weight γ itself lies in the essential support.
(iii) This follows from Corollary 3.4.
(iv) This follows from Theorem 4.16.
(v) For any parabolic subgroup W ′ ⊂W , we can find a λ′ such that Nλ′ = Nλ, and

W ′ = Wλ. The result then follows from Corollary 3.4.

5. The case of orthogonal Gelfand-Tsetlin algebras

Let us now briefly describe how one can interpret the results of this paper for or-
thogonal Gelfand-Tsetlin algebras [Maz99] over C in terms of [KTW+]. As in the
introduction, choose a dimension vector v = (v1, . . . , vn) and fix complex numbers
(λn,1, . . . λn,vn) ∈ Cvn . Let

Ω = {(i, r) | 1 ≤ i ≤ n, 1 ≤ r ≤ vi}.

Let U be the associated orthogonal Gelfand-Zetlin algebra modulo the ideal generated
by specializing xn,r = λn,r. This is a principal Galois order with the data:

• The ring Λ given by the polynomial ring generated by xi,j with (i, j) ∈ Ω and
i < n. Note that we have not included the variables xn,1, . . . , xn,vn , since these
are already specialized to scalars.
• The monoidM given by the subgroup of Aut(Λ) generated by ϕi,j , the transla-

tion satisfying

ϕi,j(xk,`) = (xk,` + δikδj`)ϕi,j

• The group W = Sv1×· · ·×Svn−1 , acting by permuting each alphabet of variables.
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By definition, U is the subalgebra of K generated by Γ = ΛW and the elements

X±i = ∓
vi∑
j=1

vi±1∏
k=1

(xi,j − xi±1,k)∏
k 6=j

(xi,j − xi,k)
ϕ±i,j

We let F = FD be the corresponding Morita flag order. This is the subalgebra of F
generated by U embedded in eFe ∼= K and the nilHecke algebra D = EndΓ(Λ).

As mentioned in the introduction, it is proven in [Wee] that:

Theorem 5.1. We have an isomorphism between the OGZ algebra attached to the di-
mension vector v and the Coulomb branch for the (G,N) introduced in (1.1a–1.1b) at
h = 1, with the variables xn,1, . . . , xn,vn corresponding to the flavor parameters. Thus, U
is isomorphic to the Coulomb branch with the flavor parameters fixed by zr = λn,r − n

2 .

Thus, we can apply the results of Section 4 to OGZ algebras. An element λ ∈
MaxSpec(Λ) is exactly choosing a numerical value xi,r = λi,r for all (i, r) ∈ Ω, and the
corresponding γ ∈ MaxSpec(Γ) only remembers these values up to permutation of the
second index. A choice of λ partitions the set Ω according to which coset of Z the value
λi,r lies in. Given a coset [a] ∈ C/Z, let

Ω[a] = {(i, r) ∈ Ω | λi,r ≡ a (mod Z)}.

The maximal ideal λ has an integral orbit if there is one coset such that Ω = Ω[a]. In
general, let X = {[a] ∈ C/Z | Ω[a] = ∅}.

Note that the representation N is spanned by the dual basis to the matrix coefficients

of the maps Cvk → Cvk+1 , which we denote h
(k)
r,s for 1 ≤ r ≤ vk and 1 ≤ s ≤ vk+1.

Proposition 5.2. Given λ ∈ MaxSpec(Λ), we have that Nλ is the span the elements h
(k)
r,s

such that λk,r−λk+1,s ∈ Z, and N−λ is the span of these elements with λk,r−λk+1,s ∈ Z≥0.

Remark 5.3. Note that equivalence classes of weights in a Ŵ -orbit with N−λ fixed
also appears in the discussion of generic regular modules in [EMV, §3.3]. That is,
the subspace N−λ changes precisely when the numerator of one of the Gelfand-Tsetlin
formulae vanishes.

We can encapsulate this with an order on the set Ω which is the coarsest such that
(i, r) ≺ (i+1, s) if λi,r−λi+1,s ∈ Z<0 and (i, r) � (i+1, s) if λi,r−λi+1,s ∈ Z≥0. Lemma
4.14 then shows that:

Proposition 5.4. We have a natural isomorphism Wλ(M) ∼= Wλ′(M) for any Gelfand-
Tsetlin module M over U if for all pairs (i, r) and r ∈ [1, vi], we have λi,r − λ′i,r ∈ Z,
and the induced order on the set Ω is the same.

More generally, the Gelfand-Tsetlin modules over this module are controlled by KLRW
algebras, as shown in [KTW+]. If S is not integral, then by Corollary 4.6, the cate-
gory ГЦ(S ) is equivalent to the category of Gelfand-Tsetlin modules supported on the
same orbit for a tensor product ⊗[a]∈C/ZU[a] where U[a] is the OGZ algebra attached
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to the set Ω[a], that is, to the dimension vector v(a) given by the number of indices k
such that λi,k ≡ a (mod Z). Since the simple Gelfand-Tsetlin modules over this tensor
product are just an outer tensor product of the simple Gelfand-Tsetlin modules over the
individual factors (and in fact, the category ГЦ(S ) is a Deligne tensor product of the
corresponding category for the factors), let us focus attention on the integral case.

5.1. The integral case. Let SZ be the Ŵ -orbit where λi,r ∈ Z for all (i, r) ∈ Ω, and
we fix integral values λn,1 ≤ · · · ≤ λn,vn .

In this case, we are effectively rephrasing [KTW+, Th. 5.2] in slightly different lan-
guage, and the notation of this paper. Identify I = {1, . . . , n − 1} with the Dynkin

diagram of sln as usual. Let T̃v be the block of the KLRW algebra as discussed in
[KTW+, §3.1], attached to the sequence (ωn−1, · · · , ωn−1) with this fundamental weight
appearing vn times and where vi black strands have label i for all i ∈ I. Note that this
algebra contains a central copy of the algebra

ΛSZ =
n−1⊗
i=1

C[xi,1, . . . , xi,vi ]
Svi ,

given by the polynomials in the dots which are symmetric under permutation of all
strands.

Fix a very small real number 0 < ε� 1. Given a weight λ, we define a map

x : Ω→ R x(i, s) = λi,s − iε− sε2.
Note that under this map, the partial order ≺ is compatible with the usual order on R;
this map thus gives a canonical way to refine ≺ and the order on Ω induced by the usual
partial order on λi,s to a total order on Ω. The ε term is very important for assuring
the compatibility with ≺, whereas the ε2 term is essentially arbitrary, and is only there
to avoid issues when two strands go to the same place.

Definition 5.5. Let w(λ) be the word in [1, n] given by ordering the elements of Ω
according to the function x, and then projecting to the first index.

Now, consider the idempotent e(λ) in T̃v where we place a red strand with label ωn−1

at x(n, r) for all r = 1, . . . , vn, and a black strand with label i at x(i, s) for all i ∈ I and
s = 1, . . . , vi. The labels of strands read left to right are just the word w(λ).

Note that the isomorphism type of this idempotent only depends on the partial order
≺, and it would be the same for any map x that preserves this order. For example,
we would match [KTW+] more closely if we used x(i, s) = 2λi,s − i (again with a
perturbation to assure all elements have distinct images) which works equally well. This
choice matches better with the parameterization of Γ by the variables wi,k used in
[BFNa].

Let S ⊂ SZ be a finite set. For simplicity, we assume that this set has no pairs of
weights that correspond as in Proposition 5.4, up to the action of W . Of course, this
set will be complete if every possible partial order ≺ that appears in the orbit SZ is
realized. Let eS be the sum of these idempotents in T̃v

Theorem 5.6. The algebra F̂S is isomorphic to the completion with respect to its grading

of eST̃veS, and F
(1)
S is isomorphic to eST̃veS modulo all positive degree elements of ΛSZ.
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This is truly a restatement of [KTW+, Th. 5.2], but can also be derived from Theorem

4.4, using the convolution description of T̃v as a convolution algebra based on [Webc,
Th. 4.5 & 3.5]. If you prefer to keep xn,r as variables rather than specializing them,

then the resulting algebra is the deformation of T̃v defined in [Webb, Def. 4.1].
This reduces the question of understanding Gelfand-Tsetlin modules to studying the

simple representations of these algebras. The usual theory of translation functors shows
that the structure of this category only depends on the stabilizer under the action
of Svn on the element (λn,1, . . . , λn,vn). This is a Young subgroup of the form Sg =
Sg1 × · · · × Sg` ; of course, a regular block will have all gk = 1. Consider the sequence
of dominant weights g = (g1ωn−1, . . . , g`ωn−1). This corresponds to the tensor product
Symg1(Cn−1) ⊗ Symg2(Cn−1) ⊗ · · · ⊗ Symg`(Cn−1), and so by [KTW+, Prop. 3.1], we

have that: K0(T̃ g
v ) ∼= U(g) where n− is the algebra of n × n strictly lower triangular

matrices and

U(g) := U(n−)⊗ Symg1(Cn−1)⊗ Symg2(Cn−1)⊗ · · · ⊗ Symg`(Cn−1).

While we have a general theorem connecting simples over T̃ g
v to the dual canonical

basis of U(g), because we are looking at a particularly simple special case, this combi-
natorics simplifies.

Following the work of Leclerc [Lec04] and the relation of this work to KLR alge-
bras discussed in [KR11], we can give a simple indexing set of this dual canonical
basis. Consider a simple Gelfand-Tsetlin module S, and the set L(S) of words w(λ)
for Wλ(S) 6= 0. We order words in the set [1, n] lexicographically, with the rule that
(i1, . . . , ik−1) > (i1, . . . , ik).

Definition 5.7. We call a word good if it is minimal in lexicographic order amongst
L(S) for some simple S. Since L(S) is finite, obviously every simple has a unique good
word.

Let GL be the set of words of the form (k, k−1, · · · , k−p) for k ≤ n−1, and 0 ≤ p < k,
and GL′ be the set of words of the form (n, n− 1, · · · , n− p) for 0 ≤ p < n; as noted in
[Lec04, §6.6], these together form the good Lyndon words of the An root system in the
obvious order on nodes in the Dynkin diagram (which we identify with [1, n]).

Definition 5.8. We say a word i is goodly if it is the concatenation i = a1 · · · apb1 · · · bvn
of words for ak ∈ GL, and bk ∈ GL′ satisfying a1 ≤ a2 ≤ · · · ≤ ap in lexicographic order.

Assume for simplicity that the central character (λn,1, . . . , λn,vn) is regular, that is,

Sg = {1}. In this case, a goodly word can always be realized as w(λ(i)) for a weight λ(i)

chosen as follows: pick integers µ1, . . . , µp so that µ1 < · · · < µp < λn,1 < · · · < λn,vn .

Now, choose the set λ
(i)
i,∗ so that µk appears (always with multiplicity 1) if and only if i

appears as a letter in ak, and λn,q if and only if i appears as a letter in bq. This weight
depends on the choice of µ∗, but all these choices are equivalent via Lemma 4.14.

Theorem 5.9. The map sending a simple Gelfand-Tsetlin module to its good word is a
bijection, and a word is good if and only if it is goodly.

Note that implicit in the theorem above is that we consider the set of all good words
for all different v’s, but v is easily reconstructed from the word, by just letting vi be
the number of times i appears.



26 BEN WEBSTER

Proof. Note that the words in GL index cuspidal representations of the KLR algebra
of type A in the sense of Kleshchev-Ram [KR11]; thus concatenations of these words
in increasing lexicographic order give the good words for type A, and the lex maximal
word in the different simple representations of the KLR algebra of type A by [KR11,
Th. 7.2].

On the other hand, the words GL′ give the idempotents corresponding to the different
simples over the cyclotomic quotient Tωn−1 , which are all 1-dimensional. By [Web17,

Cor. 5.23], every simple over T̃v is the unique simple quotient of a standardization of a

simple module over the KLR algebra T̃ ∅ and vn simple modules over Tωn−1 . The former
module gives the desired words a1 · · · ap as described above, and the latter vn simples give
the words in GL′. By construction, the resulting concatenation is lex minimal amongst
those with e(i) not killing the standard module, and survives in the simple quotient

since the image of e(i) generates. Let L be the corresponding simple T̃vT̃ -module.

The image eSL gives a simple module over F
(1)
S for any set S containing the weight

λ(i) and thus a simple Gelfand-Tsetlin-module S by Theorem 2.23. We claim that i is
the good word for this simple, since for any other word that appears as w(λ) < i, we
can add λ to S, and see that by the properties of L, we have that Wλ(S) = e(λ)L = 0.
Similarly, this shows that S is the unique Gelfand-Tsetlin-module with this property
since L is uniquely characterized by this property; any other simple S′ comes from a
simple T̃v representation L′, which is the quotient of the standardization of a different
word i′ of the form in the statement of the theorem. As we’ve already argued, this
means that i′ 6= i is its good word. This shows uniqueness and completes the proof. �

Example 5.10. For example, the case of integral Gelfand-Tsetlin modules of sl3 corre-
sponds to v = (1, 2, 3). Thus, the good words are of the form:

(1|2|2|3|3|3) (2, 1|2|3|3|3)

(1|2|3, 2|3|3) (1|2|3|3, 2|3) (1|2|3|3|3, 2)

(2, 1|3, 2|3|3) (2, 1|3|3, 2|3) (2, 1|3|3|3, 2)

(1|3, 2|3, 2|3) (1|3|3, 2|3, 2) (1|3, 2|3|3, 2)

(3, 2, 1|3, 2|3) (3|3, 2, 1|3, 2) (3, 2, 1|3|3, 2)

(3, 2|3, 2, 1|3) (3|3, 2|3, 2, 1) (3, 2|3|3, 2, 1)

We’ve included vertical bars | between the Lyndon factors of each word.
In order to construct the actual weights appearing, we choose

µ1 = −2 < µ2 = −1 < µ3 = 0 < λ3,1 = 1 < λ3,2 = 2 < λ3,3 = 3.

In the usual notation for Gelfand-Tsetlin weights, we have the corresponding weight
spaces λ(i) for the words above are:

1 2 3

−1 0

−2

1 2 3

−1 0

−1
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1 2 3

−1 1

−2

1 2 3

−1 2

−2

1 2 3

−1 3

−2

1 2 3

−2 1

−2

1 2 3

−2 2

−2

1 2 3

−2 3

−2

1 2 3

1 2

−2

1 2 3

2 3

−2

1 2 3

1 3

−2

1 2 3

1 2

1

1 2 3

2 3

2

1 2 3

1 3

1

1 2 3

1 2

2

1 2 3

2 3

3

1 2 3

1 3

3

Thus, each generic integral block for gl3 has 17 simple Gelfand-Tsetlin modules.

This Theorem is a little more awkward to state for the singular case where Sg 6=
{1}. For slightly silly reasons, the good words as we have defined them depend on
the choice of λn,∗, but we can still consider goodly words i = a1 · · · apb1 · · · bvn and the

associated weight λ(i). Note that this now only depends on the choice of b1, . . . , bvn up
to permutations under Sg. Using the fact that weight spaces of Symgi(Cn) are all 1
dimensional, we can similarly argue that:

Proposition 5.11. For each word i = a1 · · · apb1 · · · bvn which is lex maximal in its Sg-
orbit, there is a unique simple Gelfand-Tsetlin module S such that Wλ(i)(S) 6= 0, and
Wλ(i

′)(S) = 0 for all i′ of the same form with i′ < i.

We will not prove this fact since it involves a considerable investment in combinatorics
we do not want to take the space for here, but one can show that translation from a
regular central character to the singular one fixed above kills the simples whose good
word is not lex-maximal in their Sg-orbit, and induces a bijection between the remaining
simples.

Note that in the course of these proofs, we have also shown that:

Proposition 5.12. If S is a complete set, then F̂S is Morita equivalent to the completion

with respect to its grading of T̃ g
v for g = (g1ωn−1, . . . , g`ωn−1), and F

(1)
S to the quotient

of this algebra by positive degree elements of ΛSZ.
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Proof. Since we will never have a black strand between red strands that correspond to
λn,k = λn,k+1, we have that e(λ) ∈ T̃ g

v embedded as in [Web17, Prop. 4.21] by “zipping”

the red strands. Thus, F̂S maps into the completion of this algebra, and to show Morita
equivalence, we need to show that the idempotents e(λ) for λ ∈ S generate T̃ g

v as a
2-sided ideal. This follows because Theorem 5.9 and Proposition 5.11 show that the
number of distinct simple Gelfand-Tsetlin-modules is equal to the number of graded
simple T̃ g

v -modules. �

Glossary

Λ A Noetherian algebra with a W -action. After Section 3, as-
sumed to be the symmetric algebra Sym•(V ) = C[V ∗]

1–3, 5–8, 10–17, 22,
23, 28, 29

Γ The W -invariants ΛW 1, 2, 4–7, 9, 10, 12,
13, 15, 16, 19, 22,
28, 29

U A principal Galois order, usually satisfying U = eFe. 1, 2, 6, 7, 9–11, 13,
14, 22, 28, 29

Ûγ The completion lim←−U/(UmN
γ + mN

γ U) 1, 2
F A flag Galois order, usually satisfying U = eFe. 2, 5–7, 9–14, 16–19,

23, 28
W A finite group acting on Λ. After Section 3, assumed to

be a complex reflection group acting on V by a reflection
representation

2, 5–7, 13, 16, 19,
22, 24, 28, 29

F̂λ The completion of F λ in the nλ-adic topology 2, 7–9, 13, 14, 17

Ŵλ The stabilizer of λ ∈ MaxSpec(Λ) under the action of Ŵ 2, 7–15, 19, 20, 28,
29

Ŵ The semi-direct product Ŵ =MnW 2–5, 7, 8, 10–14, 19,
21–24, 28, 29

Λ̂ The completion of Λ at a fixed maximal ideal mmλ 2, 8, 14
Wλ The stabilizer of λ ∈ MaxSpec(Λ) under the action of W 2, 7, 9, 10, 13, 14,

17, 22

Λ̂λ The completion of Λλ in the nλ-adic topology 2, 8, 9, 12

F
(N)
λ The quotient algebra F λ/F λn

N
λ = End(P

(N)
λ ) 2, 9–11, 14–17, 19,

20, 22
mλ The maximal ideal in Λ corresponding to λ ∈ MaxSpec(Λ) 2, 6–9, 11, 14, 28,

29
G The gauge group of the Coulomb branch. 3, 4, 15–18, 23, 28
N The matter representation of the Coulomb branch. 3, 4, 15, 16, 18, 19,

23, 29

Gλ The Levi subgroup in G corresponding to Ŵ λ ⊂W . 4, 16–19, 21, 22, 29
Pλ The parabolic subgroup in G corresponding to negative

weights of λ.
4, 17, 22, 28, 29
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N−λ The P λ-submodule of Nλ where λ acts by non-positive
weights.

4, 17–23

T̃v The block of the KLRW algebra as discussed in [KTW+,
§3.1], attached to the sequence (ωn−1, · · · , ωn−1) with this
fundamental weight appearing vn times and where vi black
strands have label i for all i ∈ I

4, 24–27

L The fraction field of Λ 5, 12, 28
K The fraction field of Γ, which is also the fixed field LW 5, 7, 8, 10–12, 29
M A fixed submonoid of Aut(Λ) which is normalized by W 5, 7, 16, 22, 28
L The smash product L#M 5, 6, 28, 29
F The smash product L#W 5, 6, 8, 11, 23, 29
K The invariants LW 5–7, 23, 29
KΓ The standard order {X ∈ K | X(Γ) = Γ} 5, 6, 16
FΛ The standard flag order {X ∈ F | X(Λ) = Λ} 5, 6
D A subalgebra satisfying Λ#W ⊂ D ⊂ EndΓ(Λ). 6, 13, 16, 29
FD A flag Galois order canonically constructed from U and D by

considering De⊗Γ U ⊗Γ eD.
6, 13, 16, 23

Wλ The functor of taking generalized weight space for a maximal
ideal in Λ or Γ

6, 7, 9, 10, 12–15,
20–23, 25, 27, 29

Λλ The fixed points Λλ = ΛŴλ 7–10, 12, 13, 28, 29

Fλ The intersection F ∩K · Ŵ λ 7–12, 14, 15, 28
nλ The maximal ideal in Λλ given by mλ ∩ Λλ 8–12, 14, 18, 28, 29

P
(N)
λ The quotient module F/FnNλ 9, 10, 22, 28

Λ
(1)
λ The quotient Λ/Λnλ 10, 11, 14, 19, 20

λWµ The elements of Ŵ such that w · µ = λ 10–12, 29

λFµ The intersection F ∩K · λWµ 10–12, 14, 17
F (S) The algebra defined in (2.3) that naturally acts on

⊕
λ∈S Wλ. 12

F (N)(S) The quotient F (S)/nNF (S) 12, 20, 21
V A vector space equipped with a W action that we hold fixed 13, 16, 28
Q The subgroup in GL(V ) generated by G and a torus of the

normalizer N(G).
16

Nλ The subspace of N where the cocharacter λ acts by integral
weights.

16–19, 21–23, 28

Bλ The unique Borel subgroup in P λ such that Bλ∩G = B ∩G. 17–19, 21
v The dimension vector v = (v1, . . . , vn) corresponding to the

quiver gauge theory that gives an OGZ algebra
22–26, 29

Ω The index set Ω = {(i, r) | 1 ≤ i ≤ n, 1 ≤ r ≤ vi} 22–24, 29
x The function Ω → R defined by x(i, s) = λi,s − iε − sε2 for

some 0 < ε� 1
24, 29
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w(λ) The word given by the first indices of the elements of Ω,
orderd according to the function x.

24, 25
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