KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves

Noncommutative resolutions and Coulomb branches

Ben Webster

University of Waterloo Perimeter Institute for Mathematical Physics

January 18, 2023

イロト イポト イヨト イヨト

UW/PI

Ben Webster

Let $X = T^* \operatorname{Fl}_n$ be the cotangent bundle of the flag variety $X_0 = \operatorname{Fl}_n$ over a field k of characteristic $p \ge 0$.

Let $Coh_0(X)$ denote the abelian category of coherent sheaves on *X* which are (set-theoretically) supported on X_0 .

イロト イポト イヨト イヨト

UW/PI

KLR algebras and geometry ●●●●●●●●●	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
Non-commutative Springer resolution	on			

Consider the algebra $A = U\mathfrak{gl}_n(\mathbb{k})$. Let $A \operatorname{-mod}_0$ be the principal block of the category of finite dimensional modules with central character.

イロト イポト イヨト イヨト

UW/PI

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
• 0 00000000000	000000	0000000	0000000000
Non-commutative Springer resolution	on		

Let $X = T^* \operatorname{Fl}_n$ be the cotangent bundle of the flag variety $X_0 = \operatorname{Fl}_n$ over a field k of characteristic $p \ge 0$.

Let $Coh_0(X)$ denote the abelian category of coherent sheaves on X which are (set-theoretically) supported on X_0 . Consider the algebra $A = U\mathfrak{gl}_n(\mathbb{k})$. Let $A \operatorname{-mod}_0$ be the principal block of the category of finite dimensional modules with central character.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Bezrukavnikov-Mirkovic)

If $p \gg 0$, there is an equivalence of derived categories

 $D^b(\mathsf{Coh}_0(X)) \cong D^b(A\operatorname{-mod}_0).$

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
000000000000			
Non-commutative Springer resolution	on		

Bezrukavnikov calls this a "non-commutative counterpart of the Springer resolution."

This is a beautiful equivalence, but it's quite abstract. I want to give you a somewhat more concrete way of thinking about it.

$Coh_0(X)$	$A\operatorname{-mod}_0$
geometry	representation theory

イロト イ理ト イヨト イヨト

UW/PI

Ben Webster

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
00000000000			
Non-commutative Springer resolution	on		

Bezrukavnikov calls this a "non-commutative counterpart of the Springer resolution."

This is a beautiful equivalence, but it's quite abstract. I want to give you a somewhat more concrete way of thinking about it.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

UW/P

The example relevant to $T^* \operatorname{Fl}_n$ is:

Note that $T^* \operatorname{Fl}_n$ is the Nakajina quiver variety for this dimension vector. There's a different way of constructing $T^* \operatorname{Fl}_n$ from this quiver though: Coulomb branches. To describe these, I need to introduce KLRW algebras.

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
KLRW algebras				

Definition

A (planar) KLRW diagram is a generic collection of curves in $\mathbb{R} \times [0,1]$ of the form $\{(\pi(t),t) \mid t \in [0,1]\}$ for $\pi : [0,1] \to \mathbb{R}$.

- **1** Each strand is labeled from the strand is black or red. There are v_i black strands and w_i red strands with label *i*.
- 2 Red strands must be vertical at fixed, distinct *x*-values (for example, x = 1/W, 2/W, ..., 1 for $W = \sum w_i$).
- 3 We place dots at a finite number of points on black strands, avoiding crossings.

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
KLRW algebras				

Definition

A cylindrical KLRW diagram is a generic collection of curves in $\mathbb{R}/\mathbb{Z} \times [0,1]$ of the form $\{(\pi(t),t) \mid \underline{t} \in [0,1]\}$ for $\pi \colon [0,1] \to \mathbb{R}/\mathbb{Z}$.

- **1** Each strand is labeled from $[m_i]$ and is black or red. There are v_i black strands and w_i red strands with label *i*.
- 2 Red strands must be vertical at fixed, distinct *x*-values (for example, x = 1/W, 2/W, ..., 1 for $W = \sum w_i$).
- 3 We place dots at a finite number of points on black strands, avoiding crossings.

イロト 不得 とうほう イヨン

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
00 00000 000000	000000	0000000	0000000000
KLRW algebras			

We can compose KLRW diagrams by stacking, if the labels on the bottom of one and top of the other match up to isotopy (never moving red strands).

Definition

The (planar) KLRW algebra R is the formal k-span of planar KLRW diagrams modulo the local relations below.

UW/P

Ben Webster

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
KLRW algebras				

We can compose KLRW diagrams by stacking, if the labels on the bottom of one and top of the other match up to isotopy (never moving red strands).

Definition

The cylindrical KLRW algebra \mathring{R} is the formal \Bbbk -span of cylindrical KLRW diagrams modulo the local relations below.

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
00000000000			
KLRW algebras			

Ben Webster

UW/PI

There's one of these for each possible order on strands. Can encode this in a word **i** in $\Gamma \cup \Gamma$. Denote by $e(\mathbf{i})$.

Definition

The (planar) KLRW category is the category whose objects are words as above, and where $\text{Hom}(\mathbf{i}, \mathbf{j}) = e(\mathbf{j}) \overset{\mathbf{g}}{R} e(\mathbf{i})$.

Ben Webster

(日)

KLR algebras and geometry	Coulomb branches	Intermission	Representation theory	Coherent sheaves
KLRW algebras		<u> </u>		

Important role is played by idempotents where all strands are vertical.

There's one of these for each possible order on strands. Can encode this in a word **i** in $\Gamma \cup \Gamma$. Denote by $e(\mathbf{i})$.

For \mathring{R} , this word is really cyclic, but can always start with red at x = 0.

Definition

The cylindrical KLRW category is the category whose objects are words as above, and where $\text{Hom}(\mathbf{i}, \mathbf{j}) = e(\mathbf{j})\mathring{R}e(\mathbf{i})$.

Ben Webster

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 $C \cap T^{\kappa} \mathcal{C}^{\kappa}$ -1 Q A $eH_{c^{*}}(pt)$ Q < = L t)</pre>

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
00000000000			
Quiver geometry			

Planar KLR algebra ($w_i = 0$) has a natural geometric interpretation. Let

$$N_{\mathbf{v}} = \bigoplus_{i \to j} \operatorname{Hom}(\mathbb{C}^{\nu_i}, \mathbb{C}^{\nu_j}) \qquad G_{\mathbf{v}} = \prod_i GL(\mathbb{C}^{\nu_i})$$

The quotient $Y_{\mathbf{v}} = N_{\mathbf{v}}/G_{\mathbf{v}}$ is the moduli space of quiver representations of dimension \mathbf{v} .

Consider a word $\mathbf{i} = (i_1, \dots, i_n) \in I^n$ where $i \in I$ appears v_i times. We say that a homogeneous complete flag F_k on $\bigoplus_{i \in I} \mathbb{C}^{v_i}$ has type \mathbf{i} if

$$\dim(F_k \cap \mathbb{C}^{\nu_j}) = \dim(F_{k-1} \cap \mathbb{C}^{\nu_j}) + \delta_{j,i_k}.$$

Let X_i be the moduli space of quiver representations equipped with a flag of subrepresentations of type i. $X_i - N_i$

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
00000000000			
Quiver geometry			

Basic geometric object to consider:

$$R_{\mathbf{v}} = \bigoplus_{\mathbf{i},\mathbf{j}} H^{BM}_{*}(X_{\mathbf{i}} \times_{Y_{\mathbf{v}}} X_{\mathbf{j}}) \cong \operatorname{Ext}^{*}(\bigoplus_{\mathbf{i}} \pi_{*} \mathbb{C}_{X_{\mathbf{i}}})$$

as an algebra under convolution.

Theorem (Varagnolo-Vasserot, Rouquier)

The algebra R_v is generated by the homology classes:

• the diagonal in $X_{\mathbf{i}} \times_{Y_{\mathbf{v}}} X_{\mathbf{i}}$

• the 1st Chern class of the tautological bundle

■ push-pull from a partial flag version

modulo the relations from before.

Ben Webster

....

1KKI IC

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
000000000000000000000000000000000000000			
Generalizations			

To generalize KLR algebra, need to give more geometric definition:

Consider a generic cocharacter $\xi : \mathbb{C}^* \to G$; we have a resulting complete flag $\{F_w\}$ of some type **i** given by the sum of vectors of weight $\leq w$ for each w.

Let N_i^- be the elements of N_v of negative weight under ξ . Let $P_i^- \subset G_v$ be the subgroup preserving the flag F_{\bullet} .

Proposition

We have an isomorphism $X_i \cong N_i^- / P_i^-$.

Pushforward $X_{\xi} \to Y$ generalizes "spiral induction" of Lusztig and Yun.

Ben Webster

イロト イポト イヨト イヨト 二日

t. 7 12 ۰, +3 2 2 a, v, Ð F 6 22 12 a2,1 6 2 -3 ٢ Z -2 Qz,Vz T

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
000000000000000000000000000000000000000			
Generalizations			

Can do this for **any** representation N and group G.

Important twist: can consider the different $\xi : \mathbb{C}^* \to \operatorname{Norm}_{GL(\mathbf{V})}(G)$ which lift a fixed \mathbb{C}^* -action on Y = N/G.

Can similarly define $X_{\xi} = N_{\xi}^{-}/P_{\xi}^{-}$, and consider

$$R = \bigoplus_{\xi,\xi'} H^{BM}_*(X_{\xi} \times_Y X_{\xi'}) \cong \operatorname{Ext}^*(\bigoplus_{\xi} \pi_* \mathbb{C}_{X_{\xi}}).$$

Of course, there are infinitely many ξ , but only finitely many N_{ξ}^{-} up to conjugacy.

Theorem (Sauter, W.)

The algebra R always has a "KLR-type" presentation.

Ben Webster

イロト イ押ト イヨト イヨト

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
000000000000000000000000000000000000000	000000	00000000	00000000000
Generalizations			

To obtain the algebras of ultimate interest to us, we have to add w_i copies of the representation \mathbb{C}^{v_i} to N_v (i.e. Hom $(\mathbb{C}^{w_i}, \mathbb{C}^{v_i})$). This is sometimes called "framing."

Moduli spaces of framed quiver representations are closely related to Nakajima quiver varieties.

31122311

2. We'll want to choose $\varphi \colon \mathbb{C}^* \to \prod GL(\mathbb{C}^{w_i}) \subset \operatorname{Aut}_G(N_v^w)$. This puts an order on the basis vectors of the \mathbb{C}^{w_i} 's, which we can record as a word in I with w_i copies of i.

A choice of ξ corresponds to interleaving this with a word in *I* containing v_i copies of *i*.

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
000000000000			
Generalizations			

Theorem (W.)

For framed quiver representations, the Ext algebra R is the planar KLRW algebra discussed above.

I was interested in these algebras to construct categorifications of tensor products and knot invariants, and their connections to quiver varieties.

I'll say more about this later, but let me just mention that the bimodules that correspond to braiding can be gotten by taking Ext between pushforwards for different φ 's.

But then I learned that there was a quite different lens to view them through: Coulomb branches.

イロト (行) () () () ()

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
Coulomb branches defined				

Now affinize everything:

Taylor series
$$C = \mathbb{C}[[t]]$$
 $G = G[[t]]$ $N = N[[t]]$ Laurent series $\mathcal{C} = \mathbb{C}((t))$ $\mathcal{G} = G((t))$ $\mathcal{N} = N((t))$

Relevant spaces:

$$\mathsf{Y} = \mathsf{N}/\mathsf{G} = \operatorname{Map}(D = \operatorname{Spec} \mathsf{C} \to N/G)$$

UW/P

$$\mathcal{Y} = \mathcal{N}/\mathcal{G} = \operatorname{Map}(D^* = \operatorname{Spec} \mathcal{C} \to N/G)$$

These can be interpreted as spaces of principal G bundles with a section of the associated N-bundle on D and D^* .

Thus, the fiber product $Y \times_{\mathcal{Y}} Y$ is the space of such bundles on the "raviolo" gluing two copies of *D* along *D*^{*}.

(hoose trivialization on A - disk [f]] X G 6_K \bigwedge د G _ -/

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
Coulomb branches defined				

Previous experience tells us it would be fun to consider

 $A = H^{BM}_*(\mathsf{Y} \times_{\mathscr{Y}} \mathsf{Y}).$

Using factorization arguments, we can see that *A* is a commutative \mathbb{C} -algebra of finite type.

Definition

The **Coulomb branch** *is the spectrum* $\mathfrak{M} = \operatorname{Spec} A$ *.*

This definition has some motivation in 3d QFT (it's the local operators in a topological twist of a gauge theory), but it's also recognizable as an affine version of our construction of KLR algebras,

イロト 不得 とくほ とくほ とうほ

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
The quiver case				

In the case of $N = N_v$ and $G = G_v$ from before,

- N/G is the moduli of quiver representations over the field C.
- N/G is the moduli of such quiver representations with a choice of lattice Λ_i ≃ C^{ν_i} ⊂ C^{ν_i} that gives a subrepresentation.

But our KLR presentation comes from being able to switch consecutive spaces in a flag, so we want flags, not lattices.

Definition

An **affine flag** in \mathbb{C}^m is a sequence of a lattices $\mathsf{F}_k \subset \mathbb{C}^m$ for $k \in \mathbb{Z}$ such that

$$\cdots \subset \mathsf{F}_{k-\mathsf{F}} \mathsf{F}_k \subset \mathsf{F}_{k+1} \subset \cdots \qquad t\mathsf{F}_k = \mathsf{F}_{k-m}$$

Objects describing affine flags are periodic (periodic permutations for Schubert cells, etc.)

イロト (行) () () () ()

UW/PI

Ben Webster

 $\left(\binom{(1)}{1} = \left\langle e_{1}, \dots, e_{m} \right\rangle$ $(te_n, e_1, \dots, e_{n-i})$ < tem., ten, ..., en-2 $\langle te_{1}, --, te_{n} \rangle$

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
The quiver case				

So, we can now let i be a **periodic word**: a map i: $\mathbb{Z} \to I$ such that $i_k = i_{k+m}$ for all k for $m = \sum v_i$ such that any m consecutive entries contain v_i copies of *i*.

Any homogeneous affine flag $F_{\bullet} \subset \bigoplus_{i \in I} C^{v_i}$ has a periodic word as its type, defined by

$$\dim(\mathsf{F}_k \cap \mathcal{C}^{\nu_j}/\mathsf{F}_{k-1} \cap \mathcal{C}^{\nu_j}) = \delta_{j,\mathbf{i}_k}.$$

イロト (行) () () () ()

UW/P

Let X_i be the moduli space of quiver reps over C, together with a choice of affine flag of subreps of type i.

Ben Webster

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
	000000		
The quiver case			

Theorem

The convolution algebra

$$\mathring{R} = \bigoplus_{i,j} H^{BM}_*(\mathsf{X}_i \times_{\mathfrak{Y}} \mathsf{X}_j) \cong \operatorname{Ext}^*(\bigoplus_i \pi_* \mathbb{C}_{X_i})$$

is the cylindrical KLRW algebra.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

UW/PI

Ben Webster

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
The quiver case				

To get the Coulomb branch *A*, need to integrate out the finite flag variety back down to a single lattice. This corresponds to having a thick strand bringing together all with label *i* for each *i* at top and bottom of diagram (but general cKLRW diagram in the middle).

This result generalizes to the KLRW case with addition of red strands.

Ben Webster

• □ ▶ • □ ▶ • □ ▶ •

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ 二 国

UW/PI

Ben Webster

All of these varieties are Nakajima quiver varieties, but for potentially different quivers and dimension vectors. The quiver variety and Coulomb branch for a given quiver should be related by "3d mirror symmetry"/"symplectic duality."

イロト イポト イヨト イヨト

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
		0000000	
Examples of Coulomb branches			

The disk D has a \mathbb{C}^* action by rotation (so the parameter t has weight 1). Combining this with the action on N/G via φ , we obtain compatible \mathbb{C}^* -actions on Y, Y, X_i.

$$A_{\hbar} = H^{BM,\mathbb{C}*}_{*}(\mathsf{Y} \times_{\mathfrak{Y}} \mathsf{Y}). \qquad \mathring{R}_{\hbar} = \bigoplus_{\mathsf{i},\mathsf{j}} H^{BM,\mathbb{C}*}_{*}(\mathsf{X}_{\mathsf{i}} \times_{\mathfrak{Y}} \mathsf{X}_{\mathsf{j}})$$

Relations only change to account for the fact that F_k/F_{k-1} and $\mathsf{F}_{k+m}/\mathsf{F}_{k+m-1}$ are isomorphic, but have different \mathbb{C}^* -weight.

Ben Webster

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
		0000000	
Examples of Coulomb branches			

The parameters $H^{BM,\mathbb{C}^*}_*(Y) \cong \mathbb{C}[\mathfrak{g},\hbar]^G$ give a maximal commutative subalgebra *S* of A_{\hbar} .

These result in well-known quantizations of these varieties; we get more familiar algebras if we consider the specialization A_1 setting $\hbar = 1$.

• my favorite: $U(\mathfrak{sl}_n)$ with *S* the Gelfand-Tsetlin subalgebra

$$\boxed{n} - \boxed{n-1} - \boxed{n-2} - \cdots - \boxed{2} - \boxed{1}$$

more generally, W-algebras in type A

$$\begin{bmatrix} n \\ \hline n - \lambda_1 - \lambda_2 \\ \hline n$$

spherical Cherednik algebras for S_n or $G(\ell, 1, n)$, with S the subalgebra generated by the Dunkl-Opdam operators.

イロト イポト イヨト イヨ

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
		0000000	
Examples of Coulomb branches			

Definition

We call an A_1 -module M Gelfand-Tsetlin if the subalgebra S acts locally finitely on M, i.e. $\dim(S \cdot m) < \infty$ for all $m \in M$.

Theorem

The category of Gelfand-Tsetlin A_1 -modules with "integral weights" is equivalent to the category of weakly graded (gradeable after passing to associated graded) *R*-modules.

So, passing to $GT A_1$ -modules undoes the affinization!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
0000000000000	000000	00000000	0000000000
Examples of Coulomb branches			

A few words on the proof:

• a GT module satisfies $M = \bigoplus_{\gamma \in MaxSpec(S)} W_{\gamma}(M)$ for

$$W_{\gamma}(M) = \{ m \in M \mid \mathfrak{m}_{\gamma}^{N}m = 0 \text{ for all } N \gg 0 \}.$$

Note that we can think of $\gamma \in MaxSpec(S)$ as a conjugacy class of cocharacters $\mathbb{C}^* \to N_{GL(V)}(G)$. (integrality!)

- The category is thus controlled by natural transformations $W_{\gamma} \rightarrow W_{\gamma'}$.
- We have an isomorphism (by localization in equivariant homology)

$$\operatorname{Hom}(W_{\gamma}, W_{\gamma'}) \cong H^{BM}_*(X_{\gamma'} \times_Y X_{\gamma})$$

▲ロト ▲掃ト ▲ヨト ▲ヨト 三日 - わんの

UW/P

■ This gives the desired *R*-action.

Ben Webster

KLR algebras and geometry	Coulomb branches		Representation theory	Coherent sheaves
Trainting from store	000000	0	00000000	00000000000
Twisting functors				

For any φ, φ' , there is a bimodule relating the two different quantizations where we wrap the red lines around the cylinder the appropriate number of times.

Derived tensor product with this bimodule gives "twisting functors."

This is a special case of a construction for all symplectic resolutions.

イロト イ理ト イヨト イヨト

UW/P

Ben Webster

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
		00000000	
Twisting functors			

Theorem

Twisting functors give a (finite) braid group action on the categories of modules over different quantizations.

This can be upgraded to an action of tangles; the resulting link homology $\mathcal{D}_q(K)$ recovers my old work on categorified Reshetikhin-Turaev (in particular, Khovanov-Rozansky in type A).

In type A, can even upgrade this to an action of the foam category.

This seems to be a version of Witten's prediction of a knot homology constructed with A-branes on a space of Hecke modifications.

ヘロト ヘアト ヘリト ヘリト

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
Twisting functors				

Applications:

- Gives Koszul duality between categories *O* for Coulomb branches and quiver varieties/hyperkähler quotients attached to a given (*G*, *N*).
- First classification of GT modules for gl_n, and character formulae for them (Kamnitzer-Tingley-W.-Weekes-Yacobi, Silverthorne-W.).
- analogous classification for modules over Cherednik algebras of $G(\ell, p, n)$. (LePage-W.)
- Categorified knot invariants have two Koszul dual constructions; Coulomb side construction seems to be "A-branes on Hecke modifications" proposed by Witten.

◆□ > ◆□ > ◆□ > ◆□ > ● □

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
			● 0 00000000
Noncommutative symplectic resolu	tions		

I'm supposed to be telling you about non-commutative resolutions.

BFN construct (usual) resolutions of singularities: Springer resolution and Hilbert scheme. This works for (G, N) an affine type A quiver gauge theory, but not in most other cases.

Definition

A noncommutative symplectic resolution of a symplectic singularity $\mathfrak{M} = \operatorname{Spec} A$ is a ring R such that A = eRe for some idempotent, and the functor $M \mapsto eM : R \operatorname{-mod} \to A \operatorname{-mod}$ "looks like" pushforward by a crepant resolution of singularities.

ヘロト ヘアト ヘリト ヘリト

UW/P

For a symplectic singularity, symplectic resolution=crepant resolution.

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
Noncommutative symplectic resolutions				

Theorem

Whenever a BFN resolution exists, the ring \mathring{R} is a non-commutative symplectic resolution of A and $D^b(\mathring{R}-mod) \cong D^b(Coh(\tilde{\mathfrak{M}}))$ for \mathfrak{M} any symplectic resolution of the Coulomb branch Spec A.

- "Noncommutative Springer resolution" in type A is a special case; this gives such resolutions for all parabolic Slodowy slices in type A.
- In the case of Hilbert scheme (or more generally, affine type A) need to account for extra C* acting by scaling on the loop (symplectic C* on C²). Need to use "weighted" version of ^R. Recovers BFG resolution based on Cherednik algebra.

イロト イポト イヨト イヨト

KETT PRGMatnen DU

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
A detour into characteristic p				

For different people, this next part will have different motivations:

- You might want to understand coherent sheaves on a resolution of Spec *A*.
- You might be the kind of person who says "what if k had characteristic *p*"?
- You might have gone to some recent talks of Aganagić and gotten confused once cigars came up.

Interestingly, either way, you should do the same thing.

ヘロト 人間 とくほとく ほとう

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
A detour into characteristic p				

Over \mathbb{F}_p , you can try to analyze finite dimensional modules over A_1 by diagonalizing *S* again. Again, let's restrict to integral maximal ideals.

Problem?

If we wrap a strand around the cylinder *p* times, the shift of the dot is trivial.

Theorem

Let $\mathbb{k} = \mathbb{F}_p$. For generic φ (and p big enough), the category of finite dimensional A₁-modules with "integral weights" is equivalent to the category of finite dimensional weakly graded \mathring{R} -modules.

イロト 不得 トイヨト イヨト

UW/P

So, still affinized, but resolved now.

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
A detour into characteristic p				

Similar arguments to last time:

- geometric proof: localization to μ_p -fixed points on Y.
- algebraic proof: same calculations as last time, but now we have natural transformations $W_{i,0} \rightarrow W_{j,0}$ as endomorphisms given by any diagram on the cylinder with i where all strands have winding number divisible by *p*.

ヘロト ヘアト ヘリト ヘリト

UW/P

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
			00000000000
A detour into characteristic p			

Why does this have anything to do with coherent sheaves?

Fancy char *p* stuff: there's a quantum Frobenius map $A_0 \to Z(A_1)$. This is actually the sections of a map of sheaves $\mathscr{O}_{\widetilde{\mathfrak{M}}} \to \mathscr{Q}_{\widetilde{\mathfrak{M}}}$ of structure sheaf to a localization of A_1 on any resolution $\widetilde{\mathfrak{M}}$.

Applying results of Bezrukavnikov and Kaledin, we can construct a very special vector bundle \mathcal{T} on $\tilde{\mathfrak{M}}$ by "diagonalizing the action of $S \subset A_1$."

A lift of this vector bundle also exists in char 0, so can forget about characteristic p story.

イロト イポト イヨト イヨト 二日

UW/P

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
Tilting bundles via quantization				

A tilting generator is a vector bundle *T* such that $\operatorname{Ext}^{>0}(T,T) = 0$, and $\langle T \rangle = D^b \operatorname{Coh}(\tilde{\mathfrak{M}})$.

Theorem

Assume that G is a torus, or (G, N) corresponds to an affine type A quiver gauge theory. The vector bundle \mathcal{T} is a tilting generator for \mathfrak{M} and $\operatorname{End}(\mathcal{T}) = \mathring{R}$.

The fact that \mathring{R} is a non-commutative resolution is a corollary.

イロト 不得 とうほう イヨン

KLR algebras and geometry	Coulomb branches	Intermission O	Representation theory	Coherent sheaves
Tilting bundles via quantization				

While all commutative and non-commutative resolutions are derived equivalent, these equivalences are not unique. Instead, they generate an action of the affine braid group on this category; these descend from twisting functors in char p:

Theorem

The twisting affine braid group action on $D^b(\mathring{R} \operatorname{-mod})$ is generated by cylindrical versions of *R*-matrix bimodules.

イロト イポト イヨト イヨト

UW/P

KLR algebras and geometry	Coulomb branches	Intermission	Representation theory	Coherent sheaves
Tilting bundles via quantization	000000	0	0000000	000000000000

In fact, this extends to an action of affine tangles, by affine versions of the cup and cap bimodules, and in type A to affine foams. This gives a link homology $\mathscr{D}_{coh}(K)$.

Theorem

The following link homologies are all the same:

- $\mathscr{D}_{coh}(K)$, constructed from the affine tangle action above.
- $\mathcal{D}_q(K)$, constructed from the tangle action on quantum coherent sheaves.

イロト 不得 トイヨト イヨト

UW/P

- the invariant constructed in my older knot homology work (which matches Khovanov-Rozansky in type A).
- Aganagić's physical construction.

KLR algebras and geometry	Coulomb branches	Representation theory	Coherent sheaves
			0000000000
Thanks			

Thanks for listening.

Ben Webster

UW/PI

▲口 医 ▲圖 医 ▲ 国 医 ▲ 国 医