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Theorem 3 (Hernandez-Oya, 2018). The conjecture of [H] is true in type B : a
Kazhdan-Lusztig algorithm gives the dimensions and characters of simple finite-
dimensional modules.
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The classification of Gelfand-Tsetlin modules and the
Braverman-Finkelberg-Nakajima construction

Ben Webster

(joint work with Oded Yacobi, Alex Weekes)

One very challenging problem in the representation theory of the Lie algebra gln
is the classification of Gelfand-Tsetlin modules, that is, the finitely generated
modules where the Gelfand-Tsetlin subalgebra Γ generated by the centers of the
universal enveloping algebras U(gl1) ⊂ U(gl2) ⊂ · · · ⊂ U(gln) acts locally finitely.
See [FGR, H] for a more general discussion of this problem.

The heart of our approach is the use of the generalized weight functors

Wm(M) = {m ∈M | mNm = 0 ∀N ≫ 0}
for the different maximal ideals m ∈ MaxSpec(Γ). These functors are exact, and
for any Gelfand-Tsetlin module M ∼=

⊕
m∈MaxSpec(Γ) Wm(M). On very general

grounds, the category of Gelfand-Tsetlin modules is thus controlled by the cate-
gory whose objects are these functors, with morphisms given by natural transfor-
mations.

This category becomes much easier to analyze when we realize U(gln) as a
quantum Coulomb branch, in the sense of [BFN]. This allows us to identify the
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space of natural transformations between two weight functors as the homology
of a Steinberg type space; in fact, when we consider the endomorphisms of an
appropriate sum of weight spaces, it is precisely a completed weighted KLR algebra
as defined in [W2], following the approach of [W1, KTWWY]. This fact allows
us to complete the desired classification, and answer many questions about the
structure of simple Gelfand-Tsetlin modules, by giving a finite dimensional algebra
whose simple representations are in bijection with Gelfand-Tsetlin modules of a
fixed weight. In particular, we identify the set of simple integrable Gelfand-Tsetlin
modules with fixed central character with the dual canonical basis of the zero
weight space of a tensor product of U(n) ⊗ (Cn)⊗n of the inversal enveloping
algebra of lower triangular matrices n with n copies of the standard representation
of sln. The other weight spaces of this tensor product correspond to similar module
categories for W-algebras or orthogonal Gelfand-Tsetlin algebras [M].

This same approach can be applied to other quantized Coulomb branches, such
as rational Cherednik algebras, as well as other principal Galois orders (as in-
troduced in [H]). However, such algebras which are not Coulomb branches will
require new calculations.
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