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“Almost” commutative algebras

For a lot of history, it seemed as though commutative rings were
maybe the most natural framework in which to view mathematics.

Obvious context for number theory, algebraic geometry.
In physics, observable quantities form a commutative ring.

Then quantum mechanics came along, and the picture looked a bit
different. The algebra of observables becomes non-commutative, but
with a classical limit (it’s “almost commutative”).

On the classical side, physicists had already noticed a hint of the
non-commutativity of quantum mechanics: the Poisson bracket
(which is often called “semi-classical”)

Hamilton’s equation (for an observable):
∂f
∂t

= {H, f}

Heisenberg’s equation (for an operator): i~
∂ f̂
∂t

= [Ĥ, f̂ ]
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“Almost” commutative algebras

Definition

An almost commutative ring is a ring A with a filtration
A0 ⊂ A1 ⊂ · · · and an integer n > 0 such that

AiAj ⊂ Ai+j [Ai,Aj] ⊂ Ai+j−n

In particular, the ring gr(A) ∼= ⊕∞i=0 Ai/Ai−1 is commutative and
Z≥0-graded.
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“Almost” commutative algebras

The ring gr(A) inherits a semi-classical structure:

Definition

A conical Poisson ring is a Z≥0-graded commutative ring R with a
second operation {−,−} : R× R→ R, homogeneous of degree −n,
that satisfies the relations of a Lie bracket (bilinear, anti-symmetric,
Jacobi) such that the Leibnitz rule holds:

{ab, c} = a{b, c}+ b{a, c}.

There’s a classical limit functor A 7→ (gr(A), {−,−}) from almost
commutative algebras to conical Poisson algebras, with the Poisson
bracket given by

{ā, b̄} = [a, b] ∈ Ai+j−n/Ai+j−n−1.
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“Almost” commutative algebras

The most basic case is when A = C〈x, d
dx〉 is the algebra of

polynomial differential operators. This is filtered with

A1 = span
(

1, x,
d
dx

)
An = An

1

This is almost commutative (n = 2) with gr(A) = C[x, p].

{f , g} =
∂f
∂p

∂g
∂x
− ∂g
∂p

∂f
∂x

{p, x} = 1

Similarly, U(g) for any Lie algebra g is almost commutative, with
classical limit C[g∗] with the KKS Poisson structure.
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“Almost” commutative algebras

Definition

If R is an conical Poisson algebra, then a quantization of R is an
almost commutative algebra A whose classical limit is R.

You can easily check that A is the unique quantization of C[x, p].
(Hint: A1 ∼= C · {x, p, 1} as 3-dimensional Lie algebras).

What happens when we consider other Poisson varieties?

In general, finding all quantizations is not easy; Kontsevich got a
Fields Medal in large part for doing so for a real Poisson structure on
Rn.
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Symplectic singularities

We call an affine variety Y conical Poisson if its coordinate ring has
that structure.

Definition

We call Y a conical symplectic variety (i.e. conical variety w/
symplectic singularities) if the Poisson bracket induces a symplectic
structure on the smooth locus (+silly technical conditions).

If C2n has the usual symplectic structure, and Γ is a finite group
preserving ω, then Y ∼= C2n/Γ is an example.

The variety of nilpotent matrices (and more generally, nilpotent
cone of a semi-simple Lie algebra g) has a natural symplectic
structure.

The correspondence between almost commutative and semi-classical
is particularly nice in this case.
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Symplectic singularities

Theorem (Namikawa)

Every conic symplectic variety Y has a universal deformation Y that
smoothes it out as much as possible while staying symplectic (which is
thus rigid). The base of this deformation is a vector space H.

For example, g∗ comes from the nilcone N . The simplest example is:

Y = C2/(Z/`Z) ∼= {(u = x`, v = y`,w = xy) | uv = w`}

The universal deformation is given by adding formal coordinates ai on
H of degree 2i.

For a general C2n/Γ, there’s a similar deformation direction attached
to every conjugacy class of symplectic reflection (an element that
fixes a codimension 2 subspace).
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Symplectic singularities

Theorem (Namikawa)

Every conic symplectic variety Y has a universal deformation Y that
smoothes it out as much as possible while staying symplectic (which is
thus rigid). The base of this deformation is a vector space H.

For example, g∗ comes from the nilcone N . The simplest example is:

Y ∼= {(u, v,w, a1, . . . a`) | uv = w` + a1w`−1 + · · ·+ a`}

The universal deformation is given by adding formal coordinates ai on
H of degree 2i.

For a general C2n/Γ, there’s a similar deformation direction attached
to every conjugacy class of symplectic reflection (an element that
fixes a codimension 2 subspace).

Ben Webster UVA

Representation theory of symplectic singularities



Quantizations Higgs and Coulomb branches Category O and the algebra T

Symplectic singularities

So, how do we get an analogue of the universal enveloping algebra?

Theorem (Bezrukavnikov-Kaledin, Braden-Proudfoot-W., Losev)

Every conical symplectic variety Y has a unique quantization A of its
universal Poisson deformation Y; this is an almost commutative
algebra such that gr A ∼= C[Y].

The center Z(A) is the polynomial ring C[H]; the quotient Aλ for a
maximal ideal λ ∈ H has an isomorphism gr Aλ ∼= C[Y]. This gives a
complete irredundant list of quantizations of C[Y].

If Y is a nilcone, then A is the universal enveloping algebra.

If Y ∼= C2n/Γ, then A is a spherical symplectic reflection algebra.
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Symplectic singularities

Symplectic singularities are the Lie algebras of the 21st century. -
Okounkov

There’s a very interesting interplay between the geometry of Y and
the representation theory of A, modeled on that of g∗ and U(g):

Geometry
orbit method

geometric quantization

flag variety and Schubert
varieties

localization, D-modules,
intersection cohomology

support varieties

Algebra
primitive ideals

Harish-Chandra
(bi)modules

category O

character formulae

translation/projective
functors
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Symplectic singularities

We should really have a third column here:
Combinatorics: Coxeter groups, tableaux, cells, KL polynomials

Culmination is the Soergel calculus of Elias and Williamson.

g
f

To algebraists, describes category O and HC bimodules. To
geometers, describes the B× B equivariant D-modules on G.

The first description is of the endomorphisms of a projective
generator, the second is of Ext of a simple generator. Thus, these are
Koszul dual to each other.
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Gauge theories

How do we generalize this picture? Unfortunately, the case of a UEA
has a lot of special structure we can’t expect in other cases.

I don’t have a good general answer; I’m pretty skeptical about one
existing at all. I do know a very interesting set of examples, though:

Beginning with a connected reductive complex group G, and a
representation V , there’s a 3-d N = 4 supersymmetric field theory
you can build from this.

This field theory has a moduli space of vacua (lowest energy states)
which is a big reducible algebraic variety with two distinguished
components: the Higgs and Coulomb branches.
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Higgs vs. Coulomb

The Higgs branch is the hyperkähler quotient

{(v, ξ) ∈ T∗V | g · v = TvG · v ⊥ ξ}//G

Examples of such varieties are Nakajima quiver varieties and
hypertoric varieties (when G is abelian).

The Coulomb branch is given by starting with the variety
T∗Ť/W (for T ⊂ G a maximal torus), and applying “quantum
corrections.”

By Braverman-Finkelberg-Nakajima, I know what these
corrections are, but there is no room in this margin, etc.
Examples include slices between Grλ and Grµ in the affine
Grassmannian, Â quiver varieties, hypertoric varieties, and
(conjecturally) G-instantons on C2.
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Higgs vs. Coulomb

For Higgs branches, a quantization can be constructed by
replacing T∗V with differential operators, and performing
non-commutative Hamiltonian reduction.

For Coulomb branches, C[Y] is itself the homology of a space
with a convolution giving multiplication, and the quantization is
C∗-equivariant homology.

A whole zoo of algebras appear in both Higgs and Coulomb
presentations: hypertoric enveloping algebras, parabolic W-algebras,
rational Cherednik algebras. I’ll focus on the last of these.
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Higgs vs. Coulomb

How are we supposed to study these algebras? With Lie theory, we’re
starting from having a century of experience, and a rather special set
up.

On the Higgs side, the geometric column works pretty well. The
replacement for D-modules is “quantum coherent sheaves” on a
resolution of the Higgs branch. These are hard to work with (no
six functor formalism) but close enough to G-equivariant
D-modules on V to make things work.

With Coulomb branches, the algebraic column is more
successful. There’s a natural “torus” in the quantization A and
you can analyze its weight spaces, with the structure of the
representation V influencing how they are related.
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Category O

Luckily, the combinatorial column can tie them together.

We call ξ ∈ Aλ a grading element if [ξ,−] : Aλ → Aλ is semi-simple
with integral eigenvalues.

Definition

Category Oξ
λ for ξ over Aλ is the subcategory of modules where ξ acts

with finite length Jordan blocks, and f.d. eigenspaces, and eigenvalues
bounded above.

Note this category depends on ξ and λ; it’s richest if λ is “integral” in
some appropriate sense.

These switch roles between Higgs and Coulomb: a grading element
on one side corresponds to an integral quantization parameter on the
other.
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Category O

We can define a graded algebra T (purely based on the combinatorics
of G,V, ξ, λ) such that:

Theorem (W.)

For ξ integral:

1 T is isomorphic to the endomorphisms of a projective generator
in Oξ

λ for ACoulomb.

2 T is isomorphic to the Ext-algebra of a semi-simple generator in
Oλ
ξ for AHiggs (assuming certain hypotheses on V and G).

3 The category Oλ
ξ is Koszul dual to Oξ

λ.

You can think of the algebra T as a replacement of Soergel calculus in
the Higgs/Coulomb context.
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Why?

This should reflect some underlying geometric connection between
the varieties (there are many other coincidences of underlying
geometric information).

Conjecture (Braden-Licata-Proudfoot-W.)

There is a duality on the set of symplectic singularities which switches
Higgs and Coulomb branches.
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Why?

The algebra T is graded, whereas the Coulomb category O isn’t. This
provides a graded lift, which has good positivity properties.

Theorem (W.)

There are “Verma” modules in Oξ
λ, and the multiplicities of simples in

them are given by a version of Kazhdan-Lusztig
polynomials/canonical bases.

In particular, we get a new proof of Rouquier’s conjecture that
decomposition numbers for rational Cherednik algebras are given by
affine parabolic KL polynomials.

In general, lots of “canonical bases” (for reps of Lie algebras, for the
Hecke algebra, etc.) show up this way.
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Why?

If we start with a quiver Γ, and dimension vectors v,w, then quiver
varieties are the Higgs branches in the case

V =
⊕
i→j

Hom(Cvi ,Cvj)⊕
⊕

i

Hom(Cvi ,Cwi) G =
∏

GL(vi,C).

Theorem (W.)

The category T -gmod categorifies a tensor product of simple
representations (depending on w and ξ) for the quantum group
attached to Γ (q =grading shift).

There are natural functors categorifying all natural maps in quantum
group theory. This allows us to construct a categorified
Reshetkhin-Turaev knot invariant for any representation.

Even the Lie algebras not attached to graphs (types BDFG) have an
associated algebra T , and this construction can be carried through
purely combinatorially.
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KLR algebras

The algebra T has a purely combinatorial definition in terms of the
hyperplane arrangement of t induced by ϕi = ni for the weights ϕi of
V and certain scalars ni, (together with the action of W).

In the case of a quiver variety, the family of algebras which show up
already has a rich theory: they are (weighted)
Khovanov-Lauda-Rouquier algebras. Like the Soergel calculus, we
can define this algebra in terms of diagrams modulo local relations.

Let’s consider the special case of

G = GL(n,C) V ∼= gl(n)⊕ (Cn)⊕`.

The corresponding Coulomb quantization is the rational Cherednik
algebra of Sn wrZ/`Z.
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KLR algebras

In this case, the diagrams of T look like:

The x-values of the strands in a horizontal slice give an element
of t.

The weights of Cn correspond to the red lines: you cross a
corresponding hyperplane when a red and black line cross.

the weights of gl(n) are the distance between points, so you cross
one of their hyperplanes when two strands cross, or reach a fixed
distance from each other.
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KLR algebras
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KLR algebras

Thanks for listening.
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