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Intro Representation theory Geometry

Non-commutative Springer resolution

Let X = T∗Fln be the cotangent
bundle of the flag variety
X0 = Fln over a field of
characteristic p ≥ 0.

Let Coh0(X) denote the abelian
category of coherent sheaves on
X which are (set-theoretically)
supported on X0.
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Non-commutative Springer resolution

Consider the algebra
A = Ugln( ). Let U -mod0 be
the principal block of the
category of finite dimensional
modules with central character.
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Non-commutative Springer resolution

Let X = T∗Fln be the cotangent
bundle of the flag variety
X0 = Fln over a field of
characteristic p ≥ 0.

Let Coh0(X) denote the abelian
category of coherent sheaves on
X which are (set-theoretically)
supported on X0.

Consider the algebra
A = Ugln( ). Let U -mod0 be
the principal block of the
category of finite dimensional
modules with central character.

Theorem (Bezrukavnikov-Mirkovič)

If p ≫ 0, there is an equivalence of derived categories

Db(Coh0(X)) ∼= Db(U).
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Non-commutative Springer resolution

Bezrukavnikov calls this a “non-commutative counterpart of the
Springer resolution.”

This is a beautiful equivalence, but it’s quite abstract. I want to give
you a somewhat more concrete way of thinking about it.

Coh0(X)

geometry

U -mod0

representation theory
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Non-commutative Springer resolution

Bezrukavnikov calls this a “non-commutative counterpart of the
Springer resolution.”

This is a beautiful equivalence, but it’s quite abstract. I want to give
you a somewhat more concrete way of thinking about it.

Coh0(X)

geometry

U -mod0

representation theory

R̊ -mod0

combinatorial algebra
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KLRW algebras

Definition

A (planar) KLRW diagram is a generic collection of curves in
R× [0, 1] which are of the form {(π(t), t) | t ∈ [0, 1]} for
π : [0, 1] → R.

1 Each strand is labeled from [1, n]. If this label is n, we color the
strand red, otherwise we color it black.

2 Red strands must be vertical at fixed, distinct x-values (for
example, x = 1/n, 2/n, . . . , 1).

3 We place dots at a finite number of points on black strands,
avoiding crossings.
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KLRW algebras

Definition

A cylindrical KLRW diagram is a generic collection of curves in
R/Z× [0, 1] which are of the form {(π(t), t) | t ∈ [0, 1]} for
π : [0, 1] → R/Z.

1 Each strand is labeled from [1, n]. If this label is n, we color the
strand red, otherwise we color it black.

2 Red strands must be vertical at fixed, distinct x-values (for
example, x = 1/n, 2/n, . . . , 1).

3 We place dots at a finite number of points on black strands,
avoiding crossings.
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KLRW algebras

We can compose KLRW diagrams by stacking, if the labels on the
bottom of one and top of the other match up to isotopy (never moving
red strands).

Definition

The (planar) KLRW algebra R is the formal -span of planar KLRW
diagrams modulo the local relations below.
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KLRW algebras

We can compose KLRW diagrams by stacking, if the labels on the
bottom of one and top of the other match up to isotopy (never moving
red strands).

Definition

The cylindrical KLRW algebra R̊ is the formal -span of cylindrical
KLRW diagrams modulo the local relations below.

Ben Webster UW/PI

The noncommutative Springer resolution in type A and KLRW algebras

xxi+ 1SCS 1 14 Si
i,

18 - 1) i =j
- 1

11 else

ijkijk 1"d's ese (d =0)



Intro Representation theory Geometry

KLRW algebras

Important role is played by idempotents where all strands are vertical.

There’s one of these for each possible order on strands. Can encode
this in a word i in {1, . . . , n − 1, n}. Denote by e(i).

Definition

The (planar) KLRW category is the category whose objects are words
as above, and where Hom(i, j) = e(j)̊Re(i).
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KLRW algebras

Important role is played by idempotents where all strands are vertical.

There’s one of these for each possible order on strands. Can encode
this in a word i in {1, . . . , n − 1, n}. Denote by e(i).

For R̊, this word is really cyclic, but can always start with red at x = 0.

Definition

The cylindrical KLRW category is the category whose objects are
words as above, and where Hom(i, j) = e(j)̊Re(i).
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Gelfand-Tsetlin theory

The key to the connection to representation theory is the
Gelfand-Tsetlin subalgebra Γ:

Γ = 〈ZHC(Ugln), ZHC(Ugln−1), . . . , ZHC(Ugl1)〉

Theorem (Harish-Chandra)

We have an isomorphism:

ZHC(Uglk) = C[zk,1, . . . , zk,k]
Sk

where f (z) acts on the Verma module with highest weight (a1, . . . , ak)
with scalar f (a1, a2 − 1, . . . , ak − (k − 1)).

The ring Γ is a tensor product of these factors, so it’s polynomials
invariant under Sn × · · ·× S1.
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Gelfand-Tsetlin theory

Thus, given any finite dimensional representation of A = Ugln( ), the
spectrum of the representation is a subset of

SpecΓ =

n!

k=1

Ak /Sk

If char( ) = 0, then this spectrum is simple (all multiplicities 1), and
determined by Gelfand-Tsetlin patterns.
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Gelfand-Tsetlin modules

On the other hand, in characteristic p > 0, this is very much not the
case.

Problem?

The fact that there are finitely many integers mod p, and infinitely
many mod 0, makes it much easier to be finite-dimensional in
characteristic p.

Better characteristic 0 generalization:

Definition

We call a finitely generated A-module M Gelfand-Tsetlin if it is
Γ-locally-finite (i.e. dim(Γm) < ∞ for all m ∈ M).

If p > 0, then equivalent to finite dimensional. If p = 0, then many
infinite dimensional examples.
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Gelfand-Tsetlin modules

This looks like an innocent enough definition, but these modules have
proved tricky to work with.

Theorem (Futorny-Grantcharov-Ramirez (2018))

The principal block of the category of Gelfand-Tsetlin modules for
sl(3) contains 20 simple modules, exactly 1 of which does not lie in
category O for some Borel.

There’s no indexing set as obvious as highest weights for category O

so how do we analyze this category and do something like find all
simples?

Use the weight functors associated to the kernel ma of the map
sending zi,j +→ ai,j:

Wa(M) = {m ∈ M | mN

a m = 0 for N ≫ 0}
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Gelfand-Tsetlin modules

The values an,∗ describe how ZHC(Ugln) acts, and thus play a special
role; HomC(a, b) = 0 unless in same Sn-orbit.

This is related to Aα, the quotient of A by the corresponding maximal
ideal of ZHC(Ugln).

Consider the topological category Cα whose:

objects are the maximal ideals ma for ai,j ∈ Z/pZ for all i, j, with
an,k = αk.

morphisms are given by:

HomC(a, b) = lim←−Aα/(Aαm
N

a +mN

b Aα) = Hom(Wa,Wb).
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Gelfand-Tsetlin modules

Any Gelfand-Tsetlin Aα-module M defines a representation of this
category, i.e. a functor to the category - vect, sending a +→ Wa(M).

Theorem (Drozd-Futorny-Ovsienko)

This functor defines an equivalence of categories from integral
Gelfand-Tsetlin modules with central character α to (discrete
continuous) representations of Cα.
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Gelfand-Tsetlin modules

Fix α ∈ (Z/pZ)n/Sn to be a free Sn-orbit, i.e. a regular integral
central character.

Theorem

If p = 0, then the category Cα is (Karoubi) equivalent to the planar
KLRW category with k strands of label k, completed by adding power
series in dots.

If p > 0, then the category Cα is (Karoubi) equivalent to the
corresponding cylindrical KLRW category, completed by adding
power series in dots.
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Gelfand-Tsetlin modules

Composing these theorems:

Theorem

If p = 0, then the category of integral GT Aα-modules is equivalent
the category of finite dimensional R-modules where dots are nilpotent.

If p > 0, then the category of finite dimensional Aα modules is
equivalent the category of finite dimensional R̊-modules where dots
are nilpotent.

I am sure that essentially the same proof shows that Uq(gln(C)) for
generic q and q a root of unity satisfy same theorem, but haven’t
checked carefully.

This enabled first classification of simple Gelfand-Tsetlin modules for
p = 0 (Kamnitzer-Weekes-W.-Yacobi).
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Comparing weight functors

What is this equivalence?

It must send the maximal ideal ma to a word i(a).

Let Ω = {(i, j) | 1 ≤ j ≤ i}. If p = 0, then there is a unique order on
Ω such that:

1 If ai,j < ak,ℓ, then (i, j) < (k, ℓ).

2 if ai,j = ak,ℓ and i < k, then (i, j) < (k, ℓ).

Theorem

The word i(a) is obtained by writing elements of Ω in order, and
taking first entries. That is, for a GT module M and KLRW module
Θ(M), we have Wa(M) = e(i(a))Θ(M).
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Comparing weight functors

If p > 0, then Z/pZ is not ordered, but it is cyclically ordered. A
version of the theorem above, but with cyclic orders, holds in this
case.
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Comparing weight functors

This is interesting from a characteristic p perspective:

It shows that we can match irreps for different p’s and different
α so that the dimensions of the GT generalized eigenspaces is
independent of these choices.

Thus, dimensions and characters of representations only depend
on the number of maximal ideals which correspond to a given i.
This is the number of integral points in a polytope, and thus
depends quasi-polynomially on α and p.

But this also clarifies the connection to geometry, which previously
had only been possible for p > 0.
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Tilting generators

How do we relate this story to geometry?

Recall that we call a vector bundle T on an algebraic variety X a
tilting generator if RHom(T,−) induces an equivalence of derived
categories Db(Coh(X)) ∼= Db(End(T)op) -mod.

Theorem (W.)

Unless 0 < p < n, there is a tilting generator T on X = T∗Fln such
that End(T)op = R̊.

Db(Coh(X)) ∼= Db(R -mod).

In particular, the ring R̊ is a non-commutative crepant resolution of
singularities of N which is D-equivalent to X.
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Tilting generators

How do we relate this story to geometry?

Recall that we call a vector bundle T on an algebraic variety X a
tilting generator if RHom(T,−) induces an equivalence of derived
categories Db(Coh(X)) ∼= Db(End(T)op) -mod.

Conjecture (W.)

There is a tilting generator T on X = T∗Fln such that End(T)op = R̊.

Db(Coh(X)) ∼= Db(R -mod).

In particular, the ring R̊ is a non-commutative crepant resolution of
singularities of N which is D-equivalent to X.
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Tilting generators

What is T?

It’s the tilting generator which arises from crystalline (twisted)
differential operators.

It also has an explicit construction by modules over the
projective coordinate ring.

This latter description will look very complicated if I write it down.
Important point: comes from BFN description of Ugln( ) as a
Coulomb branch (in the sense of Braverman-Finkelberg-Nakajima).
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Tilting generators

TDOs turn into an Azumaya algebra A of rank pn(n−1) whose sections
are Aα which does not split for some silly characteristic p reasons, but
it really wants to.

In the restriction "A to the formal neighborhood of X0, f (zp

i,∗ − zi,∗) for
f symmetric acts nilpotently. This implies that Γ can be (generalized)
diagonalized with spectrum S =

#
n

k=1 Fk

p
/Sk and 1 =

$
a∈S 1a is the

sum of the projections.

Theorem
"T = "A · 10 is a splitting bundle for the Azumaya algebra "A = "T∨⊗ "T.

It follows from our previous calculations with Γ that End("T) = "̊R.
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Coulomb branches

Versions of all of these results apply to Coulomb branches of all
minuscule ADE cases (affine Grassmannian slices) and affine type A
quiver gauge theories (also affine type A quiver varieties).

All of these have tilting generators whose endomorphisms are
versions of KLRW algebras.

Q: What about other classical Lie algebras? Maybe if you think very
hard about previous talk.....
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Thanks

Thanks for listening.
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KLRW algebras
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