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General perspective

Quantum field theory is a subject which has caused a great deal of
confusion for mathematicians (myself included) over the years:

Ben Webster UW/PI

Line defects and tilting bundles



QFT and representation theory Coulomb branches Tilting generators

General perspective

I recently had a perspective shift that helped a great deal with
understanding the connection, though:

quantum field theory = representation theory + topology

Topology because we need to consider how points and higher
dimensional defects interact on the world-sheet, and representation
theory (with an eye on integrability) because we need to consider
algebraically how operators collide with each other and with defects.

a quantum field theory = an algebra
boundary condition/defects = modules

This needs to be understood in a very general sense. It’s probably
better to say that quantum field theory is a massive generalization of
representation theory as we currently know it, and a very different
perspective from how most representation theorists think.
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General perspective

In particular, any quantum field theory with a twist gives a
generalization of the concept of algebra (actually, A∞-algebra, but
that’s not so important for me)

d = 1, topological twist: algebra

d = 2, topological twist: Gerstenhaber algebra

d = 2, holomorphic twist: vertex operator algebra

d = 3, topological twist: conic symplectic singularity
...

Ok, that last one contains a lot of simplification: you get a graded
algebra with a degree −2 Poisson bracket. If you’re lucky, Spec of
this algebra is a symplectic singularity, with a conic C∗-action.
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d = 2 Mirror symmetry

We’re supposed be studying mirror symmetry here, which is a story
about the interaction of different twists on one theory, which means
we need more supersymmetry.

In a d = 2-dimensional theory with N = (2, 2) supercharges, there
are particularly nice choices of twists QA,QB called the A and B
twists.

Conjecture (2d Mirror symmetry)

Kähler manifolds come in pairs such that the associated sigma
models are “equivalent” in a way that switches the A and B twists.

Homological mirror symmetry simply says that the categories of
boundary conditions compatible with the two twists are interchanged.
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d = 3 Mirror symmetry

There is much, much more to say about the d = 2 case, but I want to
think instead about the d = 3.

Also, given an interesting d = 2 theory, it’s natural to look for d = 3
theories it can lie on the boundary of.

Because of the structure of the supersymmetry algebras, a
2d,N = (2, 2) theory is most comfortable on the boundary of a
3d,N = 4 theory. Inclusion of R-symmetry:

Spin(2)× Spin(2) ∼= U(1)× U(1) ↪→ SU(2)× SU(2) ∼= Spin(4)
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d = 3 Mirror symmetry

This inclusion turns QA and QB into twists of the ambient 3d theory.

Thus, placing a 2d,N = (2, 2) theory X on the boundary of a
3d,N = 4 theory Y gives local operators in X a module structure for
local operators in Y , and similarly for the twists by QA and QB.
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d = 3 Mirror symmetry

This suggests an intriguing possibility:

Conjecture (3d mirror symmetry)

3d,N = 4 theories come in pairs which are “equivalent” in a way
that switches the A and B twists.

There’s a pedantic sense in which this is true (just redefine the
supersymmetry action), but like in the 2d case, an interesting 3d
theory should also have an interesting origin when you switch the
twists.

Question for mathematicians:

How does this duality of theories manifest? How are mathematically
comprehensible objects on both sides related?
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d = 3 Mirror symmetry

The ring of local operators for these twisted theories carries:

1 a commutative algebra structure (from colliding operators)

2 a Poisson bracket compatible with this product (from integrating
over the S2 of choices of how to collide 2 points in R3).

3 a grading such that product has degree 0 and {−.−} has degree
−2(= 1− 3).

This is the same information as an affine algebraic variety MA/B/C
with Poisson bivector Π, and a C∗ action with t ·Π = t−2Π.

Physics seems to suggest that this should have an underlying
hyperkähler metric.

We should get two of these for each theory, for the A and B twists.
You’ll often hear these called the Coulomb and Higgs branches.
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Higgs and Coulomb

The best understood theories are gauge theories, constructed from a
compact connected Lie group G and a complex representation V .

For those who like physics terminology, we couple a hypermultiplet
valued in V to a vectormultiplet for the group G.

1 The Higgs branch is the usual hyperkähler quotient of T∗V by G.

2 The Coulomb branch is much more mysterious. Can’t be
calculated “classically,” and nature of “quantum corrections” is
hard to describe precisely.

However, Braverman-Finkelberg-Nakajima have given a precise
description of this ring, which is a bit complicated and
geometric, but can be represented algebraically.
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Higgs and Coulomb

Examples:
(V,G) Higgs Coulomb

(Cn+1,U(1)) T∗Pn C2/Zn+1
(Cn+1,U(1)n) C2/Zn+1 T∗Pn

(Matn×n×Cn,GLn) Symn(C2) Symn(C2)
(Matn×n−1×Matn−1×n−2× · · · ,

GLn−1 × GLn−2 × · · · )
Niln×n Niln×n

(0,G) pt/G Toda phase space

quiver gauge theory
Nakajima quiver

variety
affine Grass-

mannian slice
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Higgs and Coulomb

For mathematicians, the obvious thing to study is coherent sheaves
MA/B or its resolutions.

For Higgs branches, we have lots of experience studying the structure
of these categories: variation of GIT for comparing resolutions,
associated bundles for G-modules (“Wilson lines” in physics) for
constructing objects.

For Coulomb branches, much more mysterious. That’s what I’ll try to
explain in this talk.
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D-modules on loop spaces

The best way to think about the Coulomb branch is in the context of
line operators. For mathematicians, it’s best to think of this as the
category of D-modules on the loop space V((t))/G((t)).

To connect to actual field theory, our gauge theory has hypermultiplet
fields valued in T∗V , and our line operator is defined by letting/forcing
these fields to take on values in the singular support of our D-module.

Of course, the trivial line operator 1 corresponds to not imposing any
zeros or allowing any poles: it corresponds to the pushforward of the
functions by V[[t]]/G[[t]]→ V((t))/G((t)).
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D-modules on loop spaces

Definition (Braverman-Finkelberg-Nakajima)

The local operators C[MA] of the A twist is

Ext•(1,1) = HBM
∗

(
V[[t]]
G[[t]]

× V((t))
G((t))

V[[t]]
G[[t]]

)
.

This was the first way mathematicians or physicists were able to
calculate this ring, but it also tells us much more, since there are many
other objects in this category.

In many important cases, there are commutative and
non-commutative resolutions of MA inside it.
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D-modules on loop spaces

From now on, we’ll specialize to two nice cases:

1 G is commutative (MB is a hypertoric variety)

2 (V,G) corresponds to a linear or cyclic quiver for a dominant
weight (MB is the corresponding Nakajima quiver variety)

Theorem

In the cases above:

1 MA is the Gale dual hypertoric variety,

2 MA is the rank-level dual quiver variety.
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Commutative resolutions

A flavor is a cocharacter ϕ : Gm → AutG(V).

Multiplication by ϕ(t) gives an automorphism of V((t))/G((t)), so
we can apply this to any D-module on this category.

Theorem (BFN)

For each ϕ, we have a graded commutative algebra

Rϕ =

∞⊕
k=0

Ext•(ϕ(t−k)1,1).

For ϕ generic, M̃A = Proj(Rϕ) is a symplectic resolution of MA, and
every symplectic resolution is of this form.
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Commutative resolutions

This means that every D-moduleM gives us a coherent sheaf FM on
M̃A by sheafifying the Rϕ-module

∞⊕
k=0

Ext•(ϕ(t−k)1,M).

Which coherent sheaves can we construct this way? What can this tell
us about the category of coherent sheaves?

Theorem (Aseel-Gomis)

Wilson lines can be constructed using 1d/3d quiver diagrams.
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Quantization

The chiral rings C[MA/B] have a quantization which comes from an Ω

background/working equivariantly for the rotation of R3 around an
axis. Actually they are many, because you have to choose a flavor λ
which determines how S1 acts on V .

This is non-commutative because you can’t swap two points
equivariantly for the rotation, and

a ? b− b ? a = ~{a, b}+ ~2 · · ·
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Quantization

Quantization results in some well-known algebras with quantum
integrable systems (i.e. commutative subalgebras):

T∗Pn → Diff(Pn) ⊃ U(t)
Symn(C2/Z`) → rational Cherednik algebra

⊃ Dunkl-Opdam operators
Niln×n → U(sln)

⊃ Gelfand-Tsetlin subalgebra
affine Grassmannian slice → shifted Yangian

Nakajima quiver variety → quantum Hamiltonian reduction
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Quantization

Sidenote: considering this quantization over C gives a new
perspective on sln-modules locally finite for the GT subalgebra.

Theorem (W.)

The simple GT modules over gln are classified by combinatorial data
(the indexing set isn’t bad, but takes a few minutes to explain). The
dimensions of weight spaces for the GT subalgebra can be computed
by a Kazhdan-Lusztig type algorithm.

In fact, this works for all Coulomb branches, essentially equally well.

U(sln) also arises from quantizing a Higgs branch, but it’s essential to
think about it as a Coulomb branch to prove this theorem; the
category of line defects in the theory makes things much easier.
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Kaledin’s tilting generators

Another natural construction to try to understand: Kaledin’s tilting
generators.

Theorem (Kaledin)

The resolution M̃A carries a tilting generator, i.e. a vector bundle T
such that

1 Ext>0(T , T ) = 0

2 We have an equivalence of derived categories to
A = End(T )op-modules

Ext•(T ,−) : Db(Coh(M̃A))→ Db(A -mod).

Unfortunately, the construction of this tilting generator is rather
complicated; it passes through methods of quantization in
characteristic p.
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Fixed points

Since our quantization has geometric origin, Kaledin’s procedure
inherits geometric meaning. Let Cλp ⊂ S1 be the p-torsion points,
acting on V((t)) by loop rotation twisted by λ.

Note that the fixed points of Cλp on V((t)) are exactly t−λV((tp)), and
the obvious isomorphism Fr: V((t)) ∼= t−λV((tp)) intertwines the
action of G((t)) with that of G((tp)).

Theorem (W.)

Kaledin’s tilting generator for a quantization parameter λ is given by
FMλ

whereMλ is the pushforward by the map

Xλ =

(
G((t))× V[[t]]

G[[t]]

)Cp

→ t−λV((tp)) ∼= V((t)).
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Fixed points

Note that we chose λ (the quantization parameter) and ϕ (the choice
of symplectic resolution) independently.

Theorem

The algebra Aλ = End(FMλ
) defines a non-commutative crepant

resolution of singularities for MA (independent of ϕ).

An important motivation for Kaledin was to prove that the derived
categories for different symplectic resolutions are equivalent (since
they are all equivalent to Db(Aλ -mod)); these equivalences depend
on λ, though, and generate an action of wall-crossing functors on
these derived categories.
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Fixed points

Every component of Xλ is of the form (G((tp))× U)/P for

P a parahoric in G((tp)) and

U ⊂ t−λV((tp)) a P-invariant subspace.

Let me not torture you with the actual combinatorics of describing
these, but this perspective shows that Aλ has a combinatorial
construction.

Thus, in the language of Dimofte-Garner-Geracie-Hilburn, this is the
vortex line operator attached to the Lagrangian conormal to
Fr−1 U ⊂ V((t)) with the action of the group Fr−1 P ⊂ G((t)).
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Applications

Applications:

Explicit presentations of endomorphisms: for quiver varieties,
get “KLR algebras on cylinders.”

Explicit presentations of wall-crossing functors and construction
of a Schober, can verify Bezrukavnikov-Okounkov conjecture
“by hand.”

Explicit stability conditions coming from assigning slopes to
simple A-modules.

Same line operators define tilting generators on K-theoretic
Coulomb branch where Kaledin’s trick doesn’t work to build a
global tilting generator.

This was key in work of Gammage-McBreen-W. on mirror
symmetry for multiplicative hypertoric varieties.
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Thanks

Thanks for listening.

Ben Webster UW/PI

Line defects and tilting bundles


	QFT and representation theory
	 General perspective
	 d=2 Mirror symmetry
	 d=3 Mirror symmetry
	 Higgs and Coulomb

	Coulomb branches
	 D-modules on loop spaces
	 Commutative resolutions
	 Quantization

	Tilting generators
	 Kaledin's tilting generators
	 Fixed points
	 Applications
	 Thanks


