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Abstract. In this paper, we study the behavior of categorical actions of a Lie
algebra g under the deformation of their spectra. We give conditions under
which the general point of a family of categorical actions of g carry an action
of a larger Lie algebra g̃, which we call an unfurling of g. This is closely
related to the folding of Dynkin diagrams, but to avoid confusion, we think
it is better to use a different term.

Our motivation for studying this topic is the difficulty of proving that
explicitly presented algebras and categories in the theory of higher represen-
tation theory have the “expected size.” Deformation is a powerful technique
for showing this because of the upper semicontinuity of dimension under
deformation. In particular, we’ll use this to show the non-degeneracy (in the
sense of Khovanov-Lauda) of the 2-quantum groupU for an arbitrary Cartan
datum and any homogeneous choice of parameters.

1. Introduction

The categorification of Lie algebras and their representations has proven to be a rich
and durable subject since its introduction roughly a decade ago. This theory produces
a 2-categoryU depending on the choice of a Cartan datum and a choice of parameters;
a representation of this 2-category is called a categorical Lie algebra action of the Kac-
Moody algebra g corresponding to the Cartan datum. Many interesting categories
carry a categorical Lie algebra action, though it must be admitted that most of the
interesting examples are for a Cartan datum of (affine) type A.

However, since the 2-quantum group U was first defined by Khovanov-Lauda
[KL10] and Rouquier [Rou], it has been haunted by a serious problem: since it is
presented by generators and relations, it is hard to check that it is not smaller than
expected. Specifically, in [KL10], it’s proven that there is a surjective map from the
modified quantum group U̇ to the Grothendieck group ofU and that the dimension
of 2-morphism spaces between 1-morphisms inU is bounded above by a variation
on Lusztig’s bilinear form on the modified quantum group U̇. If equality holds
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in this bound, then U̇ is isomorphic to the Grothendieck group and we call the
corresponding categorification non-degenerate.

As a general rule, proving non-degeneracy depends on constructing appropriate
representations where one can show that no unexpected relations exist between 2-
morphisms inU. This is done for sln in [KL10], using an action on the cohomology
of flag varieties. The next major step was independent proofs by Kang-Kashiwara
[KK12] and the author [Web17a] that the simple highest weight representations of g
possess categorifications which are non-degenerate in an appropriate sense; this is
sufficient to prove the non-degeneracy for finite type Cartan data.

This allowed significant progress, but along with many other techniques (such
as connections to quiver varieties studied in [CKL13, Rou12, Web17b]), it has an
unfortunate defect. Recall that the open Tits cone of a Cartan datum is the elements in
the orbit of a dominant weight under the Weyl group; for example, if g is affine, then
the open Tits cone is the set of weights of positive level. This set is convex and every
weight of a highest integrable representation lies inside the open Tits cone. Similarly,
lowest weights of representations lie in the negative of the Tits cone. If the Cartan
datum is of infinite type, then no information about a weight λ outside the open Tits
cone and its negative (in the affine case, these are level 0 representations) is contained
in any of these representations, since the corresponding idempotent 1λ ∈ U̇ kills any
integrable highest weight representation.

Thus, if we are to understand non-degeneracy for weights outside the open Tits
cone and its negative, we must have access to representations which are not highest
or lowest weight. For our purposes, the most promising are those given by a tensor
product of highest and lowest weight representations (perhaps many of each type). A
construction of such categorifications was given in [Web15], but the non-degeneracy
proof given there is only valid for weights inside the Tits cone. Thus, to access
these other weights, we must give a new argument for the non-degeneracy of these
tensor product categorifications, which will then imply the non-degeneracy ofU. In
particular, we prove that:

Theorem A (Theorem 4.10) Fix a field k and consider any Cartan datum (I, 〈−,−〉),
and choice of the polynomials Qi j(u, v) ∈ k[u, v] which is homogeneous (in the sense
discussed in Section 2.1). The associated 2-quantum groupU is non-degenerate, and
the Grothendieck group ofU is U̇.

While an interesting theorem in its own right, the techniques introduced here to
prove this result have a significance of their own. A simple, but underappreciated,
technique for proving these sort of non-degeneracy arguments is the upper semicon-
tinuity of dimension under deformation. Perhaps calling this “underappreciated” is
unfair, since it is certainly a well-known and much used trick, but at least this author
wishes he had exploited it more systematically earlier.
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Thus, much of this paper will be dedicated to an exploration of the behavior of
categorical actions under deformation. Let R be the KLR algebra of the Cartan datum
(I, 〈−,−〉) (defined in Section 2.1). We wish to consider quotients of this algebra where
the dots (the elements usually denoted yk ∈ R) have a fixed spectrum; of course, all
of these quotients can be packaged together into a completion R̂. Most often, people
have studied representations where the elements yk act nilpotently (all gradeable
finite dimensional representations have this property), but we can also have them act
with certain fixed non-zero eigenvalues. Given a choice of spectrum for the dots, we
have an associated graph with vertex set Ĩ, with its associated Cartan datum. There’s
a natural map Ĩ→ I, which one can informally think of as a “branched cover” of the
Cartan datum (I, 〈−,−〉).

This is closely related to the phenomenon of folding of Dynkin diagrams, but
due to some technical differences, we think it would be misleading to use the term
“folding” here. Thus, we call Ĩ an unfurling of I (and I a furling of Ĩ). Note that
whereas I is not necessarily symmetric as a Cartan datum (i.e. it has roots of different
lengths), we will define Ĩ in such a way as to be symmetric. To give the reader a sense
of this operation, let us discuss some examples:

• If I is simply-laced, then Ĩ will be a topological cover of I, such as an A∞ graph
covering an n-cycle, or the trivial cover Ĩ � I ×U.
• If I is not simply laced, we can arrange for Ĩ to be given by a simply-laced

Cartan datum with an isomorphism g � g̃σ for some diagram automorphism
σ. Note, this means that I is the Langlands dual of what is usually called a
folding of Ĩ for the automorphism σ.

At the moment, it is unclear to the author what, if any, is the relationship between this
work and that of McNamara [McN] and Elias [Eli] which also combine the ideas of
categorification and folding. Obviously, this would be an interesting topic for future
consideration.

We always have a map of Lie algebras g ↪→ g̃, and this map has a categorical
analogue:

Theorem B (Proposition 3.3, Theorem 3.10)

(1) The completion R̂ is isomorphic to the completion of the KLR algebra R for Ĩ
with respect to its grading.

(2) A categorical action of g satisfying certain spectral conditions corresponding
to Ĩ also carries an action of g̃.

This theorem is particularly useful when we have a family of categorical g-modules.
We will typically have a categorical action of a larger Lie algebra at the generic point
of the deformation, but this action will fail to exist at certain special points where
the spectrum drops in size. Explicitly, the operators for g̃ are defined as the images
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of idempotents acting on 1-morphisms in U; the formula for these idempotents
depend on dividing by certain expressions that the spectral conditions guarantee are
invertible. At points where these denominators vanish, the idempotents and thus
their images may no longer be well-defined.

That is, we can take a categorical g-module Cwhich does not have a g̃-action, find
a deformation C̃ where the generic point satisfies the spectral conditions, and then
exploit the categorical g̃-action to prove the original categorification C is not smaller
than expected.

This is our strategy for studying the categorifications Xλ of tensor products of
highest and lowest weight representations. These live in a natural family Xλ, where
the generic point Xλ

K̄
categorifies an irreducible representation of a larger Lie algebra.

We can then apply the categorification result for this larger irreducible (from [KK12,
Web17a]) to prove the non-degeneracy of Xλ andU.

Acknowledgements. I would like to thank Eric Vasserot for pointing out to me the
difficulties which arise from the Tits cone; Jon Brundan for helpful comments on
an older (and much harder to read) version of this paper; Ben Elias for pointing
out my bullshit on a number of occasions; Chris Leonard for pointing out a very
silly mistake; and all the people (Wolfgang Soergel, Raphael Rouquier and Catharina
Stroppel among them) who taught me the importance of deforming things.

2. Background

2.1. The KLR algebra. Throughout, we’ll fix a finite set I, and a Cartan datum on
this set. We’ll consider the root lattice X, the free abelian group generated by the
simple roots αi for i ∈ I, and we let 〈−,−〉 denote the symmetric bilinear form on this
abelian group attached to the Cartan datum.

The coroot lattice X∨ is the free abelian group generated by the symbols α∨i . We
have a pairing of X∨ × X → Z such that α∨i (α j) := 2

〈αi,α j〉

〈αi,αi〉
. The matrix of this form

is the Cartan matrix C = (ci j = α∨i (α j)). Note that di = 〈αi,αi〉/2 are symmetrizing
coefficients for this Cartan matrix: dici j = d jc ji = 〈αi,α j〉 for all i, j. For our purposes
a weight is an element of the dual lattice to X∨, so the pairing above lets us consider
each element of the root lattice as a weight2. Given a weight λ, we let λi = α∨i (λ).

Fix an algebraically closed field k of characteristic coprime to all di, and choose
polynomials Pi j(u, v) such that the product Qi j(u, v) = Pi j(u, v)P ji(v, u) is homogeneous
of degree −2〈αi,α j〉 = −2dici j = −2d jc ji when u is given degree 2di and v degree 2d j.
We’ll assume throughout that Qi j(1, 0) is non-zero for all i, j. Let pi j = Pi j(1, 0). Let

2In terms of Kac-Moody groups, these are weights of the torus of the derived subgroup of a
Kac-Moody group of this type; the rest of the torus will not play an important role for us.
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gi j = gcd(−ci j,−c ji) and hi j = −ci j/gi j. We must have that

Pi j(u, v) = pi j

∏
a(k)

i j ∈Ai j

(u1/di − a(k)
i j v1/d j)

where Ai j = {a(k)
i j } is the multiset of roots of Pi j(xdi , 1), considered with multiplicity.

Let Bi j = {b(k)
i j = (a(k)

ji )−1
} be the reciprocals of these numbers. Note that

Qi j(u, v) = ti j

∏
a(k)

i j ∈Ai j

(u1/di − a(k)
i j v1/d j)

∏
b(k)

i j ∈Bi j

(u1/di − b(k)
i j v1/d j)

Homogeneity requires that Pi j(x1/hi j , 1) be a polynomial. We’ll also let Ai j = {α(k)
i j }

be the roots of Pi j(x1/hi j , 1), again considered with multiplicity; note that the elements
of Ai j are the dihi jth roots of the elements of Ai j. Furthermore, we have that dihi j =

d jh ji = lcm(di, d j). We also let Bi j = {β(k)
i j = (α(k)

ji )−1
}. As before, the elements of Bi j are

the dihi jth roots of the elements of Bi j.

Definition 2.1 Let R denote the KLR algebra with generators given by:

• The idempotent ei which is straight lines labeled with (i1, . . . , in) ∈ In.
• The element yi

k which is just straight lines with a dot on the kth strand.
• The element ψi

k which is a crossing of the i and i + 1st strand.

i1 i2 in

· · ·

ei

i1 i j in

· · ·· · ·

yi
k

i1 i j i j+1 in

· · ·· · ·

ψi
k

and relations:

(2.1a)

i j

=

i j

unless i = j

(2.1b)

i j

=

i j

unless i = j
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(2.1c)

i i

=

i i

+

i i

(2.1d)

i i

=

i i

+

i i

(2.1e)

i i

= 0 and

i j

=

ji

Qi j(y1, y2)

(2.1f)

ki j

=

ki j

unless i = k , j

(2.1g)

ii j

=

ii j

+

ii j

Qi j(y3, y2) −Qi j(y1, y2)
y3 − y1

Fix a countable set Ui ⊂ k \ {0} for each i ∈ I; for each u ∈ Ui, we fix a choice
of dith root, which we denote u1/di (there are di choices, since di is coprime to the
characteristic of k). Since Ui is countable, we can write it as a union of nested finite
sets U(N)

i for N ∈ Z≥0 (this choice is purely for technical reasons, and nothing we do
will depend on it).

Definition 2.2 Let R̂n be the completion of the KLR algebra Rn by the system of ideals
IN generated by ei

∏
u∈U(N)

i j

(y j − u)N for all j ∈ [1, n] and i ∈ In.

This is the coarsest completion where we require that the topological spectrum of
a dot on a strand with label i lives in the set Ui.

2.2. Valued graphs. We’ll follow the conventions of Lemay [Lem] in this section.
For simplicity, “graph” will always mean a graph without loops.
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Definition 2.3 A relatively valued graph is an oriented graph with vertex set I with
a pair of rational numbers (ηe, νe) assigned to each edge such that there exist di ∈ Q
for each i ∈ I such that diηe = d jνe for e : i→ j.

An absolutely valued graph is an oriented graph as above with a choice of rational
numbers di for each vertex i and me for each edge e.

Each absolutely valued graph has an associated relatively valued graph with

ηe =
me

di
νe =

me

d j

for an edge e : i → j, and every relatively valued graph has this form. The values ηe

and νe will be integers if di and me are and lcm(di, d j) divides me for an edge e : i→ j.
Note that relatively valued graphs have a natural notion of Langlands duality, given
by switching ηe and νe. We attach a Cartan matrix to each such graph without loops,
with cii = 2 and

ci j = −
∑

e : i→ j

ηe −

∑
e : j→i

νe = −
1
di

∑
e : i→ j

me −
1
d j

∑
e : j→i

me.

Note that Langlands duality transposes this Cartan matrix.
Having chosen Pi j(u, v) for each pair i, j ∈ I2, we can canonically associate an abso-

lutely valued graph with vertex set I where we add an edge i→ j whenever Pi j(u, v)
is non-constant. The values di are as before, and me = deg Pi j(xdi , 0) = deg Pi j(0, xd j).
In the associated relatively valued quiver, the values we add to this edge are
(deg Pi j(x, 0), deg Pi j(0, x)). The Cartan matrix of the result is our original Cartan
matrix C.

Given a graph homomorphism between two valued graphs, we can consider var-
ious forms of compatibility between the valuings on the two graphs. One notion
considered by Lemay [Lem] is a morphism of valued graphs: this is a homomor-
phism of graphs where the appropriate statistics (η∗, ν∗, m∗, d∗) are preserved; this is
too inflexible for our purposes. Instead, we’ll consider a set of maps which are more
analogous to topological covers.

Definition 2.4 We call a map f : X→ Y of relatively valued graphs a furling if given
any y, y′ ∈ Y, and x ∈ f −1(y), we have that each edge d : y → y′ and each edge
e : y′ → y,

νd =
∑

x′∈ f−1(y′)

∑
d′ : x→x′
f (d′)=d

νd′ ηe =
∑

x′∈ f−1(y′)

∑
e′ : x′→x

f (e′)=e

ηe′ .

The notion of a furling is very closely related to a “folding,” but we won’t use
this term, since it usually applies to the Langlands dual of the operation above, and
implies the existence of a group action. We’ll call Y a furling of X and X an unfurling
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of Y. A morphism of relatively valued graphs which is also a topological cover is a
furling.

Note that if X has an compatible absolute valued structure such that dx and me is
constant on the fibers of f and these fibers are finite, then for an edge e : y′ → y, we
have that

ηe =
∑

x′∈ f−1(y′)

1
dx′

∑
e′ : x′→x

f (e′)=e

me′ νe =
∑

x∈ f−1(y)

1
dx

∑
e′ : x′→x

f (e′)=e

me′ .

Thus, we can choose an absolute valued structure on Y such that

dy =
dx

| f −1(y)|
me =

∑
f (e′)=e me′

| f −1(y)| · | f −1(y′)|
.

As defined here, dy and me may not be integers, but if Y is finite, then we can always
just multiply every dy and me by lcm(| f −1(y)|) to clear denominators.

One special case of particular interest is when X is given the trivial valuation
dx = me = νe = ηe = 1 and is equipped with an admissible automorphism σ; recall
that we call an automorphism of a graph admissible if no edges connect two vertices
in the same orbit under the action. We let Y be the quotient graph X/σ and f : X→ Y
the obvious projection map. In this case, we have

(2.2) dy =
1

| f −1(y)|
me =

| f −1(e)|
| f −1(y)| · | f −1(y′)|

.

This is the Langlands dual of the “folding” discussed in [Lem, §1] (which is the more
common way of associating a Cartan matrix to a graph with automorphism).

Lemma 2.5 Given a furling f : X→ Y, for any fixed y, y′ ∈ Y and x′ ∈ f −1(y′) we have
that:

cyy′ =
∑

x∈ f−1(y)

cxx′ .

Proof.

cyy′ = −
∑

e : y→y′
ηe −

∑
e : y′→y

νe

= −
∑

x∈ f−1(y)

( ∑
e : x→x′

ηe −

∑
e : x′→x

νe

)
=

∑
x∈ f−1(y)

cxx′ �

We assume from now on for all valued graphs appearing that the matrix C is a gen-
eralized Cartan matrix (in particular, all off-diagonal entries are negative integers).
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Definition 2.6 Given a valued graph X, let gX be the associated derived Kac-Moody
algebra generated by Ei, Fi, Hi with the relations

(2.3) [Hi, E j] = ci jE j [Hi, F j] = −ci jF j [Ei, F j] = δi jHi

(2.4) ad1−ci j

Ei
E j = ad1−ci j

Fi
F j = 0.

A straightforward extension of [Kac90, 7.9] shows that:

Proposition 2.7 If f : X → Y is a furling of valued graphs, there is an induced
homomorphism of Kac-Moody algebras gY → gX given by the formulas:

Fy 7→

∑
x∈ f−1(y)

Fx Ey 7→

∑
x∈ f−1(y)

Ex Hy 7→

∑
x∈ f−1(y)

Hx.

Proof. The relations (2.3) are straightforward computations using Lemma 2.5. We
have that: [ ∑

x∈ f−1(y)

Hx,
∑

x′∈ f−1(y′)

Ex′
]

=
∑

x′∈ f−1(y′)

( ∑
x∈ f−1(y)

cxx′

)
Ex′ =

∑
x′∈ f−1(y′)

cyy′Ex′

[ ∑
x∈ f−1(y)

Hx,
∑

x′∈ f−1(y′)

Fx′
]

=
∑

x′∈ f−1(y′)

( ∑
x∈ f−1(y)

−cxx′

)
Fx′ =

∑
x′∈ f−1(y′)

−cyy′Fx′

[ ∑
x∈ f−1(y)

Ex,
∑

x′∈ f−1(y′)

Fx′
]

= δy,y′
∑

x∈ f−1(y)

Hx

The remaining relations (2.4) follow from the Gabber-Kac theorem [GK81]. �

We wish to consider the “order of vanishing” of Qi j(x, y) at x = u, y = u′; of course,
this is not well-defined for a 2-variable polynomial, but because of the homogeneity,
we can make sense of it in this case as the vanishing order of Qi j(u, y) at y = u′ or of
Qi j(x, u′) at x = u. For a general 2-variable polynomial, these will not be the same, but
in our case, it will be the number of elements of Ai j such that u1/di = a(k)

ii′ (u
′)1/di′ . These

solutions are also in bijection with solutions to uhi j = α(k)
ii′ (u

′)hi j for α(k)
ii′ ∈ Aii′ (which

tend to be slightly easier to count).

Definition 2.8 Let Ĩ be the oriented graph whose vertex set is the pairs {(i, u) ∈ I×k |
u ∈ Ui} with the number of edges oriented from (i, u) to (i′, u′) being the order of
vanishing of Qi j(x, y) at x = u, y = u′ as defined above. We will consider this as an
absolutely/relatively valued graph with trivial valuation ηe = νe = di = me = 1.

Let g̃ be the associated Kac-Moody algebra to this graph.

Definition 2.9 We call a choice of spectra Ui complete if whenever Qi j(u, u′) = 0 for
u ∈ Ui, then u′ ∈ U j.
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Note that if all a(k)
i j ’s are mth roots of unity for some m, then any finite choice of Ui’s

can be made complete by adding finitely many elements (for example, all products
of elements of Ui and mth roots of unity will suffice). Any countable choice of spectra
can be completed to a countable complete choice of spectra; we let V(0)

i = Ui and
define V(k)

i = {v ∈ k | Qi j(v, v′) = 0 for v′ ∈ V(k−1)
j }. The union V(∞)

i = ∪∞i=0V(k)
i is a

complete choice of spectra.

Proposition 2.10 If Ui is a complete choice of spectra, then the map Ĩ→ I is a furling
of valued graphs.

Proof. The unique edge e : i → i′ in I has preimages corresponding to each element
u ∈ Ui and each root of Pii′(u, x) as a polynomial in x. Thus the number of preimages
e′ is the degree of this polynomial in x, and each has νe′ = 1, so this agrees with
νe = deg Pi j(0, x). Similarly, if we consider the edge d : i′ → i, the edges are in bijection
with the roots of Pi′i(x, u), and ηd = deg Pi′i(x, 0). This completes the proof. �

The most important example is the so-called “geometric” parameters for the sym-
metric Cartan matrix for an oriented graph, where Pii′(u, v) = (u− v)#i→i′ . In this case,
a(k)

ii′ = 1 for all k and (i, u) is connected to (i′, u′) by the same number of edges as i and
i′ if u = u′ and none otherwise. Thus, if we choose Ui = U for some fixed set U ⊂ k,
this is a complete choice of spectra and Ĩ = I ×U with the obvious graph structure.

If I is simply laced, but not simply-connected, then we can obtain non-trivial covers
as Ĩ. For example, if I in an n-cycle with its vertex set identified with Z/nZ with
edges i → i + 1. Fix some q ∈ k and choose Qi,i+1(u, v) = qu − v. If we fix U0 ⊂ k to
be any subset closed under multiplication by qn, then we have a complete choice of
spectra with Ui = qiU0. The components of the graph Ĩ correspond to the orbits of
multiplication by q; these will be cycles if q is a root of unity, or A∞ graphs if q is not.

On the other hand, if we have a nonsymmetric Cartan matrix, then we may find a
more interesting result. If Q12(u, v) = u2

− v and d1 = 1, d2 = 2 (so g = sp4), then the
factorization shown earlier is that Q12(u, v) = (u + v1/2)(u − v1/2), and so a(1)

12 = 1 and
a(2)

12 = −1. Thus, the number of edges joining (1, x) to (2, y) is given by the number of
solutions to x = ±

√
y. Thus, every component of Ĩ is a subgraph of an A3 formed by

(1, x)→ (2, x2)← (1,−x) (assuming 1 , −1).
More generally, let d = lcm(di)i∈I. Let Ui be the d/dith roots of unity; there are d/di

distinct roots of unity since d is coprime to the characteristic of k. Assume that each
a(k)

i j is a dth root of unity for all i, j, k. For example, we can assume that

(2.5) Qi j(u, v) = ±(uhi j − vh ji)gi j

in which case, Qi j(xdi , 1) = ±(xdihi j − 1)gi j , so the multiset of a(k)
i j and b(k)

i j is given by the
dihi j = d jh ji = lcm(di, d j) roots of unity each with multiplicity gi j. Alternatively, we
have α(k)

i j = β(k)
i j = 1 for any k.
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We have that each u ∈ Ui is connected by c ji edges to elements of U j, given by the
h jith roots of α(k)

i j uhi j . If Qi j is as in (2.5), then for each d/dihi jth root of unity ξ, we
connect each hi jth root of ξ in Ui to each h jith root of ξ in U j with gi j edges (with
orientation depending on Pi j). Let ζ be a primitive dth root of unity.

Proposition 2.11 Assuming a(k)
i j is a dth root of unity for all i, j, k and Ui is the d/dith

roots of unity, the map σ : (i, u) 7→ (i, ζdiu) is an admissible automorphism of the graph
Ĩ; the map Ĩ → I = Ĩ/σ induces the relative valued structure on I associated to the
polynomials Pi j.

Note that the absolute weighting of (2.2) is the symmetrization we have chosen for
our Cartan matrix divided by d, since | f −1(i)| = d/di.

3. Completed KLR algebras

3.1. An isomorphism of completed KLR algebras. In this section we’ll show how
the completions of KLR algebras for I we discussed earlier are related to the KLR
algebras of Ĩ.

Let j = ( j1 = (i1, u1), . . . , jn = (in, un)). By abstract Jordan decomposition, for any
element x ∈ R̂ and u ∈ k, there is unique idempotent e in the quotient R̂/IN whose im-
age is the generalized u-eigenspace of x acting by left multiplication; by uniqueness,
these are compatible under the quotient maps, and thus give an idempotent in R̂.
Performing this construction inductively, we can consider any commuting set of ele-
ments {x j} and construct an idempotent projecting to their simultaneous generalized
eigenspace in R̂/IN for any choice of scalars {u j}.

Definition 3.1 Let εj be the resulting idempotent where we perform this construction
with ei having eigenvalue 1 and y j eigenvalue u j for all j.

In particular, eiεj = εjei = εj, and (y j − u j)εj is topologically nilpotent.

There is a unique dikth root of ykεj such that (y
1/dik
k −u

1/dik
k )εj is topologically nilpotent.

This is given by

y
1/dik
k = u

1/dik
k (u−1

k yk)1/dik = u
1/dik
k

(
1+

1
dik

(u−1
k yk−1)+

(
1/dik

2

)
(u−1

k yk−1)2+

(
1/dik

3

)
(u−1

k yk−1)3+· · ·
)
.

Here the symbol
(1/dik

n

)
denotes the image of this binomial coefficient under the canon-

ical map Z[1/dik]→ k.
Consider the KLR algebra R of Ĩ with the symmetric Cartan datum associated to

its graph structure: to avoid confusion, we’ll denote the elements ψk, yk, ej of this
algebra with sans serif letters. We use the geometric coefficients given by P j j′(u, v) =

11
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(u − v)# j→ j′ . We let Ak be the unique invertible element of the completion R̂ such that

Akεj = pikik+1εj

∏
u

1/dik
k ,a(m)

ikik+1
(u′)

1/dik+1

(y
1/dik
k − a(m)

ikik+1
y

1/dik+1
k+1 )

∏
u

1/dik
k =a(m)

ikik+1
(u′)

1/dik+1

u
1/dik
k

The multiplicative inverse A−1
k makes sense because each non-scalar factor of Akεj is

of the form (u
1/dik
k − b(m)

ikik+1
u

1/dik+1
k+1 )εj, which is a non-zero multiple of the idempotent εj

plus a topologically nilpotent element. Note that:

(3.1) Pikik+1(yk, yk+1)εj = Ak

∏
u

1/dik
k =a(m)

ikik+1
u

1/dik+1
k+1

(
(u−1

k yk)1/dik − (u−1
k+1yk+1)1/dik+1

)
εj

Proposition 3.2 There is a homomorphism ν : R→ R̂ sending

ej 7→ εj ykej 7→
(
(u−1

k yk)1/dik − 1
)
εj

ψkej 7→


A−1

k ψkεj ik , ik+1

((yk+1 − yk)ψk + 1)εj ik = ik+1, uk , uk+1

ψkεj jk = jk+1

Proof. One can see that this is a homomorphism by comparing polynomial rep-
resentations. By [Rou, 3.12], there is a polynomial representation of Rn on Z =

⊕i∈Ink[z1, . . . , zn]ei by the rule:

yk · f ei = zk f ei ei′ · f ei = δi,i′ f ei

ψk · f ei =


f (k,k+1)

− f
zk+1 − zk

ei ik = ik+1

Pik+1ik(zk, zk+1) · f (k,k+1)ei(k,k+1) ik , ik+1

and similarly Rn has a representation of Z = ⊕j∈Ĩnk[z1, . . . , zn]ej by the same formulas.
The same formula as ν gives a homomorphism νZ : Z→ Ẑ:

zkej 7→
(
(u−1

k zk)1/dik − 1
)
εj

Note that this map becomes an isomorphism after completion, since (u−1
k zk)1/dik − 1 =

1
dik

u−1
k zk + · · · . The homomorphism ν is induced by transport of structure via νZ. The

only interesting calculation needed to confirm this is the image of ψkej if jk , jk+1.
From the definition, we have that

ψkej · fεj =
∏

u
1/dik+1
k+1 =a(m)

ik+1ik
u

1/dik
k

(
(u−1

k+1zk+1)1/dik+1 − (u−1
k zk)1/dik

)
f (k,k+1)εj(k,k+1)

Equation (3.1) shows that the RHS is the same as A−1
k ψk · fεj. �

Let R̂ be the completion of R with respect to the grading.

12



Ben Webster

Proposition 3.3 The map ν induces an isomorphism R̂→ R̂.

Proof. Let Ak be the element of R̂ mapping to Ak under ν. That is:

Akej = pikik+1ej

∏
u

1/dik
k ,a(m)

ikik+1
(u′)

1/dik+1

(
u

1/dik
k (1 + yk) − a(m)

ikik+1
u

1/dik+1
k+1 (1 + yk+1)

) ∏
u

1/dik
k =a(m)

ikik+1
(u′)

1/dik+1

u
1/dik
k

Note that Ak is invertible in R̂, since it has non-zero constant term.
The homomorphism ν is inverted by the map:

εj 7→ ej ykεj 7→ uk(1 + yk)dik

(3.2) ψkεj 7→


Akψkej ik , ik+1

1
uk+1(1 + yk+1)dik+1 − uk(1 + yk)dik

(ψk − 1)ej ik = ik+1, uk , uk+1

ψkej jk = jk+1

Thus the map ν is an isomorphism after completion. �

3.2. Application to categorical actions. We’ve considered the KLR algebra R with
an eye toward studying categorical actions of Lie algebras. By “a categorical action
of a Lie algebra” we mean a representation of a specific 2-category U defined by
Khovanov-Lauda [KL10] and Rouquier [Rou] (the equivalence of these 2-categories
is proven in [Bru16]). We’ll follow the conventions of [Web17a, 2.4], where this
2-category is presented by taking the quotient of a 2-category ˜̃

U of KL diagrams
(see [Web17a, 2.3]) by the KLR relations (2.1a–2.1g) and the following relations on
2-morphisms:

(3.3a)

i ij

j

= ti j

i ij

j i i

j

j

= t ji

i i

j

j

.

(3.3b)

i ij

j

=

i ij

j i ij

j

=

i ij

j

(3.3c)
j+λi+1∑
k=λi−1

k

λ
j − k =

{
1 j = −2
0 j > −2

13
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(3.3d)
λ = −

∑
a+b=−1

a

b λ =
∑

a+b=−1

a

b

(3.3e) λ = λ − +
∑

a+b+c=−2 a

c
b λ

(3.3f) λ = λ − +
∑

a+b+c=−2 a

c
b λ

(3.3g) λ

i j

= t ji
λ

i j

λ

i j

= ti j
λ

i j

In much of the literature, the representations ofU considered have had the action of
the dots and bubbles be nilpotent; this is necessary in a graded 2-representation in the
2-category of Schurian categories over a field k. However, it can be a very powerful
technique to deform these representations in such a way as to break this assumption.
Let k be a field. Consider a representation of the 2-categoryU, sending λ 7→ Cλ such
that Cλ is k-linear Schurian; that is, all objects are of finite length, there are enough
projectives and injectives, and the endomorphism algebras of the irreducible objects
are one dimensional.

We’ll first want a preparatory lemma about the structure of these sort of actions.
The conditions above guarantee that for any object inCλ, any endomorphism satisfies
a minimal polynomial of degree bounded above by the length of the object. Let S be
a simple object in Cλ

Definition 3.4 Let pS ∈ k[x] be the minimal polynomials of y acting on EiS and
similarly, qS the minimal polynomial of y acting on FiS.

14
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We’ll assume for the sake of simplicity that the polynomials pS and qS split com-
pletely in k (of course, we can always assure this as the cost of passing to the algebraic
closure of k), so they are the products of the form

(3.4) pS(x) =
∏
u∈k

(x − u)aS,u qS(x) =
∏
u∈k

(x − u)bS,u .

This ensures that on any object X in C, the endomorphism y acts on EiX or FiX by
a minimal polynomial that splits completely, since it must divide the product of the
minimal polynomials of the composition factors. Thus, projection to the generalized
eigenspace is a natural transformation of Ei or FI.

Definition 3.5 LetEi,u be the u-generalized eigenspace of y acting onEi, and similarly,
Fi,u the analogous eigenspace for Fi.

The complete splitting on minimal polynomials guarantees that Ei � ⊕u∈kEi,u and
Fi � ⊕u∈kFi,u. Note that the functor Ei,u can be non-zero for infinitely many u, but any
given object will be killed by almost all such functors by the finite length hypothesis.
Note that:

Lemma 3.6 We have that E(deg pS+1)
i S = F

(deg qS+1)
i S = 0. In particular, the categorical

action on C is locally nilpotent, in the sense of [Rou].

Note, this is nilpotence on the level of 1-morphisms and unrelated to whether the
natural transformation y is nilpotent, which we are not assuming.

Proof. Recall that if we letψ(n) denote the half-twist of strands in the nilHecke algebra
acting on En

i S, then we have ψ(n) = ψ(n)
· (yn−1

⊗ yn−2
⊗ · · · ⊗ 1) · ψ(n), and if we put in

any lower degree polynomial in the y’s we get 0. Thus, we have

ψ(deg pS+1) = ψ(deg pS+1)
· (ps(y) ⊗ ydeg pS−1

⊗ · · · ⊗ 1) · ψ(deg pS+1) = 0.

Since E
(deg pS+1)
i S is the image of ψ(deg pS+1), this is 0 as well. A symmetric argument

shows the result for Fi as well. �

Let

(3.5) �i (w) =

∞∑
k=0

k−α∨i (λ)−1

i wk 	i (w) =

∞∑
k=0

k+α∨i (λ)−1

i wk

Note that these series satisfy�i (w)·	i (w) = 1, by (3.3c).

Lemma 3.7 The action of these series on S satisfy

�i (w) = wα∨i (λ) qS(w−1)
pS(w−1)

	i (w) = w−α
∨

i (λ) pS(w−1)
qS(w−1)

.

15
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Of course, the right hand side in the equalities above should be interpreted as the
Taylor expanstion of these rational functions at w = 0.

Proof. Note that the wk term of the series�i (w)pS(w−1) is given by closing the Laurent
polynomial yk−α∨i −1(λ)pS(y) in the dot y on a clockwise bubble, where we interpret
this expression using fake bubbles if the Laurent polynomial has negative powers
of y. Thus, the fact that dots on Ei satisfy the polynomial relation pS(y) = 0 shows
that �i (w)pS(w−1) vanishes in all degrees where no fake bubbles are used in this
expression, that is, when k > α∨i (λ) (this includes negative degrees). In particular,
this shows that�i (w) is of the form w−α

∨

i (λ)rS(w−1)/pS(w−1) for some monic polynomial
rS(w) of degree deg pS + α∨i (λ).

Furthermore, if we consider the loop-de-loop diagram with pS applied to the dot
inside the loop, we see that applied to S, we have

(3.6) 0 =

−λ j

j

pS(y)

j

=
rS(y)

j

j

.

Thus, since qS is the minimal polynomial of y acting on FiS, we have that qS divides
rS, with these being equal if and only if deg qS = deg pS + α∨i (λ).

Symmetrically, we have that 	i (w)pS(w−1) vanishes in degrees satisfying k >
−α∨i (λ), so	i (w) = wα∨i (λ)tS(w−1)/qS(w−1) for some monic polynomial tS(w) of degree
deg qS − α∨i (λ). Reversing orientations in (3.6) shows that pS divides tS. Since we
already know that deg pS ≥ deg tS, this is only possible if pS = tS and qs = rS, yielding
the result. �

Thus, we see that the action of 	i (w) and �i (w) control the difference between
the action of y on Ei and Fi. More generally, if X is an indecomposable object, the
endmorphism ring End(X) is local, and we can let pX, qX be the minimal degree monic
polynomials such that pX(y) acting on EiX lies in the 2-sided ideal generated by the
maximal ideal of End(X). The same argument will show that the expressions

�i (w) − wα∨i (λ) qX(w−1)
pX(w−1)

	i (w) − w−α
∨

i (λ) pX(w−1)
qX(w−1)

have all coefficients in the maximal ideal of End(X).
Given S simple, let mS be the order to which �i (w) (thought of as a rational

function) vanishes at w = u−1; in terms of (3.4), this is the difference aS,u− bS,u. We can
similarly assign mX to any indecomposable object X by considering the vanishing
order of this series in End(X) modulo its maximal ideal; this is the same as mS for any
simple in its composition series in the abelian envelope.

16
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Let Ui = {u ∈ k|Ei,u , 0} ⊂ k; note that since the corresponding functors are
adjoint, Ei,u or Fi,u can be used symmetrically in this definition. Consider the locally
finite graph Ĩ with vertices given by pairs (i, u) with u ∈ Ui constructed from the
polynomials Pi j as in Defintion 2.8.

We assign to each indecomposable object X the unique weight µX in the weight
lattice for Ĩ such that α∨i,u(µ) = mX.

Definition 3.8 Let C(µ) be the subcategory of sums of indecomposable objects with
weight µ as assigned by this rule.

Lemma 3.9 On E j,uS, the differences

�i (w) − wα∨i (λ)−ci j
t−1
i j ·Q ji(u, w−1)qS(w−1)

pS(w−1)
� j (w) − wα∨j (λ) qS(w−1)

(1 − uw)2pS(w−1)

acts nilpotently. Similarly on F j,uS, the differences

�i (w) − wα∨i (λ)−ci j
qS(w−1)

t−1
i j ·Q ji(u, w−1)pS(w−1)

� j (w) − wα∨j (λ) (1 − uw)2qS(w−1)
pS(w−1)

Proof. The first equation on each line above follows from the bubble slide [Web17a,
Prop 2.8], and the fact that y − u acts nilpotently. The second equation follows from
[Lau10, Prop. 5.6]. �

Corollary 3.10 The functors Ei,u,Fi,u send objects in C(µ) to C(µ±αi,u).

Thus, the categoryC has a direct sum decomposition into⊕C(µ) indexed by weights
of g̃, with the eigenspace functors Ei,u,Fi,u defined as in Definition 3.5 act as expected
on weights.

Theorem 3.11 The functors Ei,u and Fi,u and the weight space categories C(µ) define a
categorical action of g̃.

Proof. We’ll use [Rou, Thm. 5.25], which shows that we have a categorical g̃-action if
we confirm that:

(1) Let E = ⊕i∈IEi. We must show that there is an appropriate Rn-action on En. As
part of the structure of a categorical action, Rn acts on the nth power En. Since
the action of any dot on Ei satisfies a polynomial relation with roots in Ui, this
extends to an action of R̂n. By transport of structure using the isomorphism
ν of Proposition 3.3, we have an induced action of Rn such that y is nilpotent.
we already discussed this above, based on Proposition 3.3.

(2) The functors Ei,u and Fi,u are adjoint and locally nilpotent. This follows imme-
diately from the adjointness of Ei and Fi and Lemma 3.6.

17
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(3) The morphism

ρi,u,λ : Ei,uFi,uM ⊕M⊕max(0,−α∨i,u(µ)) � Fi,uEi,uM ⊕M⊕max(0,α∨i,u(µ))

defined in [Rou, §4.1.3] using the action of Rn, is an isomorphism.

We need only establish item (3).
It’s enough to prove this for a simple object S in Ĉ, and by symmetry, we may

assume that m = α∨i,u(µ) ≥ 0. Applying (3.2), we see that the map Ei,uFi,uS →
S⊕m
⊕ Fi,uEi,uS defined by the direct sum of the counit times 1, y ⊗ 1, . . . , ym−1

⊗ 1
and the rotated crossing times projection to Fi,uEi,uS.

Consider the subspace of FiEiS which is killed by the counit times yp
⊗ 1 for all p.

This is invariant under the action of y ⊗ 1 and 1 ⊗ y, and we can easily calculate that
the rotation of a crossing ψ gives an isomorphism between this submodule, and the
corresponding one of EiFiS. Furthermore, this isomorphism intertwines 1 ⊗ y with
y ⊗ 1 and vice versa by the rotation of (2.1c–2.1d). That is, it induces isomorphisms
between the intersection of these subspaces with Fi,uEi,uS and Ei,uFi,uS. Thus, we need
only show that ρi,u,λ induces an isomorphism modulo these subspaces.

A dual argument shows the rotated crossing induces an isomorphism commuting
with y ⊗ 1 and 1 ⊗ y between the quotients by the submodules of FiEiS and EiFiS
generated by the image of the unit.

Let S′, S′′ be the subquotients of Fi,uEi,uS and Ei,uFi,uS respectively generated by the
image of the unit, modulo the elements killed by the counit times yp

⊗ 1 for all p. It
now suffices to show ρi,u,λ induces an isomorphism between S′′ � S′ ⊕ S⊕m.

Since the action of y ⊗ 1 and 1 ⊗ y on the subquotient coincide, let us denote the
induced endomorphism y. Note that for each t ≥ 0, we have a map from S⊕t to S′,
sending the summands to the unit ι times 1, y, . . . , yt−1. This map is surjective for t
sufficiently large, since by adjunction y satisfies the relation ps(y) = 0. This shows
that under the action of y, we have isomorphisms S′ � S ⊗k k[y]/(p(y)) for some
polynomial p and similarly that subquotient of S′′ is isomorphic to S ⊗k k[y]/(q(y))
for some polynomial q. Obviously, these polynomials only depend on the value of
the bubbles. Computations as in the proof of Lemma 3.7 show that these polynomials
are characterized by being coprime and satisfying

�i (w) = w−α
∨

i (λ) q(w−1)
p(w−1)

	i (w) = wα∨i (λ) p(w−1)
q(w−1)

.

Since m ≥ 0, we have that u is a root of order m of q, and not a root of p (if m where
negative, the roles of the polynomials would switch.

By the Chinese remainder theorem, the u-generalized eigenspace of y on S′′ is
isomorphic to S⊕m, and that of S′ is trivial. Note that every element of this generalized
egienspace is killed by (y− u)m, and must pair nontrivially with some power of y− u
times the counit (by definition), so there must be such a power which is < m. This
shows thatρi,u,λ induces an injective map S′′ → S⊕m which is thus an isomorphism. �
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This result also has an obvious converse. If we begin with a categorical action of g̃
on a category D such that y act nilpotently, then we obtain an action of the algebra
Rn on the nth power of the functor E �

⊕
i∈I,u∈Ui

Ei,u with ej being projection to the
corresponding summand.

By transport of structure using the isomorphism ν of Proposition 3.3, we also have
an action of R̂n (and thus Rn) on En. If we let

(3.7) Fi �
⊕
u∈Ui

Fi,u Ei �
⊕
u∈Ui

Ei,u,

then we have that under this action, the image of the idempotent ei on En is Ei1 · · ·Ein .

Theorem 3.12 The functors Fi and Ei defined in (3.7) with the algebra R acting as
above define an integrable categorical action of g such that Fi,u is the u-generalized
eigenspace of y acting on Fi.

Proof. We’ll use [Rou, Thm. 5.27], which shows that we have a categorical g-action if
we confirm that:

(1) There is an appropriate Rn-action on En; we already discussed this above,
based on Proposition 3.3.

(2) The functors Ei and Fi are adjoint and locally nilpotent3. This follows imme-
diately from the adjointness of Ei,u and Fi,u.

(3) The action of Ei and Fi on the Grothendieck group satisfy the relations of g.
This follows immediately from the fact that Ei,u and Fi,u satisfy the relations of
g̃, so the corresponding result for g follows from Proposition 2.7. �

4. Deformed tensor product algebras

4.1. The definition. In [Web15, §5], we introduced a natural categorificationsXλ for
tensor products of highest and lowest weight representations. These categorifications
have natural deformations, which we wish to study in the context of the previous
section.

We will use the notation

+ba

i
to denote the endomorphism (y + b)a of Fi, and similarly for Ei.

3Note, this is on the level of 1-morphisms and unrelated to whether the natural transformation y is
nilpotent.
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In [Web15, §4], we introduced a notion of tricolore diagrams, which naturally form
the 2-morphisms of a 2-category T. The categorificationsXλ are natural subquotients
of this category, and our deformed categorifications arise from a straightforward
deformation of the relations from [Web15], which we present below:

Definition 4.1 LetT be the quotient of ˜̃T⊗k[z1, . . . , z`] by the relations (2.1a–2.1g,3.3a–
3.3g) on black strands and (4.1a–4.1i) below relating red and blue strands to black.
Note that the relations (4.1a–4.1i) are deformations of the relations of T in [Web15,
4.3]; we will thus recover the category T if we specialize zi = 0.

(4.1a) λ

i −µ

= λ

i −µ

λ

i µ

= λ

i µ

(4.1b)

i λk

=

λk

−zkλi
k

i

λk i

= −zk λi
k

iλk

i −λk

=

−λk

−zkλi
k

i

−λk i

= −zk λi
k

i−λk

(4.1c)

==

==
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(4.1d)

λk

i

−zk

b

=

λk

−zk

b − λi
k

i

λk

i

−zk

b

=

λk

−zk

b + λi
k

i

(4.1e)

−λk

i

−zk

b

=

−λk

−zk

b − λi
k

i

−λk

i

−zk

b

=

−λk

−zk

b + λi
k

i

(4.1f)

==

= =

(4.1g) = =

(4.1h)

ij −λk

=

ij −λk

− −zk a

i

−zkb

j −λk

∑
a+b−1=λi

k

δi, j

(4.1i)

ij λk

=

ij λk

+ −zk a

i

−zkb

j λk

∑
a+b−1=λi

k

δi, j

The reader should read the label λk in this diagram to indicate that the strand shown
is the kth of the red and blue strands from the left. In particular, zk is connected to this
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kth strand, and could be thought of as a new endomorphism of the tricolore triple
with a single red or blue strand and i = ∅.

We let Xλ be the idempotent completion of the quotient of the category of tricolore
quadruples (λ, i,κ,L) in T by the tricolore quadruples where κ(1) > 0. That is, we
consider 1-morphisms with label 0 at the left, where we fix the labels of the red and
blue strands as well as their order to match λ, but allow arbitrary black strands. We
then take the quotient of this category of 1-morphisms by killing the diagrams with
a black line at the far left.

The definition of Xλ has precisely the same form as that of Xλ, with the only
difference being the relations (4.1a–4.1i) in place of the relations in [Web15, 4.3].

From the definition, it’s clear that there is a 2-functorU → T, since (3.3a– 3.3g) are
simply the relations ofU. Thus, composition on the right induces aU action on Xλ.

Definition 4.2 Given a k[z1, · · · z`]-algebra K, we letXλK be the idempotent completion
of the extension of scalars Xλ ⊗k[z1,···z`] K.

The main examples we’ll want to consider are K = k(z1, . . . , z`) and the algebraic
closure K̄.

4.2. Spectral analysis.

Definition 4.3 Define sets Ui ⊂ K̄ as follows: if for some k, we have α∨i (λk) , 0,
then zk ∈ U(0)

i , and all elements of U(0)
i are of this type. Now we inductively define

U(N)
i to be the union of U(N−1)

i with the elements u of K̄ that satisfy Qi j(u, u′) = 0 for
u′ ∈ U(N−1)

j , and Ui = ∪N∈ZU(N)
i .

Let U′i be the union of Ui with the set of elements in K̄ that appear in the spectrum
of the elements ykei with ik = i acting on objects in the category X

λ

K̄
; that, is the

eigenvalues that appear when dots on strands with label i act.

It might seem strange that we add the elements of Ui to U′i by definition, but
this simplifies matters for us, since we have not yet established that Xλ

K̄
is non-zero.

Thus, we have not yet established that there are any elements of this spectrum. We
will ultimately see that Ui = U′i , and these both coincide with the union of spectra
discussed above.

We let Ĩ′, Ĩ be the graphs constructed from these sets as before and g̃′ and g̃ the
corresponding Kac-Moody algebras. We let λ̃ be a weight for g̃′ such that α∨(i,u)(λ̃) =

δu,zmα
∨

i (λm).
Since the elements zm are algebraically independent from each other, every element

of u ∈ Ui is algebraically dependent on exactly one zm. We denote this index m(u).
In many cases that interest us, there is exactly one component of Ĩ for each of these
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indices, but if α∨i (λm) , 0 for several elements i, the pairs (i, zm) can lie in different
components for different i.

We can define formal power series valued in the center of the category Xλ which
act on the object (λ, i,κ) as

yi(w) :=
∏
ik=±i

(1 − wyk)±1 Q ji(w) =
∏
ik=± j

(
t−1
i j · w

−ci jQ ji(yk, w−1)
)±1

,

where yk is the dot acting on the kth strand from the left.
These are supersymmetric polynomials (in the sense of [Ste85]) in the pair of al-

phabets given by dots on upward oriented i-strands and dots on downward oriented
i-strands. Any such polynomial commutes with all upward or downward oriented
diagrams by [KL09, 2.9], since each coefficient is symmetric in the corresponding
variables. It commutes with a cup or cap joining the kth strand to the k + 1st since
multiplying by (1+uyk)±1 at one end of the cup or cap cancels with (1+uyk+1)∓1 at the
other (this is a restatement of the supersymmetric property). Note that the bubble
slides and triviality of bubbles at the far left show that

(4.2)
∞∑

k=0

k−α∨i (λ)−1

i wk = yi(w)2
∏

j,i

Q ji(w)−1
∏̀
m=1

(w − zm)λ
i
m .

Let µ̃ = λ̃ −
∑

ai,uαi,u be a weight of Ĩ′. We can define subcategories V(µ̃) as in
Definition ??. By Theorem 3.10, the functors Fi,u and their adjoints Ei,u induce a
categorical action of g̃′ on X

λ

K̄
, with weight decomposition given by X

λ

K̄
� ⊕µ̃Vµ̃.

Given a triple (λ, i,κ) with i = (i1, . . . , in) considered as an object in in X
λ

K̄
(recall

that we will often exclude λ from the notation when it is unlikely to be confused),
we can thus decompose it according to the spectrum of the dots yk. For a sequence
jk = (ik, uk) ∈ Ĩ′ for k = 1, . . . , n, we let (i,κ)u be the simultaneous stable kernel of
yk − uk for all 1 ≤ k ≤ n.

Lemma 4.4 We have that

(4.3) (i,κ)u � Ein,un · · ·Ei1,u1(∅, 0)

if uk ∈ Uik and k > κ(m(uk)) for each k, and (i,κ)u = 0 otherwise.
In particular, we have Ui = U′i for all i and g̃ = g̃′, and the category X

λ

K̄
is generated

by the tricolore triple (∅, 0) as a categorical module over g̃.

Proof. First, we note that if u ∈ Ui and u′ < U j, then Qi j(y1, y2) acts on Ei,uE j,u′ with its
only eigenvalue Qi j(u, u′) , 0 (by the definition of Ui). Thus the crossing ψ induces
an isomorphism Ei,uE j,u′ � E j,u′Ei,u. Similarly, F j,u′ commutes past all red and blue
strands since y − zk is invertible, with its only eigenvalue u′ − zk; in fact, this still
follows for the kth red/blue strand if u′ , zk (in particular, if k , m(u′)).
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We establish the result by induction on ` and n (i.e. on the total number of strands).
If n = 0, the result is tautological. Otherwise, the rightmost strand in the idempotent
for the object (i,κ) is either black, blue or red. If it is black, then (i,κ) = Ei(i−,κ)
for some i ∈ ±I, and decomposing with respect to the eigenvalues of y, we have
Ei(i−,κ) � ⊕Ei,u(i−,κ) where u ranges over the roots of the minimal polynomial of y
acting on Ei(i−,κ). By induction (i−,κ) is a sum of modules obtained from (∅, 0) by the
functorsE j,u′ andF j,u′ for u′ ∈ U j. If u is not in Ui, then all these functors commute with
Ei,u (as argued above), andEi,u(∅, 0) = 0, soEi,u(i−,κ) = 0, andFi(i−,κ) � ⊕u∈UiEi,u(i−,κ).
By induction, this establishes the result.

On the other hand, if the rightmost strand is blue or red, we simply apply induction
with the tricolore triple (λ−, i,κ−) with this strand removed. By induction, (λ−, i,κ−) �
⊕(λ−, i,κ−)u with k > κ(m(uk)) and m(uk) < `. Since adding in the `th blue or red strand
does not change the eigenvalues of the dots, we also have (λ, i,κ) � ⊕(λ, i,κ)u with u
ranging over the same set. This shows equation (4.3), and that U′i = Ui. �

Thus X
λ

K̄
is generated by a single object, which is highest weight for the compo-

nents of Ĩ with λm(u) dominant and lowest weight for those with λm(u) anti-dominant.
Alternatively, we can easily choose a Borel for which this representation is straight-
forwardly highest weight. To distinguish objects which are highest weight for this
Borel, we call them signed highest weight. We can write each weight λ̃ uniquely as
a sum λ̃ = λ̃1 + · · · + λ̃` where λ̃m is supported on components with m(u) = m.

We can apply the classification of highest weight representations in [Web17a, 3.25],
which shows that any idempotent complete representation additively generated by
a highest weight object is equivalent to the projective modules over a base change of
the deformed cyclotomic quotient Řλ̃ for g̃ of highest weight λ̃. This base change is by
the endomorphism ring of the highest weight object over the ring Řλ̃

λ̃
, the polynomial

ring on fake bubbles in weight λ̃.
We can justify the change of Borel by applying the Cartan involution in the factors

where λm(u) is anti-dominant, which is essentially relabeling Fi,u as Ei,u instead. The
ring Řλ̃ is Morita equivalent to the tensor product Řλ̃1 ⊗ · · · ⊗ Řλ̃` . The different choice
of Borel means that it is more convenient to think of deformed cyclotomic quotient
Řλ̃k as written with a red strand and downward black strands if λk is dominant, and
with a blue strand and upward black strands if λk is anti-dominant.

Thus, we find that Xλ
K̄

is the base change of Řλ̃ -pmod via the natural map Řλ̃
λ̃
→

End(∅, 0) to the endomorphisms of the signed highest weight object. Since y : Fi,u →

Fi,u is nilpotent and the endomorphisms of End(∅, 0) are just the scalars, this resulting
base change is simply the tensor product of undeformed cyclotomic quotients Xλ̃ ⊗k
K̄ � Xλ̃1⊗X

λ̃2⊗· · ·⊗X
λ̃`⊗k K̄. Thus, we have an induced strongly equivariant functor

(4.4) Φ : Xλ̃ ⊗k K̄→ X
λ

K̄
.
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Since this functor is strongly equivariant, and both source and target are generated
by a signed highest weight object with only scalar endomorphisms, this functor
is either an equivalence or X

λ

K̄
is a trivial category. In particular, Xλ

K̄
satisfies any

hypotheses that Xλ̃ ⊗k K̄ does. For example, each weight space is equivalent to the
category of projective modules over a finite dimensional K̄-algebra.

It will actually be more convenient for us to think of the irreducible module with
signed highest weight λ̃ as a tensor product of simples corresponding to the different
components. That is, we use the equivalence of Xλ̃ with the tensor product category
X
λ̃ where λ̃ = (λ̃1, λ̃2, . . . , λ̃`). We can define a functor

Ξ : Xλ
K̄
→ X

λ̃
⊗k K̄

which sends (i,κ) to the sum
⊕

(j,κ) where j ranges over sequences with jk = (ik, uk).
If j satisfies k > κ(m(uk)), then we have (j,κ) � (j, 0), and otherwise the corresponding
object is 0, so Lemma 4.6 shows that this is quasi-inverse to Φ on the level of 1-
morphisms.

Now, we must define how Ξ acts on 2-morphisms. First, note that by Theorem 3.10,
we have a categorical action of g on Xλ̃ ⊗k K̄. On purely black diagrams, Ξ simply
employs this action; that is, on upward oriented diagrams, it follows the formula
(3.2). Since left (or right) adjunctions are unique up to isomorphism, we can send the
leftward cup and cap inUg to any adjunction we choose. For simplicity, we simply
match leftward oriented cups and caps as below:

(4.5)
i i

7→

∑
u∈Ui

(i, u) (i, u)

i i 7→
∑
u∈Ui

(i, u) (i, u)

For rightward oriented cups, the formula is quite complicated, but is fixed by the
choices we have made thus far, and the existence of a consistent choice follows from
the existence of the g-action. Thus, we need only show this action on diagrams with
red/blue strands, with formulas given below (4.6–4.7).

(4.6)
i λm

7→

∑
u∈Ui (i, u) λm iλm

7→

(i, zm)λm

+
∑

u∈Ui\{zm}

(y − zm + u)λ
i
m

(i, u)λm

(4.7)
i λm

7→

∑
u∈Ui (i, p) λm iλm

7→

(i, zm)λm

+
∑

u∈Ui\{zm}

(y − zm + u)λ
i
m

(i, u)λm

Lemma 4.5 The functor Ξ is well-defined.

Proof. In order to check this, we have to verify all the relations on 2-morphisms.
The equations that can be stated purely using upward or down diagrams, that is,
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(2.1a–2.1g, 4.1b, 4.1h–4.1f) all follow by straightforward calculations as in the proof
of Proposition 3.3.

Thus we only need to argue for the relations involving right cups and caps. The
way we have defined the right cup/cap means that relations (3.3a–3.3g) are automatic.
The remaining relations (4.1g, 4.1a) are actually redundant when the right cap and
cup are defined in terms of the left cup and cap. The relation (4.1g) is the definition
of the upward red/black or downward blue/black crossings, in this perspective. For
the relation (4.1a), assume we are considering the red version; the blue one follows
similarly. We must consider two different cases. Let µ be the label of the region at
the left of the picture.

• If µi
≥ 0, then we have we have make a loop at the left with µi dots. Pulling

this through and applying (4.1b), then undoing this bubble, we obtain the
desired relation.
• if µi

≤ 0, then we start with the diagram with a leftward cup at the bottom
and rightward cup at top, and compare the result of applying [Web15, 3.6d]
to these two strands to the left and right of the red strand. Using the relations
(4.1f,4.1i), we can move the bigon to the right side of the red line, and using
(4.1b) to remove bigons between red and downward strands. The left- and
right-hand sides now have the same pattern of black strands, but in one the
upward strands make a bigon with the red strand and in the other, they don’t.
This can only hold if (4.1a) is true. �

Lemma 4.6 The category X
λ

K̄
is equivalent to Xλ̃ ⊗k K̄ via the functor Φ defined in

(4.4).

Proof. By [Web17a, 3.25], this functor is an equivalence if End(∅, 0) � k. Thus, the
only issue is that the object (∅, 0) might simply 0 (in which case the entire category
X
λ

K̄
is 0).

The functor Ξ sends (∅, 0) to (∅, 0). The existence of this functor establishes that
X
λ

K̄
is not 0, so Φ must be an equivalence. In fact, we can easily see that Ξ is

strongly equivariant for g̃, so it must be quasi-inverse to Ξ when composed with the
equivalence Xλ̃ ⊗k K̄ � Xλ̃ ⊗k K̄. �

4.3. Applications. Now, we turn to the application of our results, culminating in the
proof of Theorem A.

Theorem 4.7 For two tricolore triples (λ, i,κ) and (λ, i′,κ′), the set D is a basis over
C[z] for the morphism space HOMT

(
(λ, i,κ), (λ, i′,κ′)

)
.

Proof. The proof that these are a spanning set is essentially equivalent to that of [KL10,
Prop. 3.11]. First, note that any two minimal diagrams for the same matching are
equivalent modulo those with fewer crossings (using the relations (2.1f, 2.1g, 4.1h,
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4.1i)). Similarly, moving dots to the chosen positions only introduces diagrams with
fewer crossings.

Thus, we only need show that all minimal diagrams span. Of course, if a diagram
is non-minimal then it can be rewritten in terms of the relations in terms of ones with
fewer crossings, using the relations to clear all strands out from a bigon, and then
the relations (2.1e, 3.3e–3.3f, 3.3g, 4.1b) to remove it. Thus, by induction, this process
must terminate at a expression in terms of minimal diagrams. Thus, these elements
span, and it suffices to show that these elements are linearly independent when z are
generic, that is, after base change to K̄.

Assume L = µ. We consider how the elements in D act on the quadruple with
i = ∅ in the deformed category Xλ with λ chosen so that

∑
λi = µ.

It suffices to check that these elements act linearly independently on X
λ

K̄
for some

λ; in the course of the proof we’ll modify λ as necessary to achieve this. Note the
enormous advantage obtained by having both dominant and anti-dominant weights,
as we can add cancelling pairs of these without changing the total sum.

As in [Web17a, 4.17], we can compose with the diagram ηκ pulling all black strands
to the left and η̇κ, its vertical reflection4. This will send a non-trivial relation between
the diagrams in D to a non-trivial relation between diagrams where κ(i) = n for all i.

We can now project this relation to the subspace where we fix the eigenvalue of
each dot acting at the top and bottom. The formulas (3.2, 4.5–4.7) defining the functor
Ξ show that this projection is the image under Φ of a diagram with an equal or smaller
number of crossings, and we can only have equality if we choose eigenvalues so that
they coincide at opposite ends of a strand. Now, fix a matching D such that an
associated basis vector appears in our relation, and the corresponding diagram has
a maximal number of crossings among those that appear.

We can adjust our weights in the list λ so that they include weights λa in bijection
with the matching pairs in D (which correspond to arcs in the diagram), with λa

dominant if the corresponding arc a is downward oriented at its lefthand edge and
λa anti-dominant if the arc a is upward oriented at its lefthand edge. Now, let us take
the projection to the subspace where the eigenvalue of the dot at each end of the arc
a is the variable za. Let j and j′ be the associated sequences in Ĩ at the bottom and top
of the diagram.

Note that D gives the only way of matching the terminals in j and j′ to produce a
legal tricolore diagram. Thus all diagrams in our relation that give a different match-
ing from D project to 0, since there is no matching which has the same eigenvalue at
both ends of each strand and fewer crossings than D.

Therefore, this must be the projection of a relation in X
λ

K̄
where all terms have

the underlying matching D with some number da of dots on the arc a, times some
monomial M in the bubbles at the left of the diagram. If we show that no such

4We use η instead of θ here since we are pulling left rather than right.
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relation exists, then for each choice of da and M, the corresponding term must have
had coefficient 0 in the original relation. It follows that the original relation must
have been trivial.

First, we consider bubbles. Any bubble at the left of the diagram evaluates to
a scalar, using the relations (4.1a) and (4.1b). The clockwise bubbles with label i
evaluate to the coefficients of the power series

∏
i(u − zk)λ

i
k and counterclockwise

bubbles to the coefficients of its formal inverse
∏

i(u− zk)−λ
i
k . By adding new pairs of

red and blue strands with labels ν and −ν for a strictly dominant weight ν, we can
assure that any finite set of monomials in clockwise bubbles are sent to elements of
K̄which are algebraically independent over k.

Furthermore, we can explicitly describe the space HOMT

(
(λ, j,κ), (λ, j′,κ′)

)
; it has

a basis over K̄ given diagrams with matching D and with da < |λ
ia
a |. Thus, for any

finite number of ways of choosing da and M, we can choose λa’s so the corresponding
diagrams lie in this basis. Since these diagrams remain linearly independent after
acting in X

λ

K̄
, they must be linearly independent, so we must have that the coefficient

of this diagram in K̄ is 0. This in turn supplies a polynomial relation between the
values of the clockwise bubbles. We can rule out this possibility by choosing λ so
that the bubbles which appear in the relation are algebraically independent. Thus,
we see that the relation we chose is trivial. This establishes the linear independence
of our prospective basis and establishes the result. �

Since U has a natural functor to T just not using any red or blue strands, this
shows:

Theorem 4.8 The 2-categoryU is non-degenerate for any field k and choice of Q∗,∗.
In particular, the Grothendieck group Kq(U) is isomorphic to U̇.

Proof. The spanning set Bi,j,λ of Khovanov and Lauda is still linearly independent after
applying the functor to T , and thus must be linearly independent. This shows the
non-degeneracy, and the isomorphism of Grothendieck groups follows from [KL10,
1.2]. �

Remark 4.9. If our goal was only to prove Theorem 4.10, we could have avoided some
of the difficulties of the proof above: as observed above, we can define a categorical
action of U on Xλ1 ⊗ X

−λ2 which categorifies the tensor product of a highest and
lowest weight simple, using Theorem 3.10. Note, however, that this requires y to
not be nilpotent, but to have at least two elements in its spectrum. This shows that
the map U̇ → K(U) must be injective, since no element of U̇ kills all highest tensor
lowest modules; we can also see that we get the correct inner product, since the Euler
form on Xλ1 ⊗ X

−λ2 matches the tensor product of Shapovalov forms.
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