
Abstract—Aurora is a large-scale kinetic art installation that 
reacts  to  human  presence  directly,  with  sensors  triggering 
outputs,  and indirectly,  by modifying output behaviour rules. 
This  paper  describes  a  novel  method for  estimating  visitors' 
fields  of  interest,  their  attention  to  specific  parts  of  the 
installation, with a future goal of using this measure as a fitness 
function  for  output  behaviour  modification  based  on genetic 
algorithms. Due to constraints in  Aurora, distributed overhead 
distance  sensors  were  used  as  the  sensory  inputs.  A  low 
resolution height graph of the space below the installation is 
created, and the active sensors are clustered into groups. The 
height  graph  and  sensor  groups  are  used  to  produce  a 
probability  map of  possible  visitor locations.  Based on these, 
particle filters are created to estimate the visitors' state, and by 
extension their fields of interest. Using this overall strategy for 
tracking  and  interest  prediction,  an  average  prediction 
accuracy of 92% is found when compared to a set of simulated 
people moving within a simulated space.

I.  IN T R O D U C TI O N

This work was developed to answer a  question brought 
forward through a series of large-scale collaborative artistic 
installations  in  concert  with Philip  Beesley  Architect  Inc. 
over the last several years.  The goal of these collaborations 
is the development of interactive art as a breeding ground for 
new forms of design in architecture and engineering.

The first of these, the Hylozoic Series, has had a number 
of  generations  displayed  all  around  the  world.  The  most 
public of these installations were representing Canada at the 
2010  Venice  Architecture  Biennale,  Venice,  Italy  and  a 
permanent installation at The Leonardo museum, Salt Lake 
City, Utah, USA. The Hylozoic Series is described as being 
“artificial  responsive  forests  with  organic  movements, 
embedded intelligence, and ongoing chemical reactions.”

Another series of installations, which made their debut at 
Nuit Blanche  2010  in Toronto (see  Fig.  1)  is  called  the 
Aurora Series,  and has been described as an “environment 
for  human-aware  artificial  life  within hanging  columns of 
light, movement, and sound.” An updated version of Aurora 
can  be  found  at  the  Simons store  in  the  West  Edmonton 
Mall, Edmonton, Alberta, Canada. The work in this paper is 
based mainly on developing needs in the Aurora Series.

In the Aurora installation, each of the 108 columns of 24 
LEDs and 24 vibrating mylar feathers includes an infrared 
distance sensor,  pointed towards the ground.  The columns 
are grouped in sixes, with each group containing and running 
a single cellular automaton (CA), which is connected with 
those around it. The state of the cells of each CA is displayed 
on  the  24  x  6  array of  LEDs on  those  six  columns.  The 
creative goal in this work is to have instances of the Aurora 
Series get  more  “interesting”  to  visitors  over  time.  One 

possible  method  for  generating  “interesting”  cellular 
automata  (CAs)  in  a  specific  setting  is  to  use  genetic 
algorithms to evolve the CAs' rules and other  controllable 
parameters, which define a specific set of 'genes'.

Thanks to the physically distributed nature of the genes 
throughout  the  installation,  the  fitness  function  for  the 
genetic  algorithm  is  defined  based  on  how  interesting  a 
specific region (and therefore subset of CAs) is to the people 
passing  below.  To  find  these  interesting  regions,  it  is 
necessary to  first  find  what  the  people  are  looking at,  or 
interested in, within the installation over time. Determining, 
with  reasonable  accuracy,  the  interesting  regions  of  an 
installation is the aim of this paper.

I I.  BA C KGR O U N D

Genetic  algorithms, arguably the most common form of 
evolutionary computing, are a very well known optimization 
method for large and/or difficult search spaces, such as that 
of finding CA parameters with which to solve real problems 
([1],  [2]). The method consists of evolving and mutating a 
set of genes (specified system parameters) towards a global 
goal, defined by a fitness function. The fitness function itself 
is  a  measure  of  how successful  each  specific  gene  is,  so 
finding an appropriate fitness function for a given goal is the 
main objective of much of the work in this field.

In order to find which regions of an installation people are 
actively interested in, a required part of our fitness function, 
there is a need to discover first where the people are within 
the installation. The majority of the work in tracking human 
movement  ([3],  [4],  [5],  [6])  consists  of  attempting  to 
recognize people in video sequences. Unfortunately, due to 
the small budget and large scale of the installations, as well 
as  the  low-hanging,  visually-diffusive  elements  involved, 
video taken from the top or the sides will not be able to see 
much detail other than peripheral information.
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Fig. 1.  A side view of the Aurora installation hanging in the atrium of the 
Royal Conservatory of Music in Toronto for Nuit Blanche 2010.
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Other work ([7], [8]) focuses on tracking people using an 
infrared  camera,  in  order  to  ignore  small  physical 
obstructions like those found in these installations. However, 
due to the frequent use of high-temperature shape memory 
alloy actuators in these series of installations, the body heat 
of people may be heavily masked from almost any angle.

Finally, the least prevalent possibility is to use the floor, 
either  with capacitive  sensors  as  explored  in  [9] or  using 
temporary  mats  with  built  in  pressure  sensors,  to  track 
people's  movements. In some installations this could work, 
depending heavily on location, but most of the instances of 
this  series  are  placed  in  public  spaces  where  there  is  no 
access or ability to cover the ground with anything.

I II .  S IM ULATI O N  EN V IR O N M E N T

Thanks to the tracking issues discussed in the background 
section, the only real location that any sensing solution can 
exist is along the top of the space that the people themselves 
occupy. Since the installations are fairly large, some form of 
distributed  sensing  must  take  place.  Given  the  available 
budgets for the installations and the simplicity of the low-
level electronics, distributed video is not an option.

This leaves a number of simple analog sensors as options, 
with the most economical and sensible option in this specific 
case being to use the built-in sensors in the hanging columns 
of the installation. This consists of a set of infrared distance 
sensors pointed directly at the ground from a known height, 
which can give a good estimate for the height of anything 
below. A distributed set of height measurements also has the 
advantage of enabling a distinction between specific people 
if they come together and then separate, if necessary.

Due to the length of the Nuit Blanche festival (12 hours) 
and large space required for these installations,  a physical 
test bed does not currently exist, leading to the need for a 
functional simulation environment, discussed in Parts A and 
B of this Section.

A. Simulated People

In order to develop and test this work, a simulated set of 
height measurements was created  to allow for testing of a 
range of possible scenarios without the need for a physical 
installation to test in. These measurements were based on a 
set of simulated people moving in a 6x6m area, viewed from 
overhead by a distributed set of simulated range sensors.

Each of the people was randomly initialized with a set of 
values based on height data from Statistics Canada [10] and 
anthropometric ratios from [11], shown in Fig. 2. The ranges 
are:  standing head height,  150 - 190cm; body width,  40 - 
60cm; and shoulder offset, 20 - 30cm below head height.

All people were modelled from above, represented in 2D 
as a circle, for the head, and an underlying ellipse, for the 
shoulders,  with  shading  given  by  height.  Each  simulated 
person's head has a diameter of 25cm, while the shoulders 
have a minor axis diameter of 25cm in the heading direction 
(forward) and a major axis diameter equal to the body width.

The state (x) of each person was governed by a simple 
model as shown in (1), where the position (x, y) is measured 
in  centimeters and the  heading (θ) is measured in radians. 
The inputs (u) are the speed in the direction of the heading 
(s) in centimeters per second and the angular velocity (ω) in 
radians per second.

x t=[
x t

y t

θt
]=[

x t−1+s t cos(θt−1)

yt−1+st sin (θt−1)

θ t−1+ωt
]+εt  (1)

The disturbance  to  the state  (ε) is  modeled purely as  a 
multivariate Gaussian distribution with a diagonal covariance 
matrix, with the non-zero members listed in (2).

Σxx=Σyy=0.025,Σθθ=0.0001  (2)

The position and heading of each person were initialized 
at  random from within the full  set  of  possible  values.  As 
shown in (3), where N(μ,σ) is a normal distribution with a 
mean of μ and a standard deviation of σ, the input model is 
completely probabilistic to better simulate a human walking 
pattern in an open space.

u t=[ st

ωt
]=[ st−1+Δ st

ωt−1+Δωt
]

p(Δ st=N (0, 2.5))=1 , elseΔ st=0
p (Δωt=N (0, 0.01))=1 , elseΔωt=0

 (3)

The speed was initialized to a random value from 15 to 90 
cm per  second,  while  the  angular  velocity  was  randomly 
chosen from -π/10 to π/10 radians per second. These ranges 
were determined heuristically to simulate human motion. In 
addition, to better simulate the observed motion of visitors to 
a museum or gallery, there a chance that the visitor will slow 
to a stop (s=0) for a random, non-zero length of time.

Although this model is only a very basic representation of 
full dynamic human motion, a more complete model such as 
[12] could be used in its place without significantly affecting 
the methods described in this paper.

B. Simulated Sensors

To simplify the simulation and boundary formulations, the 
installation used is a 6x6m square, with distributed hanging 
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Fig. 2.  Diagram showing the allowable size ranges of simulated people.
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points located at the intersections of an overlaid rectangular 
grid. The grid consists of squares 25cm wide by 25cm long, 
in order to ensure that a person's head can never be detected 
on more than one sensor at a time, similar to the installation.

Each simulated sensor outputs a  height measurement as 
given  in  (4),  with  the  variance  on  the  noise  taken  from 
experience with a number of infrared range sensors.

hx , y=hx , y :true+N (0, 0.025)  (4)

Once the sensors have found their measurements for the 
given  time-step,  they are  sorted  into  four  distinct  classes. 
These classes take into account the possibility of noise in the 
measurements  and  so  have  slightly  expanded  boundaries 
compared  to the possible ranges of heights for  the related 
people. There are 4 classes as follows:

• Head, if h > 175cm;
• Head or Shoulder, if 145 ≤ h ≤ 175cm;
• Shoulder, if 115 ≤ h < 145cm;
• Nothing, if h < 115cm.

These classes are used  in order to facilitate all forms of 
measurement interpretation as discussed in the next Section.

IV.  ME A S U R E M E N T S

There are two main steps in interpreting the data that come 
from the sensor readings, both of which are discussed in this 
Section.  First  the  active  sensors  are  clustered  into  sensor 
groups,  as  discussed  in  Part  A.  Then,  in  Part  B,  the 
construction of a probability map using both the raw sensor 
classes and the sensor groups is outlined. In order to reduce 
computational  time,  only  active  sensors  (those  in  a  class 
other than Nothing) are considered in both sensor groups and 
construction of the probability map. Both the sensor groups 
and  the  probability  map  play  important  roles  in  the 
initialization,  iteration,  and error  correction of  the particle 
filters that are discussed in the next Section.

A. Sensor Groups

Sensor groups are clusters of one or more sensors which 
are likely to be seeing the same person. They are initialized 
by iterating through all active sensors (S) and grouping them 
together based on euclidean distance, as given in (5).

d i j=√(S i , x−S j , x)
2
+(S i , y−S j , y)

2  (5)

Any two active sensors  which are  within the  maximum 
person-width of each other are grouped. If two sensors are in 
range of each other,  and one is in a group,  then the non-
grouped sensor must be in range of all sensors in the group 
to be added to the group. The initial sensor groups evolve 
with time: newly active sensors within one person-width of 
an entire sensor group are added, and group sensors entering 
the Nothing class are removed.

Rejection  policies  also  exist  in  the  groups  in  order  to 
attempt to ensure that sensors detecting two different people 
are not in the same group. The simplest of these consist of 
each  group only being allowed to have one sensor  in  the 

Head class, and all sensors in the group needing to be within 
half the maximum body width from the group centre.

Once the groups have been formed and no currently active 
sensors are without a group, the group centres are assumed 
to be very likely locations for people to be in.

B. Probability Map

At each time-step, a probability map (with a resolution of 
2.5cm)  is  uniformly assigned  a  low,  non-zero  probability 
value at each point, prior to the addition of a set of sensor-
based  high-probability regions. The regions,  whose shapes 
and sizes are described below, are integrated into the map 
additively such that the probabilities are cumulative. Once all 
regions have been added, the values are normalized using the 
highest probability point in the map.

The regions are each created based on using either sensors 
directly or the sensor groups found in Part A of this Section. 
There  are  high-probability  regions  created  and  centred 
around each of the active sensors, with different shapes and 
sizes of region based on the various classes the sensors are 
in.  The  probability of  a  given  point  in  a  region  due  to  a 
particular  sensor is  strictly a  function of its  distance  from 
that sensor as is seen in (6).

d S=S x−x 
2
S y− y2  (6)

Each  of  the  different  active  sensor  classes  creates  a 
uniquely shaped region with equally high probabilities (K%). 
Since the map is normalized once constructed, the value of K 
is arbitrary. If the sensor is in the Head class, then the region 
is a circle with radius 12.5cm as shown in (7). This is due to 
the fact that if the sensor reads a Head, then the furthest the 
centre of the person can be is 12.5cm from the sensor, due to 
a head having a diameter of 25cm.

p (x , y∣ d S≤12.5)=K   (7)

If the sensor is in the Shoulder class, the region is a ring 
with an outer radius of 30cm and an inner radius of 12.5cm 
as  shown in (8). Since a definite shoulder reading can only 
happen if the sensor is outside of the head but still  within 
half the maximum body width, the region looks like a ring.

p (x , y ∣12.5<d S≤30)=K   (8)

Finally, if the sensor is in the Head or Shoulder class, then 
the region is a circle with radius 30cm as shown in (9). As 
the measurement could be either a head or a shoulder,  the 
region is a union of the head and shoulder regions.

p (x , y ∣ d S≤30)=K   (9)

In  addition  to  the  individual  sensors  contributing  high 
probability regions, the sensor groups create regions of their 
own that always overlap with their associated sensors. These 
are also strictly a function of distance, but in this case it is 
the distance from a given point to the group as seen in (10), 
where the group position (G) is given by the average of the 
position values over all sensors (S) in the group.
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d G=G x−x2
G y− y2  (10)

There are only two distinct regions that are created from 
the sensor groups. In the case of 1 active sensor (Gnum = 1), 
similar reasoning to that of a Head or Shoulder class sensor 
applies to create a 30cm radius circle, as seen in (11).

p( x , y ∣ d G≤30, Gnum=1)=K   (11)

In the case of 2  or  more active sensors (Gnum ≥  2),  the 
distance of the group centre from any person's location will 
be  a  maximum of 18cm,  giving an  18cm radius  circle  as 
shown in (12).

p (x , y∣ d G≤18, G num≥2)=K   (12)

In order to clarify how the regions interact once they are 
integrated  into  the  probability  map,  a  couple  of  possible 
combinations  are  shown in  Fig.  3.  These  are  just  two of 
many different possible combinations that can occur.

V.  PA RTICL E  F ILTE R S

Particle filters were selected for this work because of the 
non-linear  nature  of  both the  measurement  model  and  the 
motion models used. Since non-linear models usually require 
several modifications that remove guarantees of optimality, a 
solution was found which uses a set of particle filters. Also, 
since  this  work  will  eventually  be  implemented  on  a 
distributed  set  of  microprocessors,  an  inherently  discrete 
solution  at  multiple  levels  provides  many  methods  of 
division of labour in order to allow real-time computation.

One of the main limitations in particle  filters is particle 
deprivation  [13]. This can happen when there is little to no 
new information presented, and results in the particle filter 
focusing all of its particles in one small area. This focus can 
cause  the  filter  to  ignore  future  conflicting  information. 
Unfortunately, in a number of different possible positions a 
person can be setting off none of the sensors in their region. 
Other  times  a  person  may stop,  or  be  spinning  in  place, 
which will lead to a constant sensor reading.  Both of these 
scenarios  result  in  particle  deprivation  when  only  one 
particle filter is used to track all people in the installation.

In order to avoid this issue and make deprivation a useful 
attribute,  one  filter  is  created  and  assigned  to  each  likely 
person, given by the centre of each sensor group. In this way, 
the  filter  will  be  narrowly distributed,  and  the probability 
map in the vicinity of a sensor group will encourage an even 

narrower  distribution.  Therefore,  deprivation  of  the  filters 
will actually lead to a better estimate of a particular person's 
state within the installation, as it will improve the focusing of 
particles in a particular filter on one specific person.

The remainder of this Section will deal with the following 
aspects  of  each  particle  filter:  the  initialization  in  Part  A, 
updating and resampling in  Part  B,  estimating the overall 
state in Part C, and error correction in Part D.

A. Initialization

Each particle  filter  is  initialized based  on a new sensor 
group being found, and the filter is associated with the group 
in order to allow for later error correction. The locations of 
particles within the filter are normally distributed around the 
group centre while the heading of each particle is randomly 
chosen from the full range as shown in (13).

x p ,0=[
G x+N (0, 9)

G y+N (0, 9)
random(0, 2π )]  (13)

The  inputs  to  each  particle  are  initialized  in  the  same 
range as the input model for the people, as shown in (14).

u p , 0=[ random(15, 90)

random(−π /10, π /10)]  (14)

B. Update

The state update of the particles is done using the same 
kinetic model as the simulated people as given in (1,2) so it 
will not be repeated here. However, the change in inputs that 
the people will use are unknown, so the input update for the 
particles  in a given filter will have a zero-mean, normally 
distributed, additive disturbance as shown in (15).

u p , t=[ s p , t−1+N (0, 1)
ω p , t−1+N (0, 0.01)]  (15)

Once the motion model update has been completed, each 
particle  is  given a weight taken from the probability map 
based on their estimated location. Based on these weights, a 
cumulative  weight  density  function  is  created  from  all 
particles in a given filter. This function is uniformly sampled 
and evaluated in order to build a new set of particles from 
the old. This process is known as resampling and will allow 
for the old distribution of particles to more closely match the 
true state as modified by the new measurements [13].

C. Estimate

The resampled particles are used to find an estimate for 
each  filter's  overall  state,  given  in  the  same  way as  the 
simulated people or particles. In order to do this, the state is 
assumed  to  be  made  up  of  independent  Gaussian 
distributions, leading to the need only to find the mean and 
variance of each state variable.  In  the case of the location 
variables, this is fairly simply done with a basic average and 
simple variance as given in (16).
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Fig.  3.   Diagram  showing  two  possible  combinations  of  probability 
regions,  where darker regions indicate a higher probability of being the 
actual position of a person: a) a Shoulder or Head sensor (large circle) and 
a Shoulder sensor (ring) side by side in a group (small circle) together; and 
b) a Head sensor (small circle) in a group of its own (large circle).

a) b)



E [a ]=
1
P
∑
p=1

P

a , Var a =E [a2]E [a ] 2  (16)

However, in the case of the heading variable the formulas 
in (16) do not  hold  because of  the periodic  nature of  the 
values.  In  this  case,  a  circular  mean  and  variance  are 
necessary. To accomplish this, the heading is assumed to be 
the  angular  component  of  a  location  on  the unit  circle  in 
polar  coordinates,  which  can  easily  be  converted  into  a 
location in Cartesian coordinates using basic trigonometry. 
An  average  location  can  then  be  found  in  Cartesian 
coordinates which is converted back into polar coordinates. 
The  angular  component  of  this  polar  location  will  be  the 
correct average heading as shown in (17).

μ=[
μx

μy

μθ
]=[

E [ x ]
E [ y ]

atan2 (E [sinθ] , E [cos θ])]  (17)

The  radial  component  of  the  polar  location  will  be  a 
measure of  how tightly grouped the headings were with a 
value  of  1  being  all  equal  and  a  value  of  0  meaning 
uniformly distributed. In order  to convert this value into a 
variance, it is subtracted from 1 as shown in (18).

Var (x )=[
E [ x2

]+μx
2

E [ y2
]+μ y

2

1−√E [sinθ] 2
+E [cosθ ]

2]  (18)

The  maximum  distance  of  the  estimated  location 
compared to the simulated person being tracked was found 
to be 12.5cm, which is almost entirely due to the method of 
building the  probability map and  sensor  groups  using the 
assumption that a head is a 12.5cm radius circle.

Even when a person stops within the installation, which is 
typically a problem for particle filters, the estimated location 
stays within 12.5cm of the actual person. The only issue that 
arises from a stopped person is an increased variance on the 
heading, as without further sensor input there is no way to 
know if the person has stopped completely or is spinning.

Once an estimate is found, provided the error correction 
does  not  remove  the  filter  from  use,  each  filter's  state 
estimate  is  used  as  the  origin  and  direction  of  a  field  of 
interest as described in the next Section.

D. Errors

In  order  to  ensure  that  the  particle  filter  estimates  are 
valid,  various  forms of  error  detection are  applied.  These 
errors, if detected, signal that the particle filter estimate is in 
one of three different states that all require that the filter be 
removed from use and reassigned in some way.

The first state occurs if an estimate has drifted more than 
30cm away from the centre of its associated sensor group as 
shown in (19).  When a filter  estimate has  moved this far 

away from its  group,  it  is  assumed that  the filter  is  on a 
divergent path from that  of the person being tracked.  If  a 
filter  is  found  in  this  state,  it  is  reinitialized  using  the 
location of its current sensor group.

√(μx−G x)
2
+(μ y−G y)

2
>30  (19)

The  second  state  occurs  when  the  estimate  leaves  the 
installation boundaries, which happens in the general course 
of use as tracked people leave the installation. As such, this 
is the most often detected error state. In order to detect when 
this is the case, one or more of the logical statements in (20) 
must be true. The variable  E is a heuristically chosen value 
(12.5cm is used) of how close to the edge an estimate should 
be before it is assumed that it will be leaving the installation. 
The values  xMAX and  yMAX are both 600cm (6m), due to the 
size of the simulation environment chosen. Also note that in 
this environment, the origin is in the upper left corner, with 
positive x to the right and positive y downwards.

μ x<E & cos (μθ+π ) >0
μ x>( xMAX −E) & cos(μθ) >0

μ y<E & cos(μθ−π /2)>0

μ y>( yMAX −E ) & cos (μθ+π /2)>0

 (20)

Finally, the third state occurs when the filter's associated 
group orphans it (this can happen when a person stops in a 
position between sensors) and the filter estimate is left in the 
middle of  open  space  for  a  time.  When this  happens,  the 
variances over the state become very large very rapidly and 
the total weight of all of the particles gets close to zero.

In both the second and third states, the filter in question is 
removed from use and placed into a list of free filters. These 
filters are then used when new sensor groups are created as 
new people enter the installation.

VI.  IN T E R E S T  MA P S

The  estimated  interest  map  is  built  using  the  particle 
filters'  state  estimates  for  the  locations  and  headings  of 
people  within  the  installation.  Each  estimate  is  only 
considered valid if the variance on the heading is less than 
0.1, and the particle filter is associated with a sensor group.

If a filter passes both of these checks, then it is assumed 
that there is a trapezoidal field of interest projected from the 
estimated location in the direction of motion, the extremes of 
which are  found based  on  the  following assumptions:  the 
viewing angle is 60°, centred around the estimated heading; 
the start of the field is 30cm from the estimated location; and 
the depth of the field is 150cm from the estimated location.

The estimated interest map itself is made by integrating all 
of these predicted fields of interest over time. The fields are 
each treated as a medium probability region, which are then 
overlaid together with a slightly eroded copy of the previous 
map estimate in order to emphasize recent interest more than 
past interest. This estimated interest map will slowly change 
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over time to show what regions of the installation the people 
currently find interesting and which ones they do not.

In a similar fashion, with the same assumptions, and using 
the  simulated  people's  actual  locations  and  headings,  a 
comparison is made through direct subtraction of the actual 
interest  map from the  estimated  one.  The  values  on  both 
maps are chosen so that errors can be distinguished into false 
positives (estimate shows interest when people do not) and 
false negatives (estimate shows no interest when people do), 
along with true positives  and  true  negatives  (estimate and 
simulated people agree on presence/lack of interest). These 
can be seen distinctly as shown in Fig. 4.

VII.  CO N CL U SI O N

As should be evident from Fig. 4, the performance of the 
system described in this paper in terms of being able to track 
and predict  the interest  of  people  moving through a  large 
scale  installation  is  very  good.  After  more  than  fifty 
executions of the simulation with anywhere from one to ten 
people, the average percentage of true interest points out of 
the overall interest map comparison was 92%. Also, of the 
errors,  the  false  negatives  were  an  average  of  6% of  the 
comparison, while false positives were only 2%.

Some future possibilities  that  are  planned for  this work 
include the incorporation of better pattern recognition in the 
measurement interpretation task in order  to: create a more 
useful probability map (and possibly use different values of 
K for different sensor classes), be able to initialize the filters 
with some form of subset of possible headings, and improve 
group rejection when people are close to one another.

Another future improvement is the possibility of extending 
a single particle filter to track all people in a subsection of 
the installation and perform hand-offs between them in order 

to better correct for individual filter errors. This will allow 
for removing the dependence on the deprivation problem.

Finally, this work could benefit from a number of iterative 
improvements related  to  the interest  fields  themselves  and 
the human motion data: a more realistic model of the human 
motion (such as found in  [12])  would improve the testing 
and  tracking  of  real  people;  using  real  data  from  an 
installation along with verification of the true motion would 
allow a better correlation between measurements and truth; 
and a better idea of what the field of interest actually looks 
like based on a person's orientation would directly inform the 
fitness function.
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Fig.  4.  Interest map comparison.  In this image, the colour representations 
are:  green  for  true  positives,  red  for  false  positives,  yellow  for  false 
negatives, and black for true negatives. One of the key causes of error in  
these  interest  map  comparisons  is  the  elimination  then  recreation  of  a 
sensor group when two people get very close to each other then move apart,  
suggesting better group rejection policies are required.
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