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Abstract— One of the main challenges of bipedal gait is to
avoid falling due to unknown disturbances. Compensating for
these disturbances in bipeds is often achieved by leaning or
stepping. In this work, the Spherical Foot Placement Estimator
(SFPE) is introduced, which uses the biped’s current kinematics
and dynamics to predict if a step is needed, and if so where to
step, to restore balance in 3D. An example of a controller using
the SFPE is shown, which augments an existing optimal con-
troller with both leaning and stepping: SFPE-based feedback
is used to generate a desired momentum for momentum-based
leaning while the SFPE point is used as a control reference
for stepping. The new estimator outperforms existing balance
criteria by providing both recovery step location prediction and
momentum objectives with smooth dynamics.

I. INTRODUCTION

A critical capability for humanoid robots is to maintain
or recover balance using disturbance compensation methods,
which mainly fall into three categories: flexing, leaning, and
stepping. In this work, we focus on the leaning and stepping
approaches to disturbance compensation.

Leaning uses changes in posture to counteract moderate
disturbances, generally by using momentum-based control
[1]–[6]. Stepping consists of lifting a foot and planting it
in a new location, sometimes repeatedly, to compensate for
larger disturbances [6]–[9]. There is a large body of existing
work on disturbance compensation using stepping or leaning
approaches, although most work assumes that the biped is at
rest when disturbed [1]–[6]. Less work has been done which
combines these approaches [6], [7].

Stepping methods typically use balance point estimators,
which identify a balance point (or points) where the robot
can step to restore balance. Here, we introduce a novel 3D
balance point estimator, called the Spherical Foot Placement
Estimator (SFPE), which extends the planar Foot Placement
Estimator (FPE) [10] and its existing 3D extensions [6],
[11]. This novel estimator has been developed to address
the drawbacks of existing balance point estimators, and can
be used to determine if a biped is going to lose its balance,
how to compensate, and where to step if a step is needed.

The SFPE is predictive, considers impact, includes rota-
tional inertia, allows ankle torques and 3D Center of Mass
(COM) motion, does not require flat ground or heuristic
parameters, and works for a biped at rest or in motion. We
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develop the SFPE equations and compare it to other balance
point estimators in simulation (including other 3D extensions
of the FPE) using a simple COM feedback controller. We
then show how to modify this simple controller to use the
SFPE to improve a biped’s dynamic balance.

A. Related Work

There are two high-level categories of balance point esti-
mators: those which include the effects of impact and those
that do not. The Linear Inverted Pendulum Model (LIPM)
[12] is used in the majority of methods that ignore impact.

The LIPM assumes (often horizontal) planar COM motion,
consists of a telescoping pendulum between the COM and
the Center of Pressure (COP), and ignores rotational inertia
about the COM. It is used to find the Instantaneous Capture
Point (ICP) [13]: the point where a biped should step (if the
LIPM assumptions hold) so that the COM comes to rest.

The Divergent Component of Motion (DCM) can be
thought of as the 3D analog of the ICP, since its ground
projection is located at the ICP (on horizontal ground) [14].
Recently, Englsberger et al. have made use of the DCM
for planning COM motions from a desired footstep plan
using the Centroidal Moment Pivot (CMP) point, along with
heuristic step-based balancing [9] and analytical footstep
adjustment for recovery from strong disturbances [15]. These
disturbance compensation methods assume no change in
angular momentum and no dynamic effects due to impact.

The (impact-based) Foot Placement Estimator [10] cal-
culates where a 2D compass-gait biped should step such
that its COM comes to rest directly above the newly placed
foot. Cho et al. used a closed form version of the FPE for
successful foot placement of a hopping HUBO2 robot [16].
Two 3D extensions of the FPE concept have been proposed:
the Generalized FPE (GFPE) [6] and the 3D FPE [11].

The GFPE [6] uses a 2D rimless spoked wheel model to
predict a recovery step location, based on the velocity of the
COM after a biped at rest is pushed. The model is embedded
in a vertical plane (containing the COM) parallel to the COM
velocity, and uses a modified version of the original planar
FPE formulations for step prediction. However, the GFPE
neglects the rotational inertia of the biped about the COM,
and assumes that the biped is at rest before a disturbance.

The 3D FPE [11] applies the original FPE in a vertical
plane (containing the COM) perpendicular to the horizontal
components of the biped’s angular momentum about the
ground projection of the COM. Like the original FPE, the
3D FPE does not require the biped to be at rest nor in contact
with the ground before impact. However, it is only defined



yA

zA

xA

A0

A∗l0

l∗

C, IC

2α

(a) Diagram of the SFPE’s 3D
rimless spoked wheel model.

xA

yA

zA C

A

γ

θ
ω

(b) Diagram of the spherical coordi-
nates used for the SFPE.

Fig. 1. Diagrams of the SFPE model and coordinates. The model in (a)
shows that the COM, C, is used as the attachment point of two legs with
point feet. Note that the model used in this work includes a rotational inertia
about C, labeled IC . In (b), the spherical coordinates centered at the anchor
point, A, are used to describe the motion of the COM, C. Note that θ is
always measured in a vertical plane which contains both C and A and the
distance between C and A, the leg length l, is assumed to be constant.

for horizontal ground surfaces and is not predictive, requiring
continuous calculation until impact occurs.

When using the 3D FPE, the full 3D dynamics of a
biped are projected into the assumed (vertical) 3D FPE
impact plane, to determine its planar rotational inertia and
average angular velocity. The SFPE defined in Section II
is a novel 3D formulation of the FPE which projects the
full 3D dynamics into both a vertical impact plane and a
horizontal plane and uses a rimless wheel for predictive
purposes, combining and extending the GFPE and 3D FPE.

II. SPHERICAL FOOT PLACEMENT ESTIMATOR

Similar to the GFPE, the SFPE uses a rimless wheel
model, with two fixed length legs attached at the COM, C,
and a leg separation of 2α (see Figure 1a). It is assumed
that only one of the model’s point feet is in contact with the
ground at any given time, allowing them to be labeled based
on the state of the model: A0, the current anchor foot (on
the ground), and A∗, the future anchor foot.

When a step is taken, A∗ is assumed to land on the ground
without slipping or bouncing at the same instant as A0 lifts
off the ground, causing the status (and therefore labels) of
the feet to switch instantaneously. By assuming a fixed leg
length between C and each anchor point, the motion of C
can be described by a series of piecewise rotations about
successive anchor points, replacing the common assumption
of planar motion of the COM. This assumption produces a
more realistic COM path, as typically the COM of a biped
follows smoothed inverted pendular curves in 3D, not motion
in successive (approximately horizontal) planes [17].

Thanks to this assumption of purely spherical motion
of C during each step, spherical coordinates centered at
each successive anchor point are used to define the model’s
dynamics in terms of three variables (see Figure 1b): the
angle between the leg and the vertical axis, θ; its derivative,
ω = θ̇; and the angular velocity of C about the same vertical
axis, γ. We assume no rotation about the stance leg axis.
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DCM is above the SP.
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(b) How to choose A0 when the
DCM is not above the SP.

Fig. 2. Illustrations of how to select the anchor point location, A0. When
the Divergent Component of Motion (DCM), ξ, is above the biped’s convex
support polygon (SP), A0 is chosen as the (furthest) intersection of the
perimeter of the SP with a ground-projected vector from C through ξ, as
shown in (a). If ξ is not above the biped’s SP, A0 is chosen as the point on
the edge of the SP closest to the ground projection of ξ, as shown in (b).

These variables define the motion of the COM of the
simplified model about the given anchor point, based on the
linear velocity of the COM of the full multibody system. The
simplified model includes only a single rigid body with its
COM at the COM of the full system, which is constrained
to 2D rotation about the anchor point.

Unlike the GFPE, the model used in this work moves in
3D and includes rotational inertia about the COM, labeled
IC . This rotational inertia is the rotational submatrix of the
biped’s centroidal inertia matrix (the Composite Rigid Body
matrix for the biped evaluated at the COM [5]). Multiplying
the inverse of the centroidal inertia matrix by the centroidal
momentum of the biped, the system’s COM velocity vC and
average angular velocity ωC can also be calculated [5].

For the purposes of generating a predictive balance point,
we select a pair of planes (one vertical and one horizontal)
which approximate the motion of the 3D model. The planar
inertia of the simple model in both of these planes is
estimated using the IC matrix (similar to the projection used
to generate the 3D FPE in [8], [11]).

The height of the horizontal plane and the location and
rotation of the vertical plane require the definition of an
appropriate anchor point for the simplified model. For the
SFPE, the anchor point A0 is chosen to represent the location
of maximum effectiveness for the Centroidal Moment Pivot
point (CMP), as shown in Figure 2.

As discussed in [9], the dynamics of the Divergent Com-
ponent of Motion (DCM) can be controlled using the CMP,
as the DCM always moves directly away from the CMP.
Therefore, placing the CMP on the edge of a biped’s convex
support polygon (SP) in the direction of vC will produce
maximum deceleration of the COM (if the DCM is above the
SP). Similiarly, as described in [7], once the instantaneous
Capture Point (ICP) has exited a biped’s SP, maintaining the
CMP as close as possible to the ICP is found to minimize
the number of steps required to recover.

Unlike the COP or projected COP, which is used in the
GFPE and may be discontinuous, this choice of anchor
point will vary smoothly with changes in C and vC , and
is more likely to be the point around which C will be purely
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Fig. 3. Illustration of the possible state transitions of the SFPE model.
The top row illustrates the case where the initial energy is high enough to
overcome the potential energy well created by the rigid leg, requiring a step.
In this case, the legs are assumed to be equal in length and a balance point,
S, is determined which, when stepped on by a swinging foot, will result in
C stopping above S. If the energy is not high enough to require a step, the
bottom row of state transitions applies. In this case, the swinging leg length
is l∗ = E0/mg and therefore is only equal to l0 when E0 = mgl0.

rotating once a step is needed. When a step is required,
this anchor point also provides the ability to correct for
small disturbances (internal or external) without affecting the
predicted SFPE point (assuming the stance foot is fixed), by
moving the COP around within the support polygon.

In the development of the SFPE, several specific instants in
the progression of the simplified model’s state (x = [θ ω γ])
are used, and are labeled with the following subscripts:
0 The current state of the model,
− Just before the landing foot impacts the ground,
+ Just after the landing foot impacts the ground, and
∗ The final state of the model
As shown in Figure 3, there are several possible state

transitions when using the SFPE. If a step is not required,
an SFPE point is defined within the biped’s SP which can be
used to predict COM motion (as discussed in Section II-A).
Otherwise, finding the SFPE point requires a set of equations
which relate the current state of the biped (x0) to its final
state (x∗), which are separated into three categories:

• Pre-impact equations, relating x0 to x−;
• Impact equations, relating x− to x+; and
• Post-impact equations, relating x+ to x∗.
These three sets of equations are defined in Sections II-

B to II-D, using conservation of energy and/or momentum,
as appropriate. The SFPE point S is then found as the point
which satisfies these equations and results in the desired final
state: in these examples, with C at rest above S.

A. Core Equations

The rotational inertia of the model is estimated for the two
planes introduced above, where IωC and IγC are defined as the
estimates of IC in the vertical ω and horizontal γ planes,
respectively. Using these definitions, the angular momenta
estimates about A (in the two planes) are

kω(ω) = (IωC +ml2)ω = Iωω (1)

kγ(θ, γ) = (IγC +ml2 sin2(θ))γ = Iγ(θ)γ (2)

The estimated kinetic energy T (θ, ω, γ) = Tω(ω) +
T γ(θ, γ) can therefore be written as

T =
1

2
Iωω2 +

1

2
Iγγ2 =

(kω)2

2Iω
+

(kγ)2

2Iγ
(3)

Writing the potential energy as U(θ) = mgl cos θ, we can
then write the system’s total estimated energy as

E(θ, ω, γ) = Tω(ω) + T γ(θ, γ) + U(θ) (4)

If C is above the support polygon, then there is the
possibility that a given disturbance doesn’t require the biped
to step, but simply to shift its CMP. If the current estimated
energy of the model, E0, is no more than the maximum
potential energy (E0 ≤ mgl0), then no step is required
(assuming full control over the CMP) [18].

In this case, the balance point S is defined as the closest
point the COM ground projection G will reach, relative to
the edge of the SP, if the CMP is held at A0. This is found by
setting the final leg length l∗ to the maximum height C will
reach above A0, l∗ = E0/mg, and applying trigonometry to
determine the distance dMIN from G to A0 at that height
(using the constant leg length l0 between C and A0). S is the
point between the current G and A0 which is dMIN away
from A0 (see the bottom row of Figure 3).

If a step is required (i.e., E0 > mgl0), then the three sets of
impact equations are required to determine where to step to
achieve the desired final state. To simplify these equations, it
is assumed that the model’s pre- and post-impact leg lengths
are equal (l0 = l∗ = l) and therefore that all of the above
equations can be used at all instants in question.

As was done in the original FPE method (and its exten-
sions), at each time step the current inertia of the multibody
system is used to estimate the fixed inertia of the simplified
model. For the SFPE, this means the planar inertia estimates
for the two planes of motion (IωC and IγC) are assumed
to be constant at the three critical instants for prediction
purposes. The predicted location of the SFPE balance point
is recalculated at each time step using the current inertial
and dynamic properties of the multibody system, instead of
making one prediction just after the disturbance.

B. Pre-Impact Equations

Pre-impact equations enable prediction of where the biped
will need to step at some point in the future to recover its
balance, by defining x− in terms of the current state, x0.

In [10] and [11], it was assumed that a foot could be
instantaneously placed anywhere on the ground, and there-
fore that x0 = x−. In [6] and [19], conservation of energy
was used to determine the pre-impact equations, although
they assumed vertical planar rotation about the COP (or its
projection) and ignored the biped’s rotational inertia.

Our assumption of spherical motion about A0 leads to a
formulation using conservation of energy and conservation
of angular momentum to determine the pre-impact state, x−.

Since gravity cannot create a torque about a vertical axis
and no active torque is applied about the vertical axis, kγ

around that axis is a conserved quantity. Based on this, the
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Fig. 4. Illustrations showing a bird’s eye view of the vertical plane of
impact and the points C, A0, S, and the DCM ξ. It is clear that although
C is not currently in the impact plane defined by A0 and ξ, that it will be
located in the plane (or very close to it) once impact occurs.

angular momentum around the vertical axis at A0 prior to
impact is assumed to be constant: kγ0 = kγ−.

Defining T γC = (kγ0 )
2/2IγC , we can rewrite T γ(θ−) as

T γ− =
(kγ−)

2

2Iγ−
=

(kγ0 )
2

2IγCη−
=
T γC
η−

(5)

where η(θ) = 1 + (ml2/IγC) sin
2 θ and η− = η(θ−).

Conservation of energy is used as the basis of the pre-
impact equations by setting the pre-impact energy equal to
the current energy (i.e., E0 = E−). We assume that the
values of IωC and IγC , in their respective planes, will have
the same value at impact as their current values, and that
all current values (those with subscript 0) are known. The
only remaining unknowns in the pre-impact equation are the
impact angle θ− and its derivative ω−.

This leads to an equation for Tω− in terms of θ−, known
values E0 and T γC , and constants:

Tω− = E0 −
T γC
η(θ−)

− U(θ−) (6)

C. Impact Equations

Due to the loss of energy during impact, conservation of
angular momentum is used to generate the impact equations
to relate the pre-impact kinetic energy, T−, to the post-impact
kinetic energy, T+. The constants used to generate the pre-
impact equations are also assumed to remain constant across
impact, since there is effectively no change in the model’s
dynamics other than an instantaneous change in velocity.

The vertical plane in which impact will occur is assumed
to currently include both A0 and the DCM ξ (and, of course,
the SFPE balance point S), but not necessarily C, as shown
in Figure 4. This ensures that S is calculated relative to where
C is heading, as opposed to its current location, as the COM
is attracted towards the DCM according to ξ = C + bvC ,
where b is the time constant of the DCM dynamics [9].

Note that the impact and post-impact equations are being
calculated before the future anchor foot lands (i.e., as part of
a prediction), so the predicted landing foot location maintains
its label (A∗). In the vertical impact plane, the angular
momentum around A∗ just after impact will be kω+. However,
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Fig. 5. Illustration of relationship between various angles and points in
the impact plane at the moment of impact (assuming C is in plane during
impact). Since the leg length is assumed constant, the distance from A0 to
C is equal to the distance from A∗ to C. Note that v− is perpendicular to
CA0, while v+ is perpendicular to CA∗.

since the model is assumed to be purely rotating about A0

just prior to impact and about A∗ just after impact, kω+ 6= kω−.
To relate kω+ to kω−, the standard FPE equations for

conservation of angular momentum at impact are used [10].
As shown in Figure 5, due to the geometry of the model the
equality v+ = cos(2α)v− = cos(2α)lw− holds, so kω+ can
be written in terms of ω− as

kω+ = IωCω− +mlv+ =
(
IωC +ml2 cos(2α)

)
ω− (7)

This leads to the dimensionless impact ratio ζ(α) relating
the pre- and post-impact angular momenta in the ω plane:

ζ =
kω+
kω−

=
(IωC +ml2 cos(2α))ω−

Iωω−
(8)

Therefore, Tω+ can be written in terms of Tω− as:

Tω+ =
(kω+)

2

2Iω
=

(ζkω−)
2

2Iω
= ζ2Tω− (9)

Using a similar method, the dimensionless inertia ratio
ψ(θ−, θ+) can be written as (using d(θ) = l sin θ):

ψ =
kγ+
kγ−

=
(IγC −md+d−)γ−

Iγ−γ−
(10)

Combining this with the asumption of conservation of
angular momentum in the horizontal plane leading up to
impact (i.e., kγ0 = kγ−) enables us to write T γ+ as:

T γ+ =
(kγ+)

2

2Iγ+
=

(ψkγ0 )
2

2IγCη+
= ψ2T

γ
C

η+
(11)

D. Post-Impact Equations

After impact, conservation of energy can again be applied
by assuming that the model remains in a fixed configuration
and that the desired final angle θ∗ and final angular velocity
ω∗ are known. This builds on the assumptions that the model
is in pure rotation about A∗ after impact, and that the model’s
fixed parameters (l, IωC , etc) remain constant.

Based on these assumptions, the model’s post-impact
equations can be determined in the same way as the pre-
impact equations. Conservation of angular momentum in the
horizontal plane can be used again to define the equality



kγ+ = kγ∗ . Using the pre- and post-impact conservation of kγ

and the inertia ratio ψ, we can then write T γ∗ as

T γ∗ =
(kγ∗ )2

2Iγ∗
=

(ψkγ0 )
2

2IγCη(θ∗)
= ψ2T

γ
C

η∗
(12)

which, along with the desired values of θ∗ and ω∗, allows us
to calculate the final estimated energy E∗ = Tω∗ + T γ∗ +U∗.

This leads to the post-impact equation, very similar to the
pre-impact equation (6), for Tω+ in terms of only θ−, θ+,
known values E∗ and T γC , and constants:

Tω+ = E∗ − ψ2(θ−, θ+)
T γC
η(θ+)

− U(θ+) (13)

By combining the pre- and post-impact equations (6) and
(13) with the ratios ζ and ψ, the following energy-based
SFPE equation in terms of α, θ−, and θ+ is produced:

E∗ − ψ2T
γ
C

η+
− U+ = ζ2

(
E0 −

T γC
η−
− U−

)
(14)

To determine the location of S, the θ− and θ+ values
must be redefined to allow this equation to be in terms of
one common angle. As shown in Figure 5, these angles can
be defined as θ− = α− β and θ+ = α+ β, where β is the
angle between S and a horizontal plane, measured at A0. For
a horizontal planar ground surface, it is easy to show that
β = 0 at all instants, and therefore that θ− = θ+ = α.

For a planar, but not necessarily horizontal, ground sur-
face, β can be easily determined based on the impact plane
and the value of α. To determine the angle β for intersecting
planar ground surfaces, the methods discussed in [6] can be
used to define β as a function of α and the surface slopes.
In general, it is assumed β can be defined as a function of
α, leading to an equation whose only variable is α.

Solving the SFPE equation for α and applying trigonom-
etry in the impact plane gives the location of S, the SFPE
balance point, with respect to the current anchor point A0.

In general, we assume that the final desired state consists
of C held directly above A∗, by setting θ∗ = 0 and ω∗ = 0.
Based on this assumed final state, the final estimated energy
E∗ is the sum of the final potential energy, U∗ = mgl, and
the final kinetic energy, T∗ = T γ∗ = ψ2T γC .

Although the SFPE has been developed with this specific
final state in mind, an alternative final state would only
require modification to the values of θ∗ and ω∗. For example,
a final state which includes a desired velocity for the COM
(e.g., for gait generation purposes) would require setting
ω∗ 6= 0, and would likely require θ∗ 6= 0 as well. See [10]
and [8] for examples of the application of the FPE and its
extensions for the generation of bipedal gait.

III. COMPARISON

To clearly show the differences between the SFPE and
existing balance point estimators, a simulation of Boston Dy-
namics’ Atlas robot [20] in the MATLAB toolbox Drake [21]
was subjected to initial instantaneous velocity disturbances.
These initial velocities are similar to the disturbances used
in [19] to compare two balance points and the instantaneous
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Fig. 6. System diagrams for the COM-based and SFPE-based control
systems. The labelled signals are: τ for torque, vC for COM velocity, lC for
linear momentum, G for the ground projection of C, S for the SFPE balance
point, qpose for postural joint angles, L(t) and R(t) for the foot trajectories,
and x for the state (joint angles and 6DOF floating base). Dots over a
variable signify a derivative, a bar over a variable signifies a desired value,
and a ∆ in front of a variable signifies an error. In both of these systems, the
optimal controller from [22] is augmented with a linear momentum input,
which is calculated using a proportional gain (K = 5) on an error term. As
shown in (a), for the comparisons in Figure 7 the COM ground projection
error was used. For the comparisons in Figure 8, the controller in (b) was
used, where the SFPE error was used to generate the linear momentum
reference and an SFPE-based stepping controller was included.

velocity changes applied as disturbances in [9]. The optimal
controller from [22] (the default Atlas controller in Drake)
was slightly modified to take a desired linear momentum as
an additional control reference, to be tracked using PD gains
on the linear momentum error (see Figure 6a).

The SFPE is formulated to handle piecewise flat ground,
similar to the GFPE. However, the results in this work have
been generated for flat ground, by setting β = 0 everywhere.
Also, the upper body joints (back, arms, neck) were held
static, to allow fair comparisons between criteria that assume
a point mass at the COM and those with rotational inertia.

The desired linear momentum of the COM was set in
the same way as in [3]–[5], with damping on the COM
velocity and the desired COM set to the center of the single
supporting foot. The SFPE and other balance points are
calculated and graphed at each time step.

Figure 7 illustrates the results and highlights the dif-
ferences between the balance points: The ICP is purely a
function of the COM kinematics and gravity, and therefore is
not directly influenced by inertia, angular momentum, or any
of the internal system kinematics. The 3D FPE also makes
no assumptions about the system’s kinematics, but includes
an impact model, rotational inertia, and angular momentum
in addition to the COM kinematics and gravity.

This effectively means the 3D FPE is an extended form of
the ICP, which includes the system’s rotational properties and
the energy losses due to impact. In these initial comparisons,
due to regulation of angular momentum, the 3D FPE tracks
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Fig. 7. Comparison between the SFPE and other balance points for an Atlas robot [20] when the pelvis is subjected to initial velocity disturbances in the
X direction. The values of the velocity disturbances were chosen to illustrate the differences between the balance points and hold no special significance.
Smaller velocities cause similar patterns to Figure (a), with the COM remaining closer to the foot center, while larger velocities cause the COM to exit the
foot faster. The robot is standing on one foot throughout each simulation, with the ground projection of the ankle shown by a thin blue line, while dashed
blue lines show the toe (top) and heel (bottom) of the foot. Since the angular momentum and COM velocity are damped, the 3D FPE point and ICP are
approximately equal. Since it has no concept of the support polygon, the GFPE point sometimes predicts a step is required when the system can recover
by leaning. Anytime the GFPE does not predict a step is required, the GFPE point is not clearly defined. Here we define it using similar methods as used
for the SFPE (see the bottom row of Figure 3). In these simulations, the robot is controlled using the COM-based controller shown in Figure 6a. In (a),
the COM-based controller is able to compensate for the disturbance. Since no step is required, the SFPE predicts the location at which the COM could
stop, assuming the COP is used to maximum effect (i.e., placed at A0). Note the SFPE and GFPE points start outside of the foot in both cases, due mainly
to their initial kinetic energy assumptions being violated right after the initial disturbance. In (b), the COM-based controller is not able to compensate for
the disturbance, and a step is required. Although the SFPE point returns to the foot temporarily, suggesting that a better controller may be able to avoid
stepping, it then leaves the SP and quickly predicts a stepping location to recover from the given disturbance. Note that in (b) the 3D FPE point and ICP
do not leave the SP until 0.6 s and 0.8 s, respectively, and the GFPE point does not reliably predict a step is needed until 0.8 s and then stops just before
2 s. Also, due to the SFPE including rotational inertia, it predicts a larger step is needed than the GFPE, which only considers a point mass at the COM.

along with the ICP very consistently, confirming this. In
general, it is apparent that the exit of the ICP or 3D FPE
from the support polygon can be used as a good indicator
that the biped will need to take a step in the near future.

However, if a step is required, only the SFPE and GFPE
are predictive and can therefore provide a desired landing
location ahead of time for the motion planner to generate a
suitable trajectory for the swing foot. Although a predictive
CP was discussed in [19], it was shown to be a worse step
indicator than their predictive FPE-based solution, so was
left out of this comparison. Capture regions [7] are also a
predictive extension of the ICP, but require flat ground and
supply a region in which to step based on a minimum step
time instead of a specific location based on COM motion.

As predictive models, the GFPE and SFPE use an anchor
point to define the pre-impact equations of motion, which
directly influences their associated balance points. The GFPE
anchor point is at the orthogonal projection of the COP into
the vertical plane used for the GFPE model (described in
Section I-A). This means the GFPE anchor point moves due
to changes in the relative locations of the ICP, COM, or COP,
which causes the GFPE point in Figures 7b and 8a to falsely
predict a step is needed when the biped is balanced. This is
also the cause of the fluctuations in the GFPE in the figures.

The GFPE equations are not clearly defined when the
initial energy is lower than the model’s peak potential energy.
In this work, we assume this no-step-required GFPE point is
defined similarly to the SFPE when no step is required.

Instead of using the projected COP, the SFPE anchor point
moves along the edges of the stance foot, which is kine-
matically fixed (barring foot rotation or slipping) and moves

smoothly. Also, when no step is required, an alternative set
of equations are defined for its use as a predictive COM
reference signal (see Section II-A). During this low energy
portion of motion, the SFPE predicts where the COM will
stop, assuming a COP at A0. Unlike the 3D FPE or GFPE,
which only consider energy in a vertical plane, the SFPE
also takes into consideration the kinetic energy due to motion
about a vertical axis, which causes the model’s kinetic energy
to be both smoother and closer to the real kinetic energy.

IV. SFPE-BASED CONTROLLER

As a proof of concept, we demonstrate that the SFPE can
be used for both leaning and stepping using an example of
an SFPE-based controller. This controller uses a proportional
gain on the error between the current and desired SFPE
points (at each time step) to generate a desired COM velocity,
which is then multiplied by the mass of the robot to produce
a linear centroidal momentum reference (see Figure 6b).

If the desired SFPE is set as the ground projection of
the desired COM location, the key difference between this
controller and the COM-based controller is the error term
used to generate this linear momentum reference. The new
controller uses the error between the predicted future COM
ground projection (i.e., the current SFPE) and the desired
COM ground projection, as opposed to using the error
between the current and desired COM ground projections.

As shown in Figure 8, this momentum reference signal
enables the robot to respond to stronger disturbances without
losing its balance. The only difference between Figures 7b
and 8a is the formulation of the momentum reference which
is provided to the CMM controller. This is clearly shown
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(a) X Disturbance of 0.420 m/s
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Fig. 8. Comparison between the SFPE and other balance points when the pelvis is subjected to large initial velocity disturbances in the X direction, and
an SFPE-based controller is used instead of the COM-based controller. Immediately after the disturbances, the SFPE is far from its desired location (the
foot center), which causes the controller to generate a desired COM velocity which will bring the SFPE back towards its desired location (as shown in
6b). Note that other than changing the method for generating the reference momentum, the conditions of (a) are identical to those in Figure 7b, including
standing in single support at rest before the disturbance. Again, the SFPE and GFPE points start outside of the foot due to their initial kinetic energy
assumptions being violated right after the instantaneous velocity disturbance. However, in (b) the SFPE point maintains its position outside the foot over
several time steps, so a step is required. The SFPE point is used as a control reference to place the raised foot on the ground (as shown at approximately
0.3 s into the simulation, using dashed red lines for the extents of the right foot and a thin red line for the ground projection of the right ankle). Note
that in this case, the COP immediately moves to the toes of the landed foot, moving the SFPE point (and the DCM and COM) back towards the desired
location at the center of the original support polygon (the left foot). For larger velocities, a longer step is required but the behavior is qualitatively similar.
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(a) Using COM-Based Controller
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(b) Using SFPE-Based Controller

Fig. 9. Comparison between the linear momentum behavior for the COM-
and SFPE-based controllers. The results in (a) correspond to Figure 7b,
while those shown in (b) correspond to Figure 8a. As shown here, since the
SFPE predicts where G will come to rest if the COP is placed at A0, it
can be used to preemptively move the COM backwards.

in the linear momentum graphs of Figure 9, where the
immediate reaction of the SFPE-based controller (Figure
6b) allows the biped to remain balanced, while the delayed
reaction of the COM-based controller (Figure 6a) does not.

The SFPE controller’s response to a larger disturbance is
shown in Figure 8b, where even though the controller is able
to react immediately, the limitations of balancing solely using
the COP are exceeded and, in the absence of other strategies,
a step is needed. When taking a step, the controller uses the
SFPE point as a control reference to help determine where
to place the swinging foot. As shown in Figure 8b, the foot
is placed to ensure that the COP can be positioned to allow
it to move the SFPE back into the original support polygon.

It should be noted that the robot itself is not constrained to
the assumed motion of the simplified pendulum, and in fact
departs significantly from the 3D pendulum motion that is
predicted using the SFPE’s internal model. In fact, evidence
of this is clearly shown at the beginning the graphs in Figures
7 and 8, where the SFPE and GFPE points are initially

located outside the foot just after the disturbance due to
violations of their kinetic energy assumptions.

Much like the FPE point, the SFPE point serves only as
an estimate (albeit a reasonably good one) of where the full
multibody system should step to come to rest. A dual version
of the SFPE with an anchor point at each of the robot’s
ankles and a corresponding stepping point for each foot was
also developed, but was found not to perform as well as the
support-polygon-based SFPE that was used in this paper.

A selection of dynamic simulations, including those shown
in Figures 7 and 8, can be viewed in the accompanying video.

V. DISCUSSION

The SFPE evaluates the current system dynamics in 3D
by finding the current centroidal momentum and inertia
and the overall energy of the system. It was designed to
address the drawbacks of existing balance point estimators,
by incorporating and extending desirable features of the
GFPE, 3D FPE, and other methods discussed in Section I-A.

Like the GFPE, the SFPE is predictive and can be applied
to piecewise planar ground surfaces. Unlike the GFPE or the
predictive estimators in [19], the SFPE also defines a balance
point when it does not predict that a step is required, which
can be used for leaning control. The SFPE also includes
knowledge about the support polygon, instead of using the
projected COP anchor point of the GFPE, avoiding false
indications that stepping is required when it is not.

Unlike the more common ICP, FPE, and 3D FPE, the
SFPE is predictive, which enables it to estimate both when
a step is required and where to step ahead of time, allowing
time to plan a swing foot trajectory. Although we have
previously used the 3D FPE for the control of a biped in
[8], the predictive nature of the SFPE and its inclusion of
non-flat ground make it the better choice in most cases. This



prediction also incorporates rotation about a vertical axis,
which is a novel estimator feature not found in the literature.

The main limitation of the SFPE approach is due to the
estimation of the inertia in the two assumed planes of motion,
ignoring any intrinsic rotation of the system about the COM,
coupled inertia terms, or changes in centroidal inertia, and
the assumption of a constant leg length in the simplified
model. As discussed in [11], a numerical sensitivy analysis
can be conducted to judge the effects of these assumptions.

The original FPE, on which the SFPE and 3DFPE are
based, was found to be insensitive to changes in leg length,
moment of inertia, or overall energy [11]. A direct effect of
these assumptions is the location of the SFPE point being
outside of the foot when the system is subject to a large
initial velocity disturbance (as seen in Figures 7 and 8).

Some insight into the behavior of a biped at impact can
be gained by analyzing the ζ(α) = kω+/k

ω
− inertia ratio of

equation (8). The equation can be further simplified, using
the trigonometry identity cos(2α) = 1− 2 sin2 α, to

ζ(α) = 1− 2(ml2/Iω) sin2 α (15)

By assuming a maximum leg separation of π/2, the range
of α is restricted to 0 ≤ α ≤ π/4, which leads to the
inequality: 0 ≤ 2 sin2 α ≤ 1. In other words, the angular
velocity of the biped is reduced during impact by the product
of the positive inertia ratio, ml/Iω ≤ 1, and a positive
scaling factor, 2 sin2 α ≤ 1. Therefore, 0 ≤ ζ(α) ≤ 1.

Effectively, this means that for a given biped which can be
approximately modeled as above, the loss of energy at impact
is purely a function of the separation angle of the legs, 2α.
It also means that if an impulsive force is generated by the
biped’s stance leg at the moment of impact, which produces
an increase in ω+ equal to the loss due to impact above, the
effects of impact on the biped could be ignored. Since the
effects of impact are routinely assumed to be negligible in
many humanoid control strategies, the equations above could
be used to develop a simple controller which might enforce
the validity of the lossless-impact assumption.

Finally, a number of existing controllers can benefit from
the SFPE, particularly those without the capability to gener-
ate footsteps online or which do not control momentum. For
example, the optimal controller from [22] (Drake’s default
Atlas controller) was augmented with linear momentum
feedback using the SFPE (see Figure 6b), enabling an easy
combination of their pre-planned movements with online
compensation while adding minor additional complexity.

VI. CONCLUSION

In this work, a novel balance point estimator called the
Spherical Foot Placement Estimator has been introduced. It
has been formulated to overcome a number of drawbacks of
existing balance point estimators, by combining and extend-
ing desirable features of several different balance points.

The SFPE was compared to other balance point estimators,
and was shown to outperform them by providing recov-
ery step location prediction and momentum objectives with
smooth dynamics. An SFPE-based feedback loop was used

in a momentum-based controller as an example of how to add
leaning to an existing whole-body controller and a dynamic
SFPE-based stepping strategy was used to deal with large
disturbances, demonstrating its utility in bipedal control.

Future work will include examinations of varying leg
lengths, changing rotational inertia, experiments on a variety
of sloped/varying terrain, and the generation of other possible
formulations of the pre-impact equations to produce a more
general SFPE. A comparison of the SFPE to more balance
point estimators is also left to future work, either directly or
via integrated controllers designed for this purpose.
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