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Chance-Constrained Rollover-Free Manipulation
Planning with Uncertain Payload Mass
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Abstract—This paper presents a chance-constrained rollover-
free manipulation planning method for robotic arms under
payload mass uncertainty. The corresponding motion planning
problem is stated as a chance-constrained nonlinear optimal
control problem (NOCP) subject to kinematics and rollover
stability constraints. The latter takes the form of a chance
constraint that ensures a certain probability of the robot main-
taining dynamic rollover stability in the presence of payload
mass uncertainty. To achieve efficient solutions to the NOCP, a
novel geometric bound for the stability region is derived. The
novel bound is then utilized to modify the rollover-stability
constraint. To showcase its benefit, comparisons between the
proposed bound of probabilistic rollover stability measure and
the naive noise model are provided through statistical analysis.
The formulation’s practicality is demonstrated through experi-
ments with a Kinova Jaco 2 arm mounted on a free-to-roll-over
platform. Results demonstrate greater robustness of the robot’s
motion plan to mass uncertainty and computational efficiency
of the trajectory generation.

I. INTRODUCTION

A. Background

Robotic manipulation is needed in a wide range of appli-
cations in unstructured and rough environments since many
types of mobile platforms are equipped with manipulator-
like cranes for working outdoors and in the field. Well-
known mobile manipulator platforms include extraterrestrial
exploration robots and heavy industrial machines, such as
excavators, feller-bunchers, and loaders. These and other
vehicles used in construction, forestry, and mining industries
regularly operate on highly unstructured uneven terrain and
are required to manipulate heavy loads during their opera-
tions, while the mobile base remains stationary. The afore-
mentioned circumstances create substantial rollover risks
which, aside from the potential damage to the machine
and its load, also create safety concerns for the operators.
The operation of a feller-buncher, which partly motivates
our research, provides a relevant illustrative example: the
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machine is a vehicle equipped with a hydraulic crane for
felling trees; it operates in forests on rough and often steep-
sloped terrain. The manipulator-like crane cuts and places
trees1 in a storage location where they are bunched—a
maneuver potentially creating a rollover hazard.

The focus of this paper is motion planning for payload ma-
nipulation, as required on mobile platforms like the examples
just cited, which are prone to dynamic rollover instability.
Our specific goal is to develop a trajectory planner which
accounts for the effect of payload mass uncertainty. One
obvious solution to this problem is to plan so as to guarantee
stability for the full range of possible payload masses; how-
ever, we posit that this may either lead to a solution being
infeasible or to unduly conservative planning. Since time
efficiency of manipulation maneuvers is important for many
applications, the solution proposed in this work provides a
more efficient alternative.

B. Related Literature

Rollover stability of a moving or stationary machine
equipped with a large-scale, powerful robotic arm can be
conveniently quantified with a Zero Moment Point (ZMP)
dynamic stability measure [1]. Originally introduced in [2],
an early implementation of ZMP as a measure of dynamic
stability for a mobile manipulator is presented in [1], and fur-
ther work on mobile robots with stability constraints evolved
from it. Guided by the ZMP formulation, a mobile manipu-
lator’s base generates stability-compensating motions, while
the manipulator arm is executing tasks [3], [4]. By using
potential functions derived from stability measures including
the ZMP formulation, stability-compensating motion can
also be generated for manipulator arms, as demonstrated in
[5]–[10]. However, stability-compensating motions aim to
complete a task while optimizing stability, while stability-
constrained time-optimal motions aim to complete a task
within the shortest amount of time without violating the
stability constraint. The former will in general be less time-
efficient than the latter. Therefore, a planning method that
employs the ZMP measure as a constraint so that motions
are only altered for stability compensation when rollover is
imminent is worth exploring.

To address stability issues involved with mobile manip-
ulation and navigation, some recent works [11]–[13] also
showed promising results. Among all these, [13] is most

1https://youtu.be/fn8MZc15vcY
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relevant to our work since it involves applying the ZMP
constraint to the trajectory optimization of a wheeled-legged
quadrupedal robot. However, since the focus of [13] is to
plan the overall motion of the quadruped, to speed up the
trajectory optimization component, the ZMP constraint is
applied to the robot by treating it as a single rigid body sup-
ported by massless legs. Although the rigid body assumption
is valid for planning overall motions when leg motions are
limited, it does not apply to manipulation planning due to
the heavy masses located away from a robot’s body/base.

For base-stationary manipulations specifically, rollover
prediction systems were developed in [14]–[16] to achieve
safe truck-trailer and excavator operations. However, [14]
and [15] carried static stability assumptions in their treat-
ment of the rollover-avoidance issue and [16] is focused
on the rollover-free modification of a human tele-operator’s
control input using normalized energy (NE) stability mea-
sure, without considering autonomous manipulation plan-
ning. None of the aforementioned works apply to more com-
plex manipulation tasks where the autonomous manipulator
moves fast and the loads are heavy. Hence, our work does not
treat manipulator reconfigurations as static and gives special
care to the dynamic effects of autonomous manipulation.

In the context of time-optimal rollover-free manipulation
planning, the dimension reduction technique to produce a
kinematically simpler, yet functionally close topology of the
crane has been demonstrated to allow for online motion
planning in our previous work [17]. In that work, the ZMP
measure is used as a constraint for the nonlinear time-
optimal control formulation of the motion planning problem.
However, the ZMP stability constraint was treated in a
deterministic way, meaning, that perfect knowledge of the
manipulated payload mass is assumed. In reality, although a
robot can be equipped with sensors to estimate the payload
mass, the estimation may not be precise. This is especially
the case in timber-harvesting operations and open-pit mining
where the machines are hydraulically actuated and payloads
are irregular and often too heavy for precise apparatus such
as a force/torque sensor to be employed. As a result, when
a robot is executing motions close to its stability limits on
rough terrain, a deterministic ZMP planning formulation can
generate trajectories that violate the stability constraint due
to payload mass uncertainty.

To accommodate the payload mass uncertainty caused
by either absence of estimation or corresponding errors, a
chance-constrained trajectory planning formulation is ex-
plored here. Within the chance-constrained framework, we
propose to implement a constraint on the probability of ZMP
constraint violation. Several recent research works [18]–[20]
in the context of autonomous driving and flight have shown
the benefit of calculated risk-taking enabled by chance
constraints. However, all of the aforementioned works focus
on collision avoidance issues that are addressed with a
different approach and are for vehicles different from those
considered here. At the application level, this means that the
previously demonstrated solutions [18]–[20] cannot guaran-

tee rollover stability. From the theoretical perspective, the
uncertainty models and the problem formulations in [18]–
[20] cannot be applied to the ZMP-constrained planning
problem as collision avoidance constraints are formulated
in the Euclidean space while the ZMP measure is a function
related to the robot, and the payload’s kinematic states and
inertial parameters. Hence, the modeling of stochastic ZMP
measure has to be separately addressed.

C. About this Paper

In this paper, we consider the ZMP-stable manipulation
planning on inclined terrain with the knowledge of an
estimated payload mass and the distribution of that esti-
mate. Using the distribution, a chance-constrained trajectory
planning problem can be formulated. Consequently, the
method will allow different robots to adjust the manipulation
performance according to variables such as mass sensing
accuracy, terrain steepness, actuator limits, and payload to
overall mass ratio. To the best of the authors’ knowledge, the
proposed method is the first to address the above issues and
the experiments are the first of this kind to show the real-
world performance of rollover-free manipulation planning.
The proposed method also has the additional benefit of being
computationally efficient for online planning so new motion
plans can be generated fast enough for different payload
objects and arm configurations, so as not to impede the
robot’s speed of operation.

The structure of this paper is as follows: In Section II,
a brief theoretical background will be provided for the
kinematic equation of a mobile manipulator and the ZMP
stability measure. In Section III, we present the trajectory
planning optimal control problem (OCP) formulation along
with the chance constraint. In Section IV, a geometrical
transformation of the chance constraint for the ZMP measure
will be introduced for improved computational efficiency.
In Section V, the performance of the proposed method
will be shown through a numerical demonstration and an
experiment. Section VI will conclude the paper.

II. THEORETICAL BACKGROUND

A. Simplified Kinematic Model of Mobile Manipulator

The kinematic model of a mobile platform equipped with
a serial manipulator (crane) can be derived by treating it
as a system of links connected by various joints, with link
index i ∈ {0, 1, · · · , n}, where n refers to the end-effector
and payload link. The inertial and body-fixed reference
frame of each link is denoted by I and Fi, respectively.
To achieve a fast computation speed for online planning, a
dimension reduction as mentioned in [17] for the manip-
ulator is implemented. To reduce the problem dimension,
a simplified manipulator model that only involves the end-
effector’s angle q1 measured about the vertical rotation axis
of joint 1 (the swing joint) and distance d from that axis,
along with their rates and accelerations relative to the swing
axis are used. This simplification, illustrated in Figure 1, is
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feasible under the condition that the full manipulator states
can be recovered using a differentiable inverse kinematics
equation [17]. The simplified kinematics is written in the
general form:

˙̃x = g̃(x̃, ũ), (1)

where x̃ = [q1, q̇1, d, ḋ]
T , and ũ = [uq1 , ud]. Recalling that

subscript n refers to the end-effector and payload component
of the robot, the x and y components of pF0

n − pF0

b

which locates the end-effector relative to the base loca-
tion in base frame F0 can be expressed as [xn, yn]

T =
[−d sin q1, d cos q1]

T . Although the base is considered to
be static in this paper, different base orientations can be
addressed as a result of differentiating reference frames I
and F0.

Fig. 1: Schematic diagram of a mobile manipulator reduced
dimensions (left) and the support polygon (right).

In addition to the kinematics equation (1), a geometric
construction called the support polygon is used in this paper.
The support polygon, denoted by Conv(S), is a convex hull
formed by the contact points between the mobile base and
the ground. The support polygon, illustrated in the right of
Figure 1, is rectangular-shaped for most mobile platforms
supported by tracks or four wheels.

B. ZMP Dynamic Stability Measure

The ZMP measure, originally proposed in [2], is a method
designed to quantify the dynamic stability of connected rigid
bodies situated on ground surface, by using their kinematics
and inertial parameters. Due to the potential of the ZMP
formulation to speed up computations compared to dynamics
based methods, it became our method of choice.

According to [1], the location of ZMP is found based on
the following equation:

MF0
zmp =

n∑
i=0

(pF0
i − pF0

zmp)×mi(p̈
F0
i − gF0) (2)

where n stands for the highest link index, MF0
zmp =

[0, 0,Mz]
T , pF0

zmp − pF0

b = [xzmp, yzmp, 0]
T is the ZMP

location relative to the base frame, pF0
i −pF0

b = [xi, yi, zi]
T

is each link’s relative center of mass coordinates, p̈F0
i =

[p̈x,i, p̈y,i, p̈z,i]
T is each link CoM’s absolute acceleration

in 3-D space, and gF0 = RgI = [gx, gy, gz]
T denotes the

gravitational acceleration expressed in body-fixed frame F0,
where R is a rotation matrix that captures the orientation

change between I and F0. The superscript F0 signifies a
quantity expressed in the base-fixed frame F0.

Subsequently, the coordinates of the ZMP relative to the
base frame are written as

xzmp =

∑
i mi(p̈z,i − gz)xi −

∑
i mi(p̈x,i − gx)zi∑

i mi(p̈z,i − gz)

yzmp =

∑
i mi(p̈z,i − gz)yi −

∑
i mi(p̈y,i − gy)zi∑

i mi(p̈z,i − gz)
.

(3)

Thus, the vehicle is dynamically stable when pzmp ∈
Conv(S), but has the tendency to roll over otherwise. More
details on (1), (2), and (3) can be found in [21] but are
omitted here to allow for the main focus of this paper.

III. CHANCE CONSTRAINED TRAJECTORY PLANNING
WITH SIMPLIFIED KINEMATICS

Recalling the possibility of ZMP violation caused by pay-
load mass inaccuracy, as we discussed in Section I, the ZMP
coordinates can be treated as a function of a random variable
mn that represents the payload mass, which we assume
remains constant over the planning horizon. In the context
of manipulation, the ZMP coordinates are also evolving with
time. For a machine whose motion can be described by (1),
the ZMP stability constrained trajectory planning problem
with specified initial and final configurations can thus be
formulated into the following nonlinear OCP (NOCP):

min
u

∫ tf

t0

1 dt. (4)

s.t. ˙̃x = g̃(x̃, ũ) x̃(t0) = x̃0 x̃(tf ) = x̃f

x̃ ≼ x̃(t) ≼ x̃, ũ ≼ ũ(t) ≼ ũ

Pr
(
pzmp(mn, t) ∈ Conv(S)

)
≥ ρ ∀ t ∈ [t0, tf ]

(4a)

where ≼ is defined as vector component-wise inequality, un-
derline · and overline · stand for the lower and upper bounds
on a variable, respectively. The state and input constraints
ensure that the machine’s configuration, the corresponding
rates, and accelerations are feasible. With Pr(·) representing
the probability of an event, the inequality (4a) represents the
chance constraint expressed in probability of violating the
ZMP constraint.

The real number ρ ∈ (0, 1) is a user-specified threshold on
that probability and is defined based on the risk tolerance
of specific applications. It is worth noting that ρ = 1 is
excluded in the formulation due to the analytical results,
as presented in the latter part of this paper, being based
on normally distributed uncertain mass. As an example,
for manipulators mounted on platforms that possess self-
recovering capabilities, such as the Spot2 platform, ρ can
be set to values lower than 0.95 to allow for less limiting
motions since the robotic platform can recover itself from
a fall without much effort. In contrast, for autonomous mo-
bile manipulators commonly used in the timber harvesting

2https://www.bostondynamics.com/products/spot
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industry, ρ ≥ 0.99 is more appropriate due to the difficulty
of rollover recovery.

It might be tempting for one to address the mass un-
certainty issue by deriving a safety margin for the ZMP
constraint based on the payload mass extrema. However,
this is likely to become a conservative and thus self-limiting
margin that results in the robot not being able to manipulate
a payload even when it is safe to do so. Additionally, a
chance constraint framework employed here is more general
in the sense that it can be easily modified to accommodate
a scenario where the user would like to guarantee 100%
success based on payload mass extremum information, as the
extremum can be treated as a finite-sized 100% probability
bound, while the reverse cannot be said.

As pointed out in [17], solving the ZMP constrained
NOCP for simplified kinematics as defined in (4) also
guarantees the dynamic stability of the real robot with full
kinematics since the ZMP constraint in (4) is calculated
from the full kinematics, mapped from the simplified one.
Therefore, the chance-constrained formulation (4) can main-
tain the probability of ZMP-stable condition for the real
robot above threshold ρ at any time instant t along the
trajectory. It is worth noting that, as mentioned in [22],
the now added nonlinear chance constraint (4a) results in
(4) being numerically inefficient to solve as its gradient
can only be evaluated numerically at every computational
iteration. Therefore, a geometric interpretation of (4a) is
required to reduce the numerical complexity added by the
chance constraint.

IV. GEOMETRIC INTERPRETATION OF
CHANCE-CONSTRAINED ZMP

For many manipulators used to relocate heavy payloads,
such as the articulated machines used in forestry, the main
component of most pick-and-place motions is sideways or
lateral load transportation. It is on these types of motions
that we focus the theoretical development in this section. The
measured payload mass m̄n is also assumed to be normally
distributed around the actual mass mn with reasonable error.
Consequently, the derivation of the chance constraint is
based on the following assumptions:

Assumption 1. The accelerations of the robot’s links in the
base-fixed z0 direction and the extend/retract velocity and
acceleration, ḋ and d̈, are negligible when executing lateral
movements.

Assumption 2. The measured payload mass follows a
normal distribution m̄n ∼ N

(
mn, σ

2
)

where σ ≪ Σimi.

A. Chance-constrained ZMP Bound

With Assumption 1, the ZMP coordinates (3) can be
written as:

xzmp =

∑
i migzxi −

∑
i migxzi +

∑
i mip̈x,izi∑

i migz

yzmp =

∑
i migzyi −

∑
i migyzi +

∑
i mip̈y,izi∑

i migz
.

(5)

Defining [xc, yc, zc]
T = pF0

c − pF0

b =
∑n

i=0 mi(p
F0
i −p

F0
b )∑n

i=0 mi

as the center of mass location of the whole robot including
payload in F0, (5) can be represented as

xzmp = xc −
gx
gz

zc +

∑
i mip̈x,izi∑
i migz

yzmp = yc −
gy
gz

zc +

∑
i mip̈y,izi∑
i migz

,

(6)

which can be re-arranged into the following form:[
xzmp
yzmp

]
=

[
1 0 − gx

gz

0 1 − gy
gz

]
︸ ︷︷ ︸

P

(pF0
c − pF0

b ) +
1

gz

[∑
i
mip̈x,izi

M∑
i
mip̈y,izi

M

]
,

(7)
where M =

∑
i mi is the total mass including the payload

mass. The division by gz in (7) is valid as long as gz ̸= 0,
which holds for ground vehicles where gz < 0 is guaranteed
by definition.

Denoting variables associated with the measured payload
mass with ·̄ and error terms with ·̃, the difference between
the actual ZMP coordinates (7) and the nominal ZMP can
be expressed as:

p̃ = pzmp − p̄zmp

= P p̃c +
1

gz

[∑
i
mip̈x,izi

M −
∑

i
m̄ip̈x,izi

M̄∑
i
mip̈y,izi

M −
∑

i
m̄ip̈y,izi

M̄

]
,

(8)

where p̃c = pF0
c − p̄F0

c is the difference between the
actual center of mass position and the estimated one. Under
Assumption 2, (8) can be further simplified to

p̃(m̃n) ≈
m̃n

M
P (pF0

n − pF0

b ) +
m̃nzn
Mgz

[
p̈x,n
p̈y,n

]
, (9)

where m̃n = mn − m̄n. A bound on the ZMP estimation
error can be derived based on triangle inequality from (9),
using the Euclidean norm ∥ · ∥:

∥p̃(m̃n)∥ ≤ |m̃n|
M

max
(∥∥∥P (pF0

n − pF0

b )
∥∥∥)

+

∣∣∣∣m̃nzn
gzM

∣∣∣∣max
(∥∥∥∥[p̈x,np̈y,n

]∥∥∥∥) .
(10)

Since gz < 0, and P (pF0
n −pF0

b ) represents mn’s center of
mass location projected along the vertical direction onto the
support polygon, max

(∥∥∥P (pF0
n − pF0

b )
∥∥∥) is achieved when

the end-effector is fully extended and [xn, yn]
T points in

the same direction as the terrain gradient represented in F0.

Therefore, the newly defined hs,max =
max

(∥∥∥P (pF0
n −p

F0
b )

∥∥∥)
M

can be found based on the orientation of the base. By taking
the second order derivative of pF0

n defined in Section II-A
with respect to time and neglecting the ḋ and d̈ terms, we
arrive at: [

p̈x,n
p̈y,n

]
=

[
d sin q1q̇

2
1 − d cos q1q̈1

−d cos q1q̇
2
1 − d sin q1q̈1

]
, (11)
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and taking the max 2-norm of (11), we obtain

an,max=max
(∥∥∥∥[p̈x,np̈y,n

]∥∥∥∥)=√d2maxq̇
4
1,max + d2maxq̈

2
1,max.

(12)
Since ∣∣∣∣m̃nzn

gzM

∣∣∣∣ an,max ≤ zn
−gzM

an,max|m̃n|,

by defining hd,max = zn
gzM

an,max, and τ = hs,max +
hd,max, we arrive at:

∥p̃(m̃n)∥ ≤ τ |m̃n|, (13)

where τ |m̃n| is a function of the robot’s orientation, config-
uration limits, angular rate and acceleration limits, inertial
parameters, and mass uncertainty.

Define Γ(γ) as a closed set [0, γ] where γ ∈ R+. Since
the magnitude of ∥p̃(m̃n)∥ is bounded by τ |m̃n| as derived
in (13), we further arrive at:

Pr(∥p̃(m̃n)∥ ∈ Γ(γ)) ≥ Pr(τ |m̃n| ∈ Γ(γ)), (14)

and hence Pr(∥p̃(m̃n)∥ ∈ Γ(γ)) ≥ ρ is guaranteed for
any probability threshold ρ when Pr(τ |m̃n| ∈ Γ(γ)) ≥ ρ.
Since Pr(τ |m̃n| ∈ Γ(γ)) = Pr(τm̃n ∈ [−γ, γ]) and, under
Assumption 2, τm̃n ∼ N

(
0, τ2σ2

)
, it is straightforward to

find the chance-constrained ZMP bound

γ : Pr (τ |m̃n| ∈ Γ (γ)) ≥ ρ. (15)

Geometrically, the inequality (15) can be interpreted as: the
chance of the ZMP being located within a distance γ away
from the nominal ZMP is greater than ρ. It is worth noting
that since the magnitude of γ is linear with respect to m̃n, the
derivation of γ provided in this paper can easily be extended
to other non-normal statistical distributions of m̃n, as long
as the distribution has defined probability bounds.

B. Chance-constrained Rollover Avoidance

As illustrated by the inequality (14) in Section IV-A, once
γ has been determined from (15), the following inequality:

Pr(∥p̃(m̃n)∥ ∈ Γ(γ)) ≥ ρ (16)

is guaranteed. Intuitively, inequality (16) shows that more
than ρ of the ZMP distribution can be bounded within a
circle with center p̄zmp and radius γ denoted by O(p̄zmp, γ).
Therefore, the chance constraint (4a) can be replaced by
bounding the circle within the support polygon:

O(p̄zmp(t), γ) ∈ Conv(S) ∀ t ∈ [t0, tf ]. (17)

The new constraint (17) is equivalent to constraining the
ZMP to stay within a smaller support polygon Conv(S)−

that is geometrically similar to Conv(S), whereby each new
edge is a distance γ closer to the interior from its original
position.

It is worth noting that since the variable γ of the circle
O(p̄zmp, γ) is derived from (13), it takes into account multi-
ple factors, including the chance constraint threshold ρ and
robot properties. Specifically, hs,max|m̃n| is a function of

static factors including the ratio between mass estimation
uncertainty and overall mass of the robot, the coordinates
in space of the uncertain mass, and the robot’s orientation;
hd,max|m̃n| is a function of most static factors along with
dynamic factors, including maximum joint rates and joint
accelerations in the form of maximum acceleration of the
uncertain mass. As a result, the robot’s motion can adapt to
different scenarios and can appear more “aggressive” when
the parameters are in favor of stability while less so other-
wise. This behavior can be observed from the simulations
and experiments presented in the following Sections V and
VI.

V. SIMULATION RESULTS

To help illustrate how the chance-constrained formulation
can deal with payload mass uncertainty, we begin by pre-
senting simulation results in this section. For the simulations,
a 6-DoF Kinova Jaco 2 arm3 in Figure 2 mounted on a free-
to-roll-over platform will be the robot of choice.

Fig. 2: Joint axes definition of the Kinova Jaco 2 arm.

A. Manipulator Platform Parameters

In order to emulate the motion of articulated machines
such as feller-bunchers and excavators, the fourth joint of
the Jaco arm is kept unchanged and hence only 5 DoFs of
the arm are utilized. Details of the inertial parameters of the
Jaco 2 can be found online4. The arm’s joint angular rate
(rad/s) and acceleration (rad/s2) limits are:

−0.55 ≤ q̇1 ≤ 0.55, − π/2 ≤ q̈1 ≤ π/2

−0.45 ≤ q̇2−5 ≤ 0.45, − π/2 ≤ q̈2−5 ≤ π/2.
(18)

The Jaco 2 arm is mounted onto a free-to-roll-over plate-
like base with dimensions of 40x50x5 cm and with a mass
of 2.271 kg. The base is designed to allow the robot to roll
over during most operations. Rollover is especially likely to
happen when the arm has a payload in its end-effector. Three
objects: a roll of tape, a wrench, and a weight will appear in
various tests. The masses of the tape and wrench are 0.370
kg and 0.677 kg, respectively. The payload named “1 kg” is
the cylindrical weight with a mass of 1 kg.

3https://assistive.kinovarobotics.com/product/jaco-robotic-arm
4https://github.com/Kinovarobotics/kinova-ros
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B. Statistical Analysis

To demonstrate the properties of the proposed chance
constraint formulation (17), the ZMP distribution of the
robot is found by solving (3) of the robot’s full kinematics
with payload masses randomly sampled from a normal
distribution with mean equal to the estimated mass. The
distribution of the payload mass follows ∼ N (0.370, σ2),
where the mean 0.370 kg corresponds to the mass of a roll
of tape. Four scenarios that consist of 5000 mass samples
each are considered. Each scenario is defined by a set of
parameters shown in Table I that includes a pitch angle θ
(nose up corresponds to positive pitch) of the robot base
resulting from terrain surface unevenness, and an assumed
payload mass standard deviation. The proposed bounding
circle is then found for each scenario so its coverage rate of
the ZMP distribution can be shown.

To demonstrate the effectiveness of the proposed bound
when a robot’s configuration changes, for all scenarios
except scenario 2, q1 is sampled uniformly from [0, 2π].
For scenario 2, q1 is sampled uniformly from the range
[− 1

8π,
1
8π] to show the coverage rate near worst-case con-

figuration. The worst-case configuration exists in scenario 2
due to the non-zero terrain surface angle (θ = −30◦) . In
scenario 4, an extra mass is assigned to the robot’s base so
the impact on the proposed bound γ due to a robot’s mass
change can be illustrated. In all four scenarios, maximum
joint velocity and acceleration are prescribed to joint q1
to showcase the performance of the method for dynamic
motions.

As a comparison to the proposed circular bound, a naive
constraint circle, referred to as the “naive circle” in the
following, is employed. For normally distributed payload
mass, the naive circle is a circular bound that covers the
threshold probability of the ZMP distribution for the robot
on a horizontal terrain surface. Due to the lack of an existing
formulation, the naive circle is generated without consider-
ing the effect of changes in the robot’s mass. Both the naive
and proposed chance-constrained circles are constructed to
bound 2σ (ρ ≈ 0.95) of the dynamic ZMP distribution. For
the simulation results to stay consistent with the analysis
provided in Section IV, −2σ can result in uncertain payload
mass becoming negative. This, however, does not cause any
problems since the impact of this negative mass on ZMP
location is similar to total mass reduction of the robotic
arm: it brings the ZMP further inside Conv(S) and is of
less importance compared to the +2σ extremum.

Scenario θ (deg.) σ Extra mass (kg) γ (cm)
1 0 0.4 0 4.74
2 −30 0.4 0 6.64
3 0 0.5 0 5.93
4 0 0.4 3 3.63

TABLE I: Four scenarios considered in the statistical anal-
ysis, their associated parameters, and bound radius γ.

The statistical analysis results for the aforementioned
scenarios are shown in Figure 3, where (3a)-(3d) correspond,

(a) Scenario 1. (b) Scenario 2.

(c) Scenario 3. (d) Scenario 4.

Fig. 3: Simulated ZMP estimation error to showcase the
benefit of the proposed ZMP margining method over a naive
method. The sample coverage rates are presented in the
title of each plot. Since the joint angle of the robot is also
sampled randomly, the ZMPs are normalized by taking the
difference between each sampled ZMP and the nominal ZMP
that corresponds to its configuration. Therefore, sampled
∆ZMPs are shown in each plot along with the normalized
center with coordinate [0, 0]T .

respectively, to scenarios 1-4. Figure (3a) shows that the
proposed circular bound derivation based on τ of (13) has
the same coverage rate as the naive circular bound on flat
ground with a specific robot overall mass. However, Figure
(3b) shows that when the terrain becomes steeper in Scenario
2, the naive circle can no longer bound 2σ of the distribution
while the proposed circular bound increases in size so more
than the specified 95% of the distribution is bounded.

For cases where the estimation accuracy of payload mass
is lowered to σ = 0.5 kg in Scenario 3, Figure (3c) shows
that the naive circle fails to contain the specified distribution
while the proposed circular bound is capable of expanding
and covering the right amount. Finally, Figure (3d) shows
that as the overall mass of the robot increases in Scenario 4,
the proposed circular bound shrinks so that it does not over-
constrain the problem as much as the naive circle. The bound
γ of each scenario is presented in Table I. Overall, compared
to a constant bound, the proposed bound shrinks its size
when the parameters result in tighter ZMP distribution for
better motion feasibility, while it increases its size otherwise
to ensure an adequate safety assurance.
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C. Chance-constrained vs. Conservative Margin Success
Rate Comparison

To demonstrate the benefit of chance constraint on in-
creasing motion planning feasibility over a constant safety
margin, another set of randomized simulations is generated
for different cases. Solutions of the NOCP in (4) are obtained
with the general optimal control solver GPOPS [23] using
the Interior Point OPTimizer (IPOPT) [24] method under
MATLAB environment on a Windows desktop with Intel
Core i7-4770 3.40 GHz processor. The GPOPS solver is
chosen for its ability to accommodate general nonlinear
formulations.

A total of four cases are considered: a deterministic case
with no uncertainty named ‘baseline’; a non-deterministic
case with a chance constraint of ρ = 0.95 (≈ 2σ) named
‘95%’; a non-deterministic case with a chance constraint of
ρ = 0.99 (≈ 3σ) named ‘99%’; and, lastly, a conservatively
bounded example with a constant bound of γ = 8.92 cm
which corresponds to the bound of 99% chance constraint
on a 30-degree slope, named ‘Conservative’ is used as a
comparison. For all non-deterministic cases, the standard
deviation is chosen to be σ = 0.4. For each set of test
parameters, a total of 1000 motion plans are generated with
uniformly randomly sampled manipulator states: q1(t0) ∈
[−π, π], q1(tf ) ∈ [−π, π], d(t0) = d(tf ) ∈ [dmin, dmin +
1
2 (dmax − dmin)], and θ ∈ [−30, 30].

Scenario σ γmin (cm) γmax (cm) Normalized
success rate

Baseline 0 0 0 1
95% 0.4 2.15 5.95 0.89
99% 0.4 3.23 8.92 0.64

Conservative 0.4 8.92 8.92 0.35

TABLE II: Four scenarios considered in the planning success
rate comparison, their associated mass measurement σ, min-
imum and maximum bound radii, and normalized success
rates.

For all planning attempts, a motion plan is deemed suc-
cessful only when the nonlinear programming solver arrives
at a result that satisfies optimality conditions. Due to the
randomized fashion of this test, some tests of the ‘Baseline’
scenario also encounter infeasible configurations that result
in unsuccessful plans. For presentation clarity, all success
rates are normalized with respect to that of ‘Baseline’. It can
be observed from Table II that, as expected, using a chance
constraint of ρ = 0.99 results in a consistently larger γ and
lower motion planning success rate compared to ρ = 0.95.

Further, using a fixed safety margin based on the “Con-
servative” scenario results in almost half of the success rate
compared to the ‘99%’ chance-constrained scenario, due to
the bound size being constant in the “Conservative” case.
This shows that, although a conservative fixed safety margin
is capable of guaranteeing safety by using a worst-case
assumption, doing so drastically reduces the manipulator’s
motion capabilities. The results of this demonstration show
the benefit of the proposed bound being dependent on the

manipulator’s states, which in turn yields higher motion
planning success rates.

VI. EXPERIMENTS WITH KINOVA JACO 2 ARM

A. Experimental Setup

To physically demonstrate the capabilities of the proposed
ZMP bounding method under dynamic motion, experiments
were conducted with the same setup as mentioned in Section
V-A, where the Jaco 2 arm is mounted on top of a free-to-
roll-over base as shown in Figure 4.

Fig. 4: Experimental setup to measure ZMP locus for
comparison with planned ZMP locus.

In Figure 4, two wooden sections –“roll-stoppers”– above
the robot’s base are placed along one side of the base to
prevent damage to the robot by stopping rollovers partway
(when they occur). For the first set of experiments presented
in Section VI-B to verify the predicted ZMP locations, the
robot was placed on a force plate that provides measure-
ments of ZMP location during arm motion. In Figure 4,
the robot can be seen manipulating the ‘wrench’ payload
as introduced in Section V-A. For the second set of experi-
ments discussed in Section VI-C, solutions of NOCP in (4)
are again obtained with the general optimal control solver
GPOPS [23] under MATLAB environment on a Windows
desktop with Intel Core i7-4770 3.40 GHz processor. The
number of control points specified to GPOPS for generating
the motion plans for the experiments is 40, giving an average
control interval of 0.17 s. Although the solution obtained
with GPOPS ensures satisfaction of constraints at control
points only, given the speed of the robot, we expect the
constraints to also be satisfied in-between the control points,
with the robot maintaining stability throughout the full
maneuver when the optimal soluton is found.

B. ZMP Verification with Force Plate

To verify that the Jaco arm is capable of following the
planned trajectory and that the real ZMP trajectory is in
good correspondence with the planned one, an experiment
was carried out by placing the mobile manipulator structure
on top of a Bertec 5060 force plate5. The force plate is

5https://www.bertec.com/products/force-plates
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specifically designed for measuring the center of pressure
(CoP). By definition, the CoP is equivalent to the ZMP
when the ZMP is located within the support polygon. In
cases where the ZMP travels outside of the support polygon,
the ZMP becomes the “Imaginary-ZMP” as defined in [25].
Then, the CoP will “glide” along the support polygon when
roll motion begins to occur, and violent CoP oscillations can
be observed when the roll motion is stopped by the robot’s
base reacquiring full contact with the ground.
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(a) ZMP loci of Motion 1.
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(b) ZMP loci of Motion 2.

Fig. 5: ZMP loci comparison between the planned vs.
experimental for motions 1 and 2.

To conduct the verification, two motions were executed.
Both motions were planned by using the actual payload
mass to demonstrate planned and measured ZMP agree-
ment. Aside from following the previously mentioned joint
rate and acceleration limits (18), both Motion 1 and 2
require the arm to move between stationary initial and
final configurations q(t0) = [0,−1.30,−0.54, 0.27, 0]T rad
and q(tf ) = [π,−1.30,−0.54, 0.27, 0]T rad in the shortest
amount of time, with the wrench payload. However, the
planning of Motion 1 follows the deterministic version of
the ZMP-constrained NOCP formulation (4), while Motion
2 is planned based on “bang-bang” control so it is time
optimal but is not constrained by ZMP stability.

The results of the verification are shown in Figure 5 for
the two motions. Figure (5a) shows that, when a motion
is planned based on the ZMP constraint, the planned and
experimental ZMP loci agree with each other and stay within
the support polygon. Figure (5b) shows that, when a motion
is not planned under the ZMP constraint, a mobile robot
can roll over. The rollover is characterized by the planned
and experimental ZMP leaving the support polygon. The
large oscillation of the experimental ZMP locus is caused
by the rolled robot being caught by the “roll-stopper” and
rocking back and forth before it stabilizes. The ZMP locus
of Motion 2 is smoother compared to Motion 1 prior to the
rollover because only joint q1 is involved in the motion. The
computation time for Motion 1 is 1.89 s while Motion 2 has
an analytical solution so its computation time is negligible.
It can also be observed from Figure (5b) that the planned
and experimental ZMP loci agreed with each other before
they left the support polygon and they also left the support

polygon at the same location.

C. Manipulation Planning with Payload Mass Uncertainty

To test the effectiveness of the proposed chance-
constrained formulation for increasing the robustness of
the planned motion’s dynamic stability to payload mass
uncertainty, an experiment is designed for the experimental
platform introduced in Section VI. Using the proposed
chance-constrained formulation (4) with the new constraint
(17), the following experimental scenario is considered:
the manipulator picks up one of the three objects–tape,
wrench, 1 kg cylindrical weight– but due to sensor or model
inaccuracies, the payload mass is estimated to always be
that of the tape (0.370 kg). A total of eight tests are carried
out with the aforementioned objects, robot base roll angles
(positive roll corresponds to away from the direction of ”roll
stopper”), and assumed standard deviations for the payload
mass. All initial and final configurations of the arm are the
same as those of Section VI-B. The test parameters are
presented in Table III along with the stability outcome, total
motion time tf , safety margin γ computed from (15), and
computation time tc. The chance constraint threshold for all
tests is set to ρ ≈ 0.95.

Parameters Outcome
Test Payload Base σ Stable? tf γ tc

# Roll (kg) (✓/✗) (s) (cm) (s)
(deg.)

1 Tape 0 0 ✓ 6.1 0 1.77
2 Wrench 0 0 ✗ 6.1 0 1.77
3 Wrench 0 0.2 ✓ 6.1 2.66 2.19
4 Tape 12 0.2 ✓ 8.9 2.68 3.55
5 Wrench 12 0.2 ✓ 8.9 2.68 3.55
6 Tape 0 0.4 ✓ 6.1 4.74 1.99
7 Wrench 0 0.4 ✓ 6.1 4.74 1.99
8 1 kg 0 0.4 ✓ 6.1 4.74 1.99

TABLE III: Test parameters and motion outcome of eight
experimental tests.

A comparison between the stability outcome of Tests
1 and 2 shows that when uncertainty is not considered,
rollover occurs due to the actual payload being heavier than
the measurement. However, if uncertainty is considered and
the proposed method is implemented as in Test 3 onward,
the robot maintains its stability over the full maneuver, as
indeed is the case for all stable tests indicated in Table III.
Moreover, the motion execution time is unchanged between
Tests 2 and 3. The stability outcomes of Tests 4 and 5
show that the proposed method can take terrain surface angle
into account so that when the robot is banked unfavorably
towards its side, a rollover-free motion can still be planned,
albeit, with the result more conservative and taking more
time to complete. Even though the ZMP measure (2) itself
accommodates different base orientations, it is worth noting
that the proposed bound γ in (15) also changes as the bank
angle increases, since the ZMP uncertainty changes with
robot orientation as well. Consequently, γ of Test 3 is 2.66
cm while γ of Tests 4 and 5 increases slightly to 2.68 cm.
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Fig. 6: Joint angles comparison of the reference and actual
trajectory of Test 8.

Fig. 7: Joint angular rates comparison of the reference and
actual trajectory of Test 8.

Motions in Tests 6, 7, and 8 show that when a robot’s mass
sensing has higher uncertainty σ, a larger mass deviation can
be accommodated as a result of the bound γ increasing to
4.74 cm. This is illustrated especially with Test 8, in which
a motion is planned for a measured mass of 0.370 kg with
σ = 0.4. Consequently, even when the actual payload mass
is 1 kg, the planned motion is still dynamically stable. A
comparison between the joint angles and rates of the planned
motion (Reference) and the actual motions of Test 8 are
shown in Figures 6 and 7. It can be observed that despite
the arm using its built-in controller, the reference motion is
tracked closely for all test cases. This is due to the NOCP
formulation (4) accommodating the joint kinematic limits.

In Figure 8, the actual ZMP locus of the arm with the
1kg weight is shown along with the planned ZMP based
on the tape’s mass and the ZMP region bounded by the
ZMP loci found by modifying the tape’s mass by ±2σ, in
this case, ±0.8 kg. We observe that the outer edge of the
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Fig. 8: Test 8 with the planned ZMP loci based on the
estimated mass (tape), the actual mass (1 kg), and confidence
interval for ±2σ of the estimated mass.

bounded region approaches the edge of the support polygon
during motion, and also the region’s width does not vary
significantly. Based on this, we suggest that the derived
bound γ (4.74 cm in Test 8) resembles the actual deviation
of the ZMP loci when the payload’s mass, 1kg, is near the
limit of the assumed inaccuracy at 1.17kg.

Motion snapshots of Tests 1, 2, 3, 5, and 8 are presented in
Figure 9 (column-wise). For each test, snapshots of the initial
pose (top), intermediate pose (middle), and halfway pose
(bottom) are included. Halfway poses are chosen because
that is when the ZMP is most likely to travel outside of the
support polygon as the arm is configured parallel to the short
edges of the support polygon. The second half of the test
motions is omitted for brevity. It can be observed from the
halfway (bottom snapshots) poses of Tests 1, 3, and 8 that
the arm tends to retract the end-effector as σ increases. This
shows that the proposed method allows the robot to adapt
its motions to different mass uncertainty levels. Moreover,
although end-effector retraction occurs, due to the scale of
retraction being small with respect to the lateral motion,
Assumption 1 did hold and the analytical results provided in
Section IV remained valid. From the snapshots of Test 2 in
Figure (9b), robot rollover can be observed in the halfway
pose at timestamp t = 2.9 s. It is worth noting that, Tests
1, 2, 3, 6, 7 and 8 demonstrate the same value of tf with
different σ values. This is due to the time-optimal algorithm
being capable of finding a trajectory that allows Joint 1 to
maintain maximum angular rate, while having the arm retract
its end-effector further when σ is high. Longer tf solely due
to higher σ can be expected on manipulators that have lower
maximum end-effector retraction speed.

VII. CONCLUSIONS AND DISCUSSIONS

To address the payload mass uncertainties that may
be encountered in mobile robot manipulations, a novel
chance-constrained manipulation planning formulation and
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(a) Test 1. (b) Test 2. (c) Test 3. (d) Test 5. (e) Test 8.

Fig. 9: Snapshots of test motions 1, 2, 3, 5, and 8. Rollover is visible in (b) Test 2. In (d) Test 5, the base remains at the
specified ground angle and is not in contact with the roll-stoppers.

its derivation are presented. Statistical analysis with a sim-
ulated Jaco 2 arm is carried out to validate the proposed
geometric interpretation of the ZMP chance constraint. Ex-
perimental tests are then performed with physical Jaco 2 arm
mounted on a free-to-roll-over base. Experimental results
show the proposed chance-constrained bound can address the
mass uncertainty issue based on different parameters such
as mass uncertainty, robot attitude, and required chance of
success. The ability of the chance-constrained bound to adapt
to different parameters allows the motion planner to tighten
and loosen the dynamic stability constraint accordingly,
depending on the robot’s parameters and application. The
comparisons between the proposed method and conservative
safety margins show that the chance-constrained bound
allows for a higher planning success rate. The tests also show
that the proposed bound allows the NOCP formulation to be
solved fast enough for online planning.

Limitations of the proposed method stem from the model
simplification and assumptions made in carrying out the
mathematical analysis. Despite the geometric interpretation
(17) bringing practicality to the previously numerically
inefficient nonlinear chance constraint (4a), it is worth
noting that it is inherently more conservative than (4a).
Although this paper is focused on horizontal motions, the
assumptions and analysis provided in this paper can be
analogously applied to separately address vertical motions.
For future research, a more general formulation that relies
on less restrictive assumptions and considers uncertainty
in the center of mass location of the manipulated object
can be explored. The formulation can also be extended to
encompass other applications where motion planning with
payload mass uncertainty, such as humanoids and systems
with slung loads, is of relevance.
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