Research Problem

Differential Privacy (DP) has been shown to have

desirable properties such as offering privacy quan-
tification, being independent of an adversary’s
background knowledge, and providing an inter-
pretable definition of privacy. Applying DP in
medical domains entails many challenges result-
ing from the importance of data utility in medi-
cal domain, correlations between data items that
should be preserved, finding and justifying the
parameter values such as e (Dankar & Emam,
2012), and dealing with unstructured data items.
In this work we propose a solution to apply an

appropriate variant of DP to medical text.
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Figure 1:Researchers have a class of computations, /. We gen-

erate a privatized version of documents to compute F

Differential Privacy

A randomized algorithm M is e-differentially pri-
vate if for all S C Range(M) and for all x,y &
domain(M) such that |x —y| < 1. Pr|M(z) €
S| < exple)PriM(y) € S].

DP is a property of data access mechanisms that
cuarantees indistinguishability, i.e., expecting al-
most the same outputs on similar inputs.

Information Extraction

We should deal with the inevitable chaos in text
to benefit from it. Utilizing Information Extrac-
tton techniques is a standard approach to make text

machine-friendly. Information Extraction refers to
the automatic extraction of structured information
such as entities and relationships between entities
from unstructured sources (Sarawagi, 2008).
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Proposed solution

A step forward to solve the problem is to assume
that researchers’ information needs can be satisfied
using structured records extracted from the docu-
ments. With this assumption, the problem can be
illustrated as in Figure 2. We generate privatized
documents in such a way that running the same Ig
over them will result in the same private view V'
which can be generated using extracted view V.

Collection of Documents
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Domain-Preserving Functions

Let F' be a set of domain-preserving functions,
F = A{filfi : W, — W;, Domain(fi(v;)) =

Domain(v;)}. Each attribute A; is associated with

a function f; € F'. Let the privatization function be
domain-preserving, such that r =< vy, v, ..., v >
and 7'(7) =< v, 05, ..., v > where:

Information Extraction : (If) A
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Iz holds properties P
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, fr(vr), ifk=7.
U, otherwise.
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Figure 2:The proposed solution for generating privatized documents.

Strict Extractor

An IE algorithm is Strict if the set of extracted
values in a record is a subset of words appearing
in the corresponding document, {vy,vs,...,v7} C
{wy, wo, ws, ...,wn}. Let Pp(j) € {plw, = v},
i.e., a subset of positions in D =< wy, woy, ..., Wy >
where w, = v; (the position(s) from which v; is ex-
tracted).

Computable Extractor

An IE algorithm is Computable if for all j,j &
1...7]

Pp(j) is explicit(given)

(2)

Pp(j) and Pp(j') are pairwise disjoint.

Stable Extractor

Let g(D, 7) =< wi, wh, ws, ..., wh, > where:

filwg), itk e Pp(j).
W, otherwise.

(3)

/
wk:

An IE algorithm is Stable ifV j € [1...T| Pp(j) =
Pyp.j j) and Ig(g(D, j)) =1'(j).

Theorem

For any function I : D — R having the afore-
mentioned properties, there exists an algorithm
A(F, Pp(j)) such that for an arbitrary set of func-
tions F' = {fz‘fz W, — Wz’; 1 € [T} and
any document D € D, A(F, Pp(j)) produces D7
in such way that, F(Ig(D))= Ig(D%).

Document D

lez W; W, I(D)
words W Wy W

Set of all possible

AW, AW, ‘ A; W, ‘ A, W, ‘ AW

vy v, ‘ V'3 ‘ Vi ‘ Vs

Privatized Record r’

Figure 3:1p(D) extracts a record r. Then a privatized record 7’

Is generated.

Claim

For any function /g having the aforementioned prop-
erties, algorithm 1 produces D% in such a way that

F(Ig(D))= Ig(DF).

Algorithm 1 PrivateGen

Input: F,{Pp(j)|j € {17'}}
Output: D7

1. for j € [1...7] do

2. for every iin Pp(j) do

3. substitute w; € D with f;(w;)
4. end for

5: end for
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