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Abstract: Background: Annotating large medical imaging datasets is an arduous and expensive task,
especially when the datasets in question are not organized according to deep learning goals. Here,
we propose a method that exploits the hierarchical organization of annotating tasks to optimize
efficiency. Methods: We trained a machine learning model to accurately distinguish between one
of two classes of lung ultrasound (LUS) views using 2908 clips from a larger dataset. Partitioning
the remaining dataset by view would reduce downstream labelling efforts by enabling annotators to
focus on annotating pathological features specific to each view. Results: In a sample view-specific
annotation task, we found that automatically partitioning a 780-clip dataset by view saved 42 min
of manual annotation time and resulted in 55± 6 additional relevant labels per hour. Conclusions:
Automatic partitioning of a LUS dataset by view significantly increases annotator efficiency, resulting
in higher throughput relevant to the annotating task at hand. The strategy described in this work can
be applied to other hierarchical annotation schemes.

Keywords: computer vision; machine learning; annotation; labelling; lung ultrasound; medical
imaging; deep learning

1. Introduction

Unlike several mainstream computer vision application domains, annotators of medi-
cal imaging datasets must possess a sufficient degree of domain expertise to ensure that
ground truth is clinically correct. In many cases, labels must be reviewed by clinical experts
prior to being officially admitted to a dataset. Given the cost and limited availability of
clinical expertise for such tasks, strategies to accurately automate the labelling of medical
imaging datasets are desirable.

Lung ultrasound (LUS) is a well described, portable, inexpensive, and accurate point of
care technique to assess respiratory disease at the bedside [1–7], with potential deployment
in a wide variety of environments [8,9]. In comparison to the traditional methods used to
image the lungs, such as a CT scan or chest X-ray, LUS displays comparable or improved
diagnostic accuracy at a reduced cost [4,5]. There are two broadly categorized regions, or
views, of the lung that are acquired: parenchymal (anterior and anterolateral chest) and
pleural (posterolateral chest) [3,10,11]. Each of these views interrogate different anatomic
areas of the lung that may contain separate and distinct disease processes [12]. For example,
as seen in Figure 1, if annotating clips for a classifier that identifies A line and B line
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artifacts [13,14], annotators would be interested in parenchymal views only, since these
artifacts are of greatest clinical importance when seen in these views. Conversely, important
findings such as the curtain sign, pleural effusion, or consolidation patterns are sought in the
pleural views of the lungs [15]. Additional examples of how this is reflected in a hierarchical
annotation workflow are shown in Figure 1. The hierarchical nature of LUS interpretation
and annotation provides an opportunity to impose high-level structure by partitioning an
otherwise unstructured dataset into two clinical and radiographic groups. If the view of
every clip in the dataset is known, then the entire dataset can be partitioned by view, and
expert annotators need only be provided with clips for which the view is relevant to the
annotating task (see Figure 1). LUS is a particularly important modality for optimizing
annotation efforts due to the paucity of individuals with sufficient domain expertise to
perform LUS annotation [16,17]. Thus, an approach to automated partitioning based
on view represents a key opportunity to improve annotation throughput and optimize
workforce allocation, while providing a model that is clinically relevant [18,19].

LUS 
Database

View 
Classification

PARENCHYMAL

Classification
A lines/ B lines

Lung sliding
Subpleural consolidation

Shred sign

PLEURAL

Classification

Consolidation
Air bronchograms
Pleural effusion

Curtain sign
Mirror image

Ascites

Segmentation
Consolidation

Pleural effusion
Diaphragm

Figure 1. Summary of the hierarchical annotation workflow. LUS classification tasks are view-specific.
Automation of the view classification step separates LUS clips. Further, segmentation tasks can
subsequently be stratified by classification.

Solutions have been proposed to offset the cost of annotating medical images. Multiple
studies have explored the use of active learning, a special case of machine learning where
the learner can query a user to label new data points [20]. The direct incorporation of
human intervention in the active learning process has been shown to improve both the
annotating accuracy and efficiency [21].

The process of leveraging a small, annotated subset of a larger dataset to generate
new labels that will be added to a training set has also been explored with notable success.
Gu et al. [22] used an annotated training set with 20,000 examples to generate labels for a
100,000-example dataset. This study exhibited a significant improvement in model perfor-
mance when 80,000 automatically generated labels were added to the human-annotated
training set for the purpose of classification [22]. A similar method was used to efficiently
label data in [23], where regions of interest in CT examinations were segmented and
automatically annotated to circumvent annotation costs.

Deep learning approaches that have been trained for automatic annotating have ri-
valled the performance of domain experts [24,25]. In this case, radiology reports were
used to generate chest X-ray labels. The performance of radiologists was used as a bench-
mark for model performance, and the margin between the resulting predictions by their
deep network and the expert annotator was narrow. This evidence suggests that similar
methodologies can be used to rival the annotating accuracy of medical professionals. These
findings are encouraging for our work, as the benchmark for this automatic annotating
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method is also the annotating performance of medical experts. Success in these other
domains provide justification for our current work.

The objective of this work is to develop a deep learning solution for automatic LUS
view annotation that effectively improves the efficiency of downstream annotation tasks. In
particular, a neural network capable of distinguishing parenchymal from pleural LUS views
is developed, validated, and used to partition a sample LUS dataset by view. A downstream
view-specific annotation task is then performed on both the partitioned dataset and an
equally-sized non-partitioned dataset by the same annotation team to investigate whether
automatic view annotation improved their efficiency and throughput. We aim for our
methods to form the foundation for an improved, more cost-effective LUS annotation
workflow that can be applied to other annotation schemes with a hierarchical organization.

2. Materials and Methods
2.1. Data Curation and Annotation

All data in this study were collected retrospectively from our institutional point-of-care
ultrasound database (Qpath E, Port Coquitlam, BC, Canada). To generate ground truth
labels, all clips were uploaded to an online platform (Labelbox, San Francisco, CA, USA),
where they were annotated by a team of medical professionals trained in LUS. Project
oversight, including ambiguous or difficult examples, was provided by an international
expert in LUS. Annotation tasks were divided into 200 clip benchmarks for annotators
and clip-level classifications were applied, including the view (parenchymal vs. pleural),
findings relevant to the respective view (see Figure 1), and quality markers (inappropriate
gain, depth, composition, etc.). Annotators also had the option to discard clips that did
not meet diagnostic or machine learning standards. Examples include inappropriate
ultrasound exams (such as an echocardiogram), user-applied text within the ultrasound
image, and removal of the ultrasound probe from the patient’s chest during the video clip.
Lastly, annotators had a skip option to reserve clips for future annotation. This option was
applied when the clip in question did not match the current annotation goals (e.g., a pleural
clip when the goal was the annotation of parenchymal findings). The labelling platform
automatically tracked the time taken to label or skip clips, which facilitated analysis of
annotator efficiency.

2.2. View (Parenchymal vs. Pleural) Classifier
2.2.1. Clip-Level Data

To train the neural network, a class-balanced dataset of 2908 LUS clips (1454 parenchy-
mal and 1454 pleural clips) was randomly selected from data previously annotated as
described in Section 2.1. By convention, parenchymal and pleural were assigned the neg-
ative and positive class, respectively. The details of our training dataset are provided in
Table 1.

Table 1. Characteristics of the datasets used for view classifier training and validation.

Training Data Holdout Data

Clip label Parenchymal Pleural Parenchymal Pleural

Patients 611 342 441 466

Number of clips 1454 1454 457 488

Frames 369,832 330,191 107,205 100,616

Average clips/patient 2.38 4.25 1.04 1.05

Class-patient overlap 303/650 32/875

Age (std) 64.0 (17.2) 64.5 (16.2) 64.1 (18.0) 64.4 (17.4)

Sex
Female: 238 (39%) Female: 134 (39%) Female: 156 (35%) Female: 205 (44%)
Male: 347 (57%) Male: 193 (56%) Male: 269 (61%) Male: 235 (50%)

Unknown: 26 (4%) Unknown: 15 (4%) Unknown: 16 (4%) Unknown: 26 (6%)
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2.2.2. Frame-Based Data

As the view of an individual LUS image (hereafter referred to as “frame”) can typically
be discerned by clinicians, we sought to train a frame-based classification model that
could predict the view of a particular LUS frame, where the ground truth view of the
frame was the view of the clip (determined by the annotator). Dividing the videos into
constituent frames greatly expanded the size of the dataset to 369,832 parenchymal and
330,191 pleural frames. Clip-level predictions could subsequently be inferred from the
frame-level predictions using a clip classification algorithm (see Section 2.2.5).

2.2.3. Dataset Pre-Processing

After deconstructing the clips into composite frames, all information external to the
ultrasound beam (e.g., vendor logos, depth markers) was removed using ultrasound
masking software (AutoMask, WaveBase Inc., Waterloo, ON, Canada). The frames were
then resized to 128× 128 pixels using bilinear interpolation and fed to the model in RGB
channel format. During training, the frame dataset was augmented by applying the
following transformations stochastically: random zooming inward/outward by up to 20%,
horizontal flipping, brightness shifting by up to 20%, contrast shift of up to 10%, and
rotation clockwise/counterclockise by up to π

4 radians.

2.2.4. Model Architecture

We employed the EfficientNetB0 architecture as the base model [26], with weights
pre-trained on ImageNet [27]. The head of the EfficientNetB0 network was replaced with a
2D global average pooling layer, followed by dropout (with dropout rate 0.3), a 128-node
fully connected layer with ReLU activation, and a 1-node fully connected output layer
with sigmoid activation. The model’s output was the probability p that a LUS frame was a
pleural view. The predicted frame-level class was taken to be pleural view if p was at least
0.5 and parenchymal view otherwise.

Multiple convolutional neural network architectures were considered for the frame
classification task. The weights of each architecture were initialized with pretrained Im-
ageNet [27] weights. A variable number of the first layers in the architecture were kept
frozen throughout training. We observed significant overfitting with all architectures stud-
ied other than EfficientNetB0: The other architectures achieved an area under the receiver
operating curve (AUC) score of at least 0.999 on training data, but consistently obtained
significantly lower accuracy on the validation set (see Appendix A). Most of these alterna-
tive architectures have more capacity than required for the present task. The EfficientNetB0
architecture, which is more compact, exhibited less overfitting. It was therefore designated
as the frame classification architecture. In addition, EfficientNetB0 offers a significant boost
in training and inference efficiency compared to other contemporary deep convolutional
architectures [26].

2.2.5. Clip Predictions

Since the neural network performed frame-based classification, it was necessary to
devise a method to convert a series of outputs into clip-level predictions. Classifying clips
in this manner facilitates a direct comparison against our expert annotations and more
faithfully resembles clinical, dynamic LUS interpretation. Our approach was based on the
clip classification method described in [28]. In summary, the clip prediction was taken
to be the positive class if there was at least τ ∈ N consecutive frames with a prediction
probability exceeding the classification threshold t ∈ [0, 1]. Such logic is also applicable to
LUS view classification because some frames in pleural clips may resemble parenchymal
frames due to the curtain sign artifact (created by movement of aerated lung into and out of
view during inspiration and expiration), but not vice versa. To reduce noise in frame-level
predictions, we smoothed the frame-level predictions by computing a moving average with
a window of width w ∈ N before applying the existing clip classification method. A visual
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representation of the hyperparameters involved in generating a clip-level prediction from a
series of constituent frame-level predictions is provided in Figure 2.

Figure 2. Visual representation of the clip prediction method. For each clip, the raw frame-level
prediction probabilities outputted from the neural network (blue curve) are smoothed by computing
a moving average (black curve): each point (red dot) on the smoothed prediction curve represents
the average of a set of w consecutive frame-level prediction probabilities (red curve). The clip is
predicted as pleural if τ contiguous smoothed predictions meet or exceed the classification threshold
t, and parenchymal otherwise. A true positive (pleural) clip is shown, as predicted using the optimal
hyperparameter set (τ = 7, t = 0.7, w = 17).

2.2.6. Validation Strategy

To verify the choice of model architecture and clip prediction hyperparameters, 10-fold
cross validation was conducted with the training set. The folds were split by patient ID
to prevent data leakage. Values of τ, t, and w were selected via grid search to maximize
the average validation set accuracy across all folds. All 14,400 parameter combinations
across τ, w ∈ {1, 2, . . . , 40} and t ∈ {0.1, 0.2, . . . , 0.9} were considered in the analysis. We
then completed a final training run with a dedicated test split to estimate how well the clip
classification method would perform on unseen clips from our database.

To evaluate the clip classification method on unseen data, we sampled a disjoint
holdout set of n clips from the unannotated LUS database. The holdout set (described
in Table 1) was annotated by the standard team as outlined in Section 2.1. To determine
the size of the holdout set, we conservatively assumed that the standard annotation team
would achieve 96% accuracy on unseen data when compared with the clinical expert’s
annotations. Given that we require 95% confidence that the accuracy on the holdout set
will lie within ±M of the conservative estimate of A, n can be calculated using Cochran’s
formula for sample size estimation [29].

n =
Z2

α A(1− A)

M2 (1)

In the above, Zα is the Z-value corresponding to a α confidence range, and M is the
margin of error. Applying Equation (1) with α = 95%, M = 1.25%, and A = 0.960, we
obtained n = 945 for the size of the holdout set. The accuracy of the clip classification
method was compared with that of the standard annotators, where the ground truth was
taken as the LUS expert’s decision.
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A summary of the complete view classification workflow described in Section 2.2,
from pre-processing to classification and analysis, is provided in Figure 3.

Compare to 
expert annotation

Clip-level 
metrics

ANALYSIS

Raw 
clip

Apply masking 
software

Masked 
clip

Split into 
images

Constituent 
Frames

DATASET PRE-PROCESSING

Predict using 
neural network

Frame-level 
predictions

FRAME CLASSIFICATION

Compute moving 
average

Smoothed frame-
level predictions

Apply clip 
prediction method

Clip-level 
prediction

CLIP CLASSIFICATION

Figure 3. Summary of the view classification workflow. Data pre-processing: raw clips were masked
to remove information external to the ultrasound beam, then deconstructed into constituent frames.
Frame classification: processed frames were inputted into the neural network, which predicted the
probability that the input frame was a pleural view. Clip classification: A moving average was
computed over the series of composite frames of a given clip. The smoothed frame-level predictions
were then inputted into the contiguous clip prediction method outlined in [28] to generate a whole
clip-level prediction. Analysis: Clip-level predictions were compared to expert clinical annotations.

2.3. Automating the View Annotation Task
2.3.1. Partitioning a LUS Dataset by View

To investigate the utility of the view classifier as an automatic annotation tool, we
deployed the model on a distinct set of 2000 clips from the unannotated LUS database and
partitioned the data by view prediction. The partitioning criteria was based on the predicted
clip-level class as well as the average frame-level prediction probability. In particular,
parenchymal-predicted clips with an average frame-level (pleural) prediction probability
less than 0.3 were selected to form a parenchymal-specific auto-partitioned dataset. An
average frame-level probability of 0.3 was chosen as the threshold for partitioning given
the optimal classification threshold (t = 0.7) that was observed on the validation set (see
Section 3) as well as to minimize the number of pleural clips that would appear in the
partitioned dataset. In total, 823 clips met the partitioning criteria, from which 780 were
randomly selected for inclusion in the final dataset used for the downstream annotation
task. Details of this dataset are available in Table 2.
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Table 2. Data characteristics of the control and auto-partitioned datasets used for the parenchymal-
specific annotation task.

Control Data Auto-Partitioned Data

Clip Label Parenchymal Pleural Parenchymal Pleural

Patients 339 371 660 34

Number of clips 351 383 701 35

Average clips per patient 1.04 1.03 1.06 1.03

Patient overlap across classes 25/685 5/689

Mean age (std) 63.7 (18.1) 64.0 (16.1) 64.0 (16.6) 63.7 (18.3)

Sex
Female: 117 (35%) Female: 156 (42%) Female: 259 (39%) Female: 12 (35%)
Male: 193 (57%) Male: 201 (54%) Male: 374 (57%) Male: 21 (62%)

Unknown: 29 (9%) Unknown: 14 (4%) Unknown: 27 (4%) Unknown: 1 (3%)

2.3.2. The Annotation Task

To study the effect of automatic view partitioning on annotator efficiency, a down-
stream parenchymal-specific annotation task was performed on the aforementioned auto-
partitioned dataset. The same annotation task was also performed on a 780-clip, distinct,
non-partitioned (control) dataset for comparison (for details, see Table 2). Four experienced
members of our annotation team participated in the task, with each member annotating
195 clips from both the control and auto-labelled set as separate annotation tasks (sprints).
Sprints were completed in a randomized order, with two members completing the control
sprint first, and two completing the auto-partitioned sprint first. Annotators were asked
to label all parenchymal and non-usable clips according to the workflow described in
Section 2.1, while skipping all pleural clips. The effect of automatic view annotation on our
overall annotation workflow is outlined in Figure 4.

Annotated Parenchymal Dataset

Skipped 
Pleural Clips

Annotated 
Parenchymal Clips

Skipped 
Pleural Clips

Annotated 
Parenchymal Clips

Number of clips

Random selection of 
unannotated clips 

Automatic annotation with 
view classifier

Integration with Labelbox

Manual annotation

Selection of parenchymal-
predicted clips

Unannotated LUS Dataset

Figure 4. Annotation workflow with (green) and without (blue) automatic view annotation for
a parenchymal-specific annotation task. Annotators need only be provided with parenchymal-
predicted clips for a parenchymal-specific labelling task, resulting in more annoated parenchymal
clips per labelling sprint and fewer skipped pleural clips, saving annotation time.

2.3.3. Statistical Analysis

A one-way paired Student’s t-Test was used to compare control to auto-annotated for
each annotation efficiency metric to test for statistical significance. All data are presented
as mean ± standard deviation.
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3. Results
3.1. View Classifier Validation

Table 3 details the results of the 10-fold cross validation experiment as well as the
performance on the holdout set. The model was evaluated in terms of positive (pleural)
and negative (parenchymal) predictive value, given the intended function as an automatic
annotation tool: if partitioning for a parenchymal-specific labelling task, then we would aim
to minimize the number of false negatives in our dataset (maximize the negative predictive
value). If partitioning for a pleural-specific labelling task, then we would aim to minimize
the number of false positives in our dataset (maximize the positive predictive value).

Table 3. Metrics for a 10-fold cross validation experiment and the holdout set inference.

Accuracy Negative
Predictive Value

Positive
Predictive Value AUC

Dataset Fold Frames Clips Frames Clips Frames Clips Frames

Training

1 0.944 0.966 0.933 0.972 0.957 0.961 0.973
2 0.930 0.947 0.897 0.938 0.963 0.954 0.969
3 0.938 0.969 0.910 0.952 0.972 0.986 0.972
4 0.913 0.935 0.895 0.921 0.940 0.952 0.941
5 0.907 0.939 0.856 0.908 0.974 0.970 0.963
6 0.851 0.872 0.885 0.855 0.812 0.893 0.931
7 0.914 0.939 0.891 0.935 0.947 0.943 0.956
8 0.922 0.933 0.916 0.951 0.932 0.911 0.971
9 0.917 0.939 0.883 0.926 0.968 0.952 0.966

10 0.890 0.919 0.864 0.891 0.920 0.951 0.940

Mean 0.913 0.936 0.893 0.925 0.935 0.947 0.959
(STD) (0.025) (0.027) (0.022) (0.034) (0.046) (0.027) (0.015)

Holdout − 0.912 0.925 0.869 0.881 0.969 0.975 0.966

3.1.1. Frame-Based Performance

The area under (AUC) the receiver-operator curve (ROC) of our frame-based neural
network averaged 0.959 (±0.015) on our 10-fold cross validation experiment (Figure 5A)
and 0.966 (Figure 5B) on our unseen holdout set. The corresponding frame-level confusion
matrices indicated a low proportion of incorrect predictions (Figure 5C,D). This frame-wise
performance was deemed satisfactory by clinical team members.

3.1.2. Clip-Based Performance

To evaluate our classifier at the clip-level, an optimal clip classification hyperparameter
set was required. The parameter set (τ, t, w) = (7, 0.7, 17) was found to maximize
the average validation set accuracy across each fold for each τ, w ∈ {1, 2, . . . , 40} and
t ∈ {0.1, 0.2, . . . 0.9}. The clip-wise performance metrics reported in Table 3 were obtained
using this designated parameter set. As shown in Figure 5, the corresponding clip level
confusion matrices for both the 10-fold cross-validation experiment (Panel E) and inference
on the holdout set (Panel F) showed a high percentage of correct predictions.

Using the results of the holdout set inference, we then sought to estimate how the
model would perform if deployed on the remainder of our LUS database as an automatic
view annotation tool. By considering the clip-level accuracy obtained on the holdout set
(0.925) as a point estimate of our classifier’s performance, we applied Cochran’s formula
(Equation (1)) to estimate that the true accuracy on the remaining unannotated database
would lie within a range of 0.925± 0.017 with 95% confidence. Therefore, we estimate that
the true accuracy, applied to the entire LUS database, is within [0.908, 0.942] at the clip level
with 95% confidence. The accuracy of our clinical annotation team, as evaluated on the
same holdout set, was 0.991.
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Figure 5. Receiver-operator characteristic curves with corresponding frame (green) and clip-based
(blue) confusion matrices for the 10-fold cross validation experiment (A,C,E) and holdout set infer-
ence (B,D,F). (A) AUC of the 10-fold cross validation experiment averaged 0.959 (±0.015) with the
corresponding frame and clip-based confusion matrix results in (C) and (E), respectively. (B) Inference
on the holdout set yielded an AUC of 0.966 with the corresponding frame and clip-based confusion
matrix results in (D) and (F), respectively.

3.1.3. Frame-Based Explainability

To audit the neural network decisions and instill further confidence in our model at
the frame-level, a series of Grad-CAM++ [30] explanations for unseen frames was manually
examined by annotators. Annotators largely agreed that the heatmaps highlighted regions
considered important for discerning the view of a LUS frame. Figure 6 provides some
illustrative examples of correctly and incorrectly classified frames. A post hoc error analysis
by clinical team members revealed that false negative predictions were most common
for frames where the diaphragm was not visible or obscured. This observation further
supports the model’s decision-making ability, given that for a clinician, the diaphragm is a
critical structure required for the sonographic landmarking of the pleural view.
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(A) True positive (B) True negative (C) False positive (D) False negative

Figure 6. Selected Grad-CAM++ explanations for the neural network model view predictions for
single LUS frames. Red regions were the most important to the prediction. The true positive (A) is
confirmed by the heat map highlighting a pleural effusion which is only seen in the pleural view,
and the true negative (B) highlights an A line, or reverberation, artifact seen in parenchymals views.
The false positive (C) highlights the heart likely mistaken as an abdominal organ found in pleural
views, and the false negative (D) highlights transient parenchymal tissue that comes into frame
during inspiration.

3.1.4. Clip-Based Explainability

Although informative, many LUS artifacts cannot be fully captured by static frame-
based explainability methods given the dynamic nature of clip acquisition and interpreta-
tion. Therefore, to investigate these dynamic artifacts in detail and gain further confidence
in our clip-level predictions, we sought to visualize how the predicted frame-level probabil-
ities change over the duration of a given clip. To do so, we generated prediction probability
time series plots and overlaid them onto the respective masked LUS clips. A temporal
indicator was then added to the graph to create an animation. Illustrative examples of
these plots for correctly predicted and incorrectly predicted clips are given in Figure 7, with
corresponding animations linked in the figure caption. A clinical post hoc analysis of these
animations revealed that our clip-prediction method, in general, is successful in generating
accurate clip-level predictions when dynamic artifacts common to LUS interpretation are
observed. In particular, the majority of clips displaying the curtain sign artifact are correctly
predicted as pleural (Figure 7A; Figure A2A), despite the oscillation in frame-level predic-
tion probability that is observed (and expected). Furthermore, analysis of our incorrectly
predicted clips revealed that false positives and negatives were commonly the result of
poor acquisition technique. For example, there were several cases where the LUS user
moved between parenchymal and pleural views during the same clip (for an example, see
Figure A2G). There were also cases where structures indicative of the pleural view, such as
the diaphragm or the liver, were either not visualized or were obscured by rib shadowing
artifacts (Figure A2F) or aerated lung (Figure A2H).
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Figure 7. Pleural prediction probability time series for selected true positive (A), true negative (B),
false positive (C), and false negative (D) clips. The true positive (A) clip displays the curtain sign
artifact which indicates the lack of pleural pathology (consolidated lung or pleural effusion). The
true negative (B) clip displays normal lung parenchyma (A line pattern) bordered by rib shadows.
The false positive (C) clip contains heart tissue, which the model likely mistook for an abdominal
organ usually seen in pleural views. The diaphragm is largely missing from the false negative clip
(D), with only a sliver appearing on a few occasions that correspond to bursts in pleural prediction
probability; however, the average probability does not remain above the classification threshold long
enough to meet the contiguity threshold. Supplementary Videos S1–S4.

3.2. Automating the View Annotation Task
3.2.1. Performance on an Auto-Partitioned Dataset

Of the 780 clips included in our disjoint dataset auto-partitioned by parenchymal view
prediction, 701 were identified as true parenchymal views by our clinical team. Of the
79 clips remaining, 35 were misclassified as pleural views and 44 were discarded for quality
control, as described in Section 2.1. Excluding the discarded clips from the analysis, our
classifier achieved an accuracy of 701/736 = 0.952 on this unseen dataset. This is equivalent
to the negative predictive value, given that no pleural predictions were included in the
dataset. Comparing these results to that of our holdout set and cross validation experiment,
we observed a 7.1% and 2.7% improvement in negative predictive value, respectively. This
increase in performance is likely the result of our partitioning criteria: By selecting clips
with a pleural prediction probability less than 0.3, we reduced the number of false positives
appearing in our final partitioned dataset.

3.2.2. Annotation Efficiency

Automatically partitioning by view significantly increased the efficiency of a down-
stream parenchymal-specific annotation task—the number of relevant (parenchmal) clips
included in the 780-clip datasets increased from 351 to 701, while the number of irrelevant
(pleural) clips decreased from 383 to 35. The number of clips discarded for quality control
was similar (44 in the auto-partitioned dataset and 46 in the control dataset). The lower
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prevalence of pleural clips in the auto-partitioned dataset (−45%) resulted in significant
time savings for annotators, as the average time required to skip a pleural clip was 8.5 s
(averaged over the combined 1560-clip dataset). As shown in Figure 8A, the annotators
produced more relevant parenchymal labels/hour in the auto-partitioned sprints (176± 30)
than in the control sprints (121± 24; p = 0.04). The increase in parenchymal labels/hour
corresponded with a decrease in the number of irrelevant pleural clips being skipped
per hour (Figure 8B; 131± 11 (control) vs. 9± 4 (auto-partitioned); p < 0.001) and the
time spent skipping pleural clips (Figure 8C; 12.6± 5.3 min (control) vs. 2.1± 0.8 min
(auto-partitioned); p = 0.02).

Figure 8. Efficiency analysis of control (non-partitioned) and auto-partitioned (parenchymal-
predicted) sprints from the parenchymal-specific labelling task. Time metrics exported from the
labelling platform were used to determine the rate of parenchymal labels/hour (A), skipped pleural
clips/hour (B), and the time spent skipping pleural clips (C) for each of the four annotators. The
diamond represents the mean, and error bars represent standard deviation

4. Discussion

In this work, a method capable of distinguishing between parenchymal and pleural
LUS views with 92.5% accuracy was developed, validated, and deployed as an automated
view annotation tool. The automatic partitioning of a 780-clip LUS dataset by view led to a
42 minute reduction in downstream manual annotation time and resulted in the production
of 55± 6 extra relevant labels per hour. Our methods form the foundation for an improved
annotation workflow that is more efficient, more cost-effective, and applicable to similar
hierarchical labelling tasks.

The performance of our clip prediction method on unseen data (displayed in Table 3)
was deemed acceptable for internal annotation purposes. Although the accuracy trailed
6.5% behind the clinical annotation team, we demonstrated that implementing an auto-
matic annotation workflow resulted in significant time savings on a sample downstream
annotation task. In particular, by not examining the extra 348 irrelevant pleural clips
screened out by the view classifier in our sample 780-clip datasets, the annotation team
saved 42 min. Extrapolating these results to our remaining unannotated 100,000-clip LUS
database, we estimate that automatic view annotation would save the annotation team
over 4 days (8.5 s× (0.49− 0.04)× 100, 000 clips× 1 day/86 400 s) when accumulating a
dataset of 45,000 parenchymal clips (assuming the same false positive rate of our sample
auto-partitioned dataset (0.04), pleural frequency of our sample control dataset (0.49), and
average time to skip a pleural clip (8.5 s, see Section 3.2.2)). Expensive expert annotation
efforts could then be reallocated to more challenging annotation tasks.

Our approach differs from other automated workflow-enhancing annotation strategies,
due to the hierarchical nature of the annotation task at hand. First, we require image-level
LUS data only, whereas many others [23–25] rely on the presence of additional text data
from corresponding clinical reports. Secondly, unlike other methods that seek to minimize
the number of annotations required for a specific supervised learning task [20,21], we
sought to minimize the time required to annotate a dataset of fixed size with multiple
relevant labels downstream in the hierarchy (Figure 1). The resultant annotated dataset is
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more versatile, since it can be used in the development of multiple classifiers. Further, a
similar approach could be taken to automatically partition all parenchymal clips into sets
containing either A lines or B lines [28]. Annotation tasks deeper in the hierarchy include
lung sliding identification (for clips containing A lines) and B line severity classification
(for clips containing B lines).

Despite the aforementioned novelties, the present study is not devoid of limitations.
The frame classifier was trained on data from one healthcare institution, hindering applica-
tion to datasets gathered from external institutions. For most of the downstream annotation
tasks, external validation is central to the establishment of model generalizability. In fu-
ture work, this could be addressed by fine-tuning our classifier on data from external
healthcare institutions.

Another future investigation could focus on retraining the frame classifier with an
augmented training set that includes automatically annotated LUS clips. Gu et al. [22]
witnessed an improvement in model performance using the above procedure. Second,
given the comparatively lower metrics for pleural views (likely due to the greater diversity
of both radiographic and clinical findings compared to parenchymal views), increasing the
proportion of pleural clips in the training set may improve performance.

The classifier developed in this work has utility beyond automatic view annotation.
Firstly, it may form the foundation for novel classifiers capable of identifying unique
temporal LUS signatures. For example, by visualizing frame prediction probabilities over
time, we identified a signature oscillatory pattern that could potentially be used to identify
the curtain sign pattern (for examples, see Figures 7A and A2A). In terms of clinical utility,
the step-wise deployment of relevant classifiers (view, A line vs. B line, lung sliding, B line
severity, etc.) could form the backbone of completely automated LUS interpretation at the
bedside. View classification would act as the first step in this hierarchy, ensuring that a
potentially novice user has the ultrasound probe in the correct location.

5. Conclusions

We describe the development of a deep learning model to accurately partition a
large LUS dataset by view. To our knowledge, this is the first description of a method
wherein a relatively small subset of a dataset was used to develop a classifier that can
automatically partition the rest of an unannotated dataset. Our automated approach
considerably improved annotation efficiency, resulting in higher throughput relevant to the
annotating task at hand. We propose that this approach can be applied to other unannotated
datasets to save considerable manual annotation time and effort. In the clinical environment,
view classification could form the backbone of a completely automated LUS interpretation
system, where clips are triaged to appropriate classifiers based on the predicted view.
Future work involves automatically partitioning the remaining unannotated portion of
our LUS database based on other clinical findings downstream in the hierarchy to further
optimize annotation resource allocation.
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Appendix A. Alternative Model Architectures

Five neural network architectures were initially investigated. Initial training exper-
iments were conducted for random subsets of the training data, with a smaller subset
apportioned for validation. As shown in Table A1, highly parameterized architectures
tended to overfit to the training set. EfficientNetB0 was selected due to its lightweight
architecture and least observed overfitting.

Table A1. Performance metrics for model alternatives during initial experimentation, along with
number of parameters. Highly parameterized models exhibited overfitting.

Base
Accuracy AUC

Parameters
Train Validation Train Validation

Inceptionv3 [31] 0.9996 0.9207 1.0000 0.9362 2.18× 107

ResNet14v2 [32] 0.9976 0.9307 0.9999 0.9600 1.45× 106

ResNet50v2 [32] 0.9995 0.9465 1.0000 0.9648 2.36× 107

EfficientNetB0 [26] 0.9471 0.9021 0.9887 0.9595 4.21× 106

EfficientNetB7 [26] 0.9981 0.9194 0.9999 0.9438 6.44× 107

Appendix B. Training Details

Here we provide further details regarding the training of the EffientNetB0 convolu-
tional neural network described in Section 2.2.4.

Multiple measures were applied to combat overfitting. Dropout regularization [33]
(with dropout rate 0.3) was applied prior to the penultimate fully connected layer, and
L2 regularization was included in the loss (with λ = 10−4). Bayesian optimization was
conducted to refine the hyperparameters [34]. The hyperparameters explored and their
corresponding ranges were as follows: learning rate in [10−6, 10−3], dropout regularization
rate in [0.0, 0.6], λ in [10−9, 10−5], and the number of nodes in the second-last fully connected
layer in {16, 32, 64, 128}.

https://github.com/deepbreathe-ai/pleural-vs-parenchymal
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The model was trained for up to 15 epochs to minimize the binary cross entropy loss
function. The Adam optimizer [35] was employed with an initial learning rate of 10−6,
which was halved if the loss on a validation set did not decrease for 3 consecutive epochs.
Further, early stopping was employed if the loss on a validation set did not decrease over 5
consecutive epochs.

All code was written in Python 3.8.5 and the model was implemented using Ten-
sorFlow 2.5. The hardware used for training experiments contained an Intel® Core™

i9-10900K CPU at 3.7 GHz and a NVIDIA® GeForce RTX® 3090 GPU. Using this hardware,
the inference runtime of the model, averaged over 1000 trials, was 48 ms.

Appendix C. Explainability

Here we provide extra examples of both frame-based (Grad-CAM++; Figure A1) and
clip-based (pleural probability time series; Figure A2) explanations.

(A) True positive (B) True positive (C) True negative (D) True negative

(E) False positive (F) False negative (G) False negative (H) False negative

Figure A1. Additional Grad-CAM++ heatmaps from true positive (A,B), true negative (C,D), false
positive (E), and false negative (F–H) example frames. Red regions were the most important to the
prediction. True positive frames demonstrate activation on abdominal organs (A) and areas featuring
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pleural effusion, consolidation, and diaphragm (B). True negative frames demonstrate activation on
the bat wing sign (pleural line bordered by rib shadows), A line artefacts (C) and B line artefacts
(D). The false positive frame (E) shows activation proximal to the pleural line, likely because the
clip was under-gained and lacked appreciable features of typical parenchymal clips. False negative
frames showed activation in areas of aerated lung despite the presence of abdominal organs (F,H)
and features found in parenchymal clips (pleural line and A lines) due to the probe being positioned
superiorly during the first part of the acquisition (G).

Figure A2. Additional Pleural predication probability time series for selected true positive (A,B),
true negative (C,D), false positive (E), and false negative (F–H) clips. Only one additional false
positive example is displayed due to the relatively low number of false positives encountered. (A) True
positive example displaying the curtain sign, with corresponding predictions oscillating between
parenchymal and pleural as expected. (B) True positive example with strong pleural predictions
throughout, corresponding to a clip that demonstrated the diaphragm and liver on screen right, with
pleural effusion and consolidated lung on screen left. (C,D) True negative examples corresponding to
an A-line pattern clip with absent lung sliding (C) and a B-line pattern clip (D). (E) False positive
example, corresponding to a clip that was under-gained and relatively deep for a parenchymal
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acquisition, which hindered visibility of normal parenchymal artefacts and landmarks. (F,G) False
negative examples corresponding to clips where: (F) abdominal organs were visible, but the di-
aphragm was obscured by a rib shadow; (G) the first part of the clip was parenchymal, then the
operator moved the probe inferiorly to the level of a pleural view (though the predictions still did not
meet threshold for pleural classification); (H) abdominal contents were obscured by aerated lung, but
come into view at the end of the clip, corresponding to an increase in pleural prediction probability
that met the classification, but not the contiguity threshold. Supplementary Videos S5–S12.
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