1.2 Functions, Variables, and Constants

Function a rule that associates a y-value for every x-value
$\underset{\substack{\text { independent } \\(x) \\ \text { variable }}}{\substack{\text { InvT } \\(y)}} \xrightarrow{\substack{\text { OUTPUT } \\ \text { dererdeat } \\ \text { variable }}}$

For future calculations, we must realize there are three points to consider: (1) Origin " O " is the origin of the coordinate system
(2) An arbitrary fount "A" on the physical object
(3) A point " p " in space where we make our observations

We can use " r " to represent "distance" between points:
bif AP is r, then OA and Or can be r_{1} and r_{2} respectively

What if we had a functor n $f\left(r_{1}\right)$?
4 we know it will be dependent upon the location of point A w.r.t. Origin 0
Difference Betreen Derivatives \& Integrals

Derivative: calculates the slope of a curse at a specific point, such as at $x=a$

Integral: determmes the area underneath the curve between two points, such as $a \leq x \leq b$

Looking at Constants

\rightarrow always look to see what variable you are working with respect to
Example: $\int_{a}^{b} \frac{1}{r} d r=\left.1 \ln r\right|_{a} ^{b}=\ln (b)-\ln (a)=\ln \cdot\left(\frac{b}{a}\right)$
\rightarrow what about: $\int_{a}^{b} \frac{1}{R} d r$ where R is a constant

$$
\left.\int_{a}^{b} \frac{1}{R} d r=\frac{1}{R} \int_{a}^{b} \right\rvert\, d r=\frac{1}{x}[r]_{a}^{b}=\frac{1}{R(b-a)}
$$

Diagnostics Quire Question

Diagnostics Quin Question

$$
\int_{-\pi}^{\pi} \sin (\alpha) d \theta=\sin \alpha \int_{-\pi}^{\pi} d \theta=\left.\sin \alpha(\theta)\right|_{-\pi} ^{\pi}=\sin \alpha(\pi-(-\pi))=2 \pi \sin \alpha
$$

A note on boundary conditions: Leif $f(r)$ is bounded by $a \leq r \leq b$, then we can get the magnitude of the function at any point between a and b

Basic Shapes of Functions

CONSTANT

CUBIC

RECIPROCAL

SQUARE

rational

absolute value

EXPONENTIAL

SINE FUNCTION

LOGARITHMIC

LOOKING AT THE LINEAR FUNCTION
\rightarrow genecic form of a linear function is $y=a x+b$, where a and b ace constants

$$
\begin{aligned}
& y(x)=a x+b \\
& \quad \imath_{\text {independent variable }}
\end{aligned}
$$

dependent variable

\rightarrow to plot this, we have:

$\frac{y \text {-intercept }}{\text { when } x=0} \quad 1 \quad \frac{x \text {-intercept }}{1}$
$y(0)=a(0)+b$
$y=0+b$
$y=b$

$$
\begin{aligned}
& 0=a x+b \\
& x=\frac{-b}{a}
\end{aligned}
$$

Lookink at a Quadratic Function
\rightarrow use example function $z(h)=r k^{2}$ means that r is a constant

ExAMPLE
$\begin{aligned} \Longrightarrow \text { Solve for } \int_{-\pi}^{\pi} \sin \theta d \theta=[-\cos \theta]_{-\pi}^{\pi} & =-\cos \pi+\cos (-\pi) \\ & =-(-1)+(-1) \\ & =1-1=0\end{aligned}$

\rightarrow an alternative is to solve visually

\rightarrow same amount of tee and tue area
$\rightarrow \int_{-\pi}^{\pi} \sin \theta d \theta=\underline{\underline{0}}$
1.4 Vectors and Unit Vectors

Vectors vs. Scalars
Vectors \rightarrow have both magnitude and direction Scalars \rightarrow only have magnitude
If we have a vector \vec{A}, its magnitude is either $|\vec{A}|$ or A
L we use the unit vector \hat{a} to give us the direction of vector \vec{A} L have a length of 1 Lb e in the same direction as its "parent" \vec{A}

$$
\hat{a}=\frac{\vec{A}}{|\vec{A}|}=\frac{\vec{A}}{A}
$$

A common vector is called positionvector \vec{r}

Dot Product
Let's defile two vectors \vec{A} and \vec{B}
There is an angle θ between these:

$$
A_{x}=|\vec{A}| \cos \theta
$$

$$
=A \cos \theta
$$

$$
\begin{aligned}
\vec{A} \cdot \vec{B} & =(A \cos \theta) B \\
& =A B \cos \theta
\end{aligned}
$$

The dot product is also distributive:

$$
\vec{A} \cdot(\vec{B}+\vec{C})=(\vec{A} \cdot \vec{B})+(\vec{A} \cdot \vec{C})
$$

Example 㭌: Determine the magnitude of vector \bar{A}

$$
\vec{A} \cdot \vec{A}=|\bar{A}||\vec{A}| \cos \theta=A^{2}(l)=A^{2}
$$

Example \#2: Determine the magnitude of vector \vec{C} in the following:

$$
\begin{aligned}
& \vec{A}+(-\vec{B})=\vec{C} \\
& \vec{C}=\vec{A}-\vec{B}
\end{aligned}
$$

\rightarrow we can use $\vec{C} \cdot \vec{C}=C^{2} \cos 0=C^{2}$

$$
\begin{aligned}
C^{2}=\vec{C} \cdot \vec{C} & =(\vec{A}-\vec{B}) \cdot(\vec{A}-\vec{B}) \\
C^{2} & =\vec{A} \cdot \vec{A}-2 \vec{B} \cdot \vec{A}+\vec{B} \cdot \vec{B} \\
C^{2} & =A^{2}-2(B A \cos \theta)+B^{2} \\
C^{2} & =A^{2}+B^{2}-2 A B \cos \theta \leftarrow \text { this is the cosme law }
\end{aligned}
$$

CROSS PRODUCT
\rightarrow we want a third vector that is orthogonal to both \vec{A} and \vec{B}
.astor a annutity
\rightarrow we want a third vector that B orthogonal to both \bar{A} and B
 \therefore a cross product produces a vector quantity

1.6 Coordinate Systems: Cartesian Coordinates

Left-hand Thumb Rule

Cartesian Cookpinate system
\rightarrow we have three unit vectors: $\hat{x}, \hat{y}, \hat{z}$
 the path taken in each direction:

$$
\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z} \quad \begin{aligned}
& \text { Aside: } \\
& A_{x}, A_{y}, A_{z} \text { are the } \\
& \text { distances moved in }
\end{aligned}
$$

$$
\begin{aligned}
& \text { distances moved in the } \\
& x, y \text {, and } z \text { axis respectively }
\end{aligned}
$$

\rightarrow we must also recognize different planes

Differential Elements

$$
20 \text { World } \rightarrow d x, d y \text { for the } x y \text { plane }
$$

30 World $\rightarrow d x, d y, d z$

\rightarrow Differential Length Element is called $\overrightarrow{d l}$ and defined as:

$$
\overrightarrow{d l}=d x \hat{x}+d y \hat{y}+d z \hat{z}
$$

\rightarrow Differential Surface Element is called $\overrightarrow{d s}$ and can be represented m one of 3 ways: ค $1.1=$ (3) $d u d z$
\rightarrow Differential Surface Element is called $\overrightarrow{d S}$ and can be represented m one of 3 ways:
(1) $d x d y$ (2) $d x d z$ (3) $d y d z$
\rightarrow If we look at $d x d y$, we know that we are not moving in the z-direction, but rather focusms on the $x y$-plane
\rightarrow We conveniently choose \vec{d} s to be a rector and can define surface elements as follows:

$$
\overrightarrow{d S}_{z}=d x d y \hat{z} \quad \overrightarrow{d S}_{y}=d x d z \hat{y} \quad \overrightarrow{d S_{x}}=d y d z \hat{x}
$$

\rightarrow Differential Volume Element is called $d v$ and defined as:

$$
d v=d x d y d z
$$

1.7 Coordinate Systems: Polar Coordinates

Overview of Polar Coordinates

$$
x^{2}+y^{2}=r^{2}
$$

$$
\sin \phi=\frac{y}{r}: \quad \cos \phi=\frac{x}{r}: \quad \text { TAN } \phi=\frac{\sin \phi}{\cos \phi}=\frac{y / r}{x / r}
$$

$$
y=r \sin \phi
$$

$$
x=r \cos \phi
$$

$$
\operatorname{TAN} \phi=\frac{y}{x}
$$

Calculate Area of a (circle
\rightarrow compare 2 methods: (1) Cartesian coordmates (2) Polar coordinates

Method \#1: Cartesian Coordinates
Qu
$A_{\text {circle }}=4 A_{Q 1} \rightarrow$ how to find $A_{Q 1}$?
\rightarrow If $d S=d x d y$, we must find boundaries for each:
x-values: $0 \rightarrow R$

$$
y \text {-values: } 0 \rightarrow \sqrt{R^{2}-x^{2}}
$$

\rightarrow now we have to integrate with respect to $d S=\frac{d x}{4} \frac{d y}{4}$ differential elements, so we use
\rightarrow let's set up our integral for $A_{\text {circle }}$ double integrals

$$
\begin{aligned}
& A_{\text {circle }}=4 A_{a 1}=4 \int_{0}^{R} \int_{0}^{\sqrt{R^{2}-x^{2}}} d y d x \\
& A_{\text {circle }}=4 \int_{0}^{R}[y]_{0}^{\sqrt{R^{2}-x^{2}}} d x
\end{aligned}
$$

$A_{\text {circle }}=4 \int_{0}^{R} \sqrt{R^{2}-x^{2}} d x \rightarrow$ have to use trig substitution $(x=R \sin \theta)$ (takes too long...)

Method \#2: Polar Coordinates

F We need to find out how to define $d S$ with $d r$ and $d \phi$ τ defined by differential length -loments

$$
\begin{aligned}
& A_{\text {circle }}=\int_{0}^{R} \underbrace{\int_{0}^{2 \pi} r d \phi d r}_{0} \\
& \text { Acircle }=\int_{0}^{R} r \int_{0}^{2 \pi} d \phi d r=\int_{0}^{R} r[2 \pi-0] d r \\
& \text { Acircle }=2 \pi \int_{0}^{R} r d r=2 \pi\left[\frac{r^{2}}{4}\right]_{0}^{R}=\pi R^{2}
\end{aligned}
$$

An Alternative Way of Thinking

Summary

Unit Vectors

$$
\hat{r}, \hat{\varnothing}
$$

\rightarrow change in radius is $d r \rightarrow$ very tiny
\rightarrow circumference is $2 \pi r$

\rightarrow we can get a surface element $d S=2 \pi r d r$

$$
A_{\text {circle }}=2 \pi \int_{0}^{R} r d r=2 \pi\left[\frac{r^{2}}{2}\right]_{0}^{R}=\frac{2 \pi R^{2}}{2}=\pi R^{2}
$$

Differential Length Elements
dr in \hat{r} direction

$$
d S=r d r d \varnothing
$$

$r d \phi$ for the arclensth

Differential Area Element

Overview
\rightarrow the cylindrical coordinate system is a mother way to represent point $P(x, y, z)$ in 30 spare \rightarrow we will use variables r, ϕ, z

When can we use this coordinate system? \rightarrow symmetry about an axis

Differential Elements

Looking at point P, we define several wait vectors
$\rightarrow \hat{r}$ pointing radially outward
$\rightarrow \hat{\varnothing}$ that changes the angler makes with the x-axis
$\rightarrow \hat{z}$ to change the height
Let's look at the differential length elements

Differential Volume Element

$$
\begin{aligned}
& d v=d r d z r d \phi \\
& d v=r d r d \phi d z
\end{aligned}
$$

Differential Surface Area Elements

Calculate Surface Area of the Curved Part of Cylinder
\rightarrow We know that $d S=r d \phi d z$
\rightarrow Find boundaries for ϕ and z
1.. Lar if lenath $L: \quad z$-values: $0 \rightarrow L \quad \phi$-values: $0 \rightarrow 2 \pi$
\rightarrow Find boundaries for \varnothing and z
L For a cylinder of length L : z-values: $0 \rightarrow L \quad \varnothing$-values: $0 \rightarrow 2 \pi$
\rightarrow Solve using double integrals:

$$
\begin{aligned}
& S A=\int_{0}^{L} \int_{0}^{2 \pi} r d \phi d z \quad r \text { must be } R \text {, the radius of the cylinder } \\
& S A=R \int_{0}^{L} \int_{0}^{2 \pi} d \phi d z=R \int_{0}^{L} d z \int_{0}^{2 \pi} d \phi \\
& S A=R(L-0)(2 \pi-0)=2 \pi R L \rightarrow \text { surface area of cylonder's curved surface! }
\end{aligned}
$$

Calculate the volume of a Cylinder
\rightarrow the differential volume element is $d v=r \underline{d r d q d z}$ so a triple integral is required!

$$
\begin{aligned}
& V=\underbrace{\int_{0}^{L} \underbrace{2 \pi}_{0} \int_{0}^{R} r d r d \phi d z} \\
& V=\int_{0}^{\int_{0}^{L} d z \int_{0}^{2 \pi} d \phi \int_{0}^{R} r d r} \\
& V=[L-0][2 \pi-0]\left[\frac{r^{2}}{2}\right]_{0}^{R} \\
& V=2 \pi L\left[\frac{R^{2}}{2}-0\right] \\
& V=\pi L R^{2}
\end{aligned}
$$

Note: If we have
$\int_{a}^{b} \int_{c}^{d} \int_{c}^{g} f(x, y, z) d x d y d z$, if $f(x, y, z)$ can be separated into individual terms of x, y, z as products, such as: $f(x, y, z)=\underline{h(x)} \cdot l(y) \cdot m(z)$, we can rewrite the integral:

$$
\underbrace{\int_{a}^{b} d z} \underbrace{\int_{c}^{d} d y e^{\int_{e}^{g} d x}}
$$

OvERVIEW
そ $\because \cdots r$

Differential Length Elements

$$
\rightarrow d r \quad \rightarrow r d \theta \quad \rightarrow r \sin \theta d \phi
$$

Differential Volume Element

$$
\begin{aligned}
& d v=d r(r d \theta)(r \sin \theta d \phi) \\
& d v=r^{2} \sin \theta d r d \theta d \phi
\end{aligned}
$$

$$
>
$$

Surface Area of Sphere
\rightarrow we need $d S$, a differential surface area element

$$
\begin{aligned}
d S & =(r d \theta)(r \sin \theta d \phi) \\
d S & =r^{2} \sin \theta d \theta d \phi \\
S A & =\int_{0}^{2 \pi} \int_{0}^{\pi} r^{2} \sin \theta d \theta d \phi \\
S A & =R^{3} \int_{0}^{2 \pi} \int_{0}^{\pi} \underbrace{\sin \theta} d \theta d \phi
\end{aligned}
$$

r

$$
S A=\int_{0}^{2 \pi} \int_{0}^{\pi} r^{2} \sin \theta d \theta d \phi, \text { but } r=R \text { at } \quad \text { the surfa }
$$

the surface

VOLUME OF SPHERE $\int d v=V_{\text {sphere }}$
Let's look at boundaries:
r-values: $0 \rightarrow R$
ϕ-values: $0 \rightarrow 2 \pi$
θ-values: $0 \rightarrow \pi$

$$
\begin{aligned}
& V_{\text {sphere }}=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R} \underbrace{r^{2} \sin \theta}_{\Downarrow} d r d \theta d \phi \\
&\left(r^{2}\right)(\sin \theta)
\end{aligned}
$$

$$
\begin{aligned}
V_{\text {sphere }} & =\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{R} r^{2} d r \\
& =\left.\left.(2 \pi)(-\cos \theta)\right|_{0} ^{\pi}\left(\frac{r^{3}}{3}\right)\right|_{0} ^{R} \\
& =2 \pi(1+1)\left(\frac{R^{3}}{3}\right) \\
& =\frac{4 \pi R^{3}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& S A=R^{3} \int_{0}^{2 \pi} \int_{0}^{\pi} \underbrace{\sin \theta d \theta d \phi} \\
& S A=R^{3} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta=R^{3}(2 \pi)(\underbrace{-\cos \theta)\left.\right|_{0} ^{\pi}} \\
& S A=2 \pi R^{3}(2) \quad \therefore \underline{S A=4 \pi R^{3}}
\end{aligned}
$$

Example \#1. A sphere of radius R has a mass M with density linearly changing with radius, such that the density is 0 at the center of the sphere. Calculate the density as a function of radius.

Given: sphere $\rightarrow \underline{\text { R, radius } \rightarrow} \rightarrow$, mass \rightarrow density $\rho(r)$ is a linear function

$$
\begin{aligned}
& \rho(r)= a r+b \\
& b \rho_{0} \\
& \rho(r)=\rho_{0} r+\rho_{1} \\
& \rho(r)=\rho_{2} r
\end{aligned}
$$

\uparrow

Find: $\rho(r)$
\rightarrow when $r=0, \rho=0$

$$
\begin{aligned}
\rho(0) & =0 \\
\rho(0) & =\rho_{0}(0)+\rho_{1} \\
0 & =0+\rho_{1} \\
\rho_{1} & =0
\end{aligned}
$$

Approach! \rightarrow relate ρ to M and K
\rightarrow find the differential mass element $d m$

$$
\begin{aligned}
& m=\rho v \\
& d m=\rho(r) d v \leftarrow d v=r^{2} \sin \theta d r d \theta d \phi \\
& d m=\rho(r) r^{2} \sin \theta d r d \theta d \phi \quad \leftarrow \rho(r)=\rho_{0} r \\
& d m=\rho_{0} r^{3} \sin \theta d r d \theta d \phi
\end{aligned}
$$

Bounds: $r: 0 \rightarrow R$
\rightarrow solve for M using $\int d m$

$$
\begin{aligned}
& \theta: 0 \rightarrow \pi \\
& \phi: 0 \rightarrow 2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& M=\int d m=-\iiint_{0} \rho_{0} r^{3} \sin \theta d r d \theta d \phi \\
& M=\rho_{0} \int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{r^{3} \sin \theta d \phi d \theta d r}{\phi: 0 \rightarrow 2 \pi} \\
& M=\rho_{0} \int_{0}^{R} r^{3} d r \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi=\rho_{0}\left[\frac{r^{4}}{4}\right]_{0}^{R}[-\cos \theta]_{0}^{\pi}[\phi]_{0}^{2 \pi} \\
& M=\rho_{0}\left[\frac{R^{4}}{4}\right][\underbrace{-\cos \pi}_{1}+\underbrace{\cos 0}_{1}][2 \pi]=\underbrace{R^{4}}_{R^{R}}(火 \pi) \\
& M=\pi \rho_{0} R^{4}
\end{aligned}
$$

$$
M=\pi \rho_{0} R^{4}
$$

$$
\frac{M}{\cdots} \Rightarrow \rho(r)=e_{0} r
$$

$$
\left.\begin{array}{rl}
\frac{M=M_{0} \cdot}{r} \\
\rho_{0} & =\frac{M}{\pi R^{4}} \Rightarrow \rho(r)
\end{array}\right)=\rho_{0} r\left(\begin{array}{rl}
r
\end{array}\right)=\frac{r R^{4}}{\pi(r)}
$$

Given: sphere

$$
\rho(\theta)=\rho_{0} \sin \theta
$$

Find: M, total mass
Approach: \rightarrow we know that to find M, we need $d m$

$$
\begin{aligned}
& d m=\rho(\theta) d v \leftarrow d v=r^{2} \sin \theta d r d \theta d \phi \\
& d m=\left(\rho_{0} \sin \theta\right) r^{2} \sin \theta d r d \theta d \phi \\
& d m=\rho_{0} r^{2} \sin ^{2} \theta d r d \theta d \phi
\end{aligned}
$$

\rightarrow find M using $\int d m$

$$
\begin{aligned}
& M=\int d m=\iiint \rho_{0} r^{2} \sin ^{2} \theta d r d \theta d \theta \\
& M=\rho_{0} \int_{0}^{R} r^{2} d r \int_{0}^{\pi} \sin ^{2} \theta d \theta \int_{0}^{2 \pi} d \theta \\
& M=\rho_{0}\left[\frac{r^{3}}{3}\right]_{0}^{R}\left[\frac{\pi}{2}\right][\rho]_{0}^{2 \pi} \\
& M=\frac{\rho_{0} \pi}{2}\left(\frac{R^{3}}{3}\right)(2 \pi) \\
& M=\frac{1}{3} \rho_{0} \pi^{2} R^{3}
\end{aligned}
$$

Boundaries: sphere $r: 0 \rightarrow k$

$$
\begin{aligned}
& \theta: 0 \rightarrow \pi \\
& \rho: 0 \neq 2 \pi
\end{aligned}
$$

Ard: $\int_{0}^{\pi} \sin ^{2} \theta d \theta=\frac{\pi}{2}$

1.10 Examples and Important Integrals

Example \#3. The density of a sphere is uniform a nd given by $\rho=\rho_{0}$. Calculate the total mass.
Given: sphere $\rho=\rho_{0}$ (uniform density) Find: M, total mass
Approach: \rightarrow in order to find M, we need $d m$

$$
d m=\rho d v=\rho_{0} d v<d v=r^{2} \sin \theta d r d \theta d \phi
$$

\rightarrow solve for M using $\int d m$

$$
\begin{aligned}
& M=\int d m=\int \rho_{0} d v=\rho_{0} \underbrace{\int d v}_{L} \text { this is the volume of the sphere }=\frac{4}{3} \pi R^{3} \\
& M=\rho_{0}\left(\frac{4}{3} \pi R^{3}\right) \\
& M=\frac{4}{3} \pi \rho_{0} R^{3}
\end{aligned}
$$

Example \#4. Calculate the moment of inertia of a sphere of mass M and radius R rotating about the axis shown in the figure below. The sphere has uniform density.

From ECE 105, $d I=" m r^{2} "=d_{m} r^{2}$, then integrate to get $I=\int d I$

Approach: \rightarrow find an expression for $d I$
$d I=d m r^{2} \rightarrow r$ is the distance d_{m} is away from the axis of rotation

$$
d I=d m(r \sin \theta)^{2}
$$

\rightarrow let's solve for I using $I=\int d I$

$$
\begin{aligned}
& I=\int d I=\int(r \sin \theta)^{2} \stackrel{d m}{L} f i n d d m \\
& I=\iiint r^{2} \sin ^{2} \theta\left(\frac{3 M}{4 \pi R^{3}}\right) r^{2} \sin \theta d r d \theta d \theta \\
& I=\frac{3 M}{4 \pi R^{3}} \iiint \frac{r^{4} \sin ^{3} \theta}{} d r d \theta d \phi \\
& I=\frac{3 M}{4 \pi R^{3}} \int_{0}^{R} r^{4} d r \int_{0}^{\pi} \sin ^{3} \theta d \theta \int_{0}^{2 \pi} d \phi \\
& I=\frac{3 M}{K \pi R^{3}}\left[\frac{r^{5}}{5}\right]_{0}^{R}\left[\frac{火}{3}\right][\phi]_{0}^{2 \pi} \\
& I=\frac{M}{\pi R^{3}}\left[\frac{R^{5}}{5}\right][2 \pi] \\
& I=\frac{2}{5} M R^{2}
\end{aligned}
$$

$\bar{\zeta}$ find $d m$: $d m=\rho d v$ but $\rho=\rho_{0}$ (uniform density)
1.10 Examples and Important Integrals

Example \#5. An Archimedes' spiral is the trajectory of a point moving uniformly on a straight line of a plane while the line turns itself uniformly around one of its points. An example is the rotation of the stylus on a good old vinyl disk. The curve of one type of an Archimedes' spiral is given by the mathematical function $r=e^{\phi}$, where r is the radius from the origin and ϕ is the angle the line makes with the x-axis. Let us calculate the following parameters for one turn (that is ϕ changes from 0 to 2π):

1. The circumference of the curve
2. The area enclosed within the curve
(1) Circumference

\rightarrow How do we define $\overrightarrow{d l}$?
We must relate it to dr, $d \phi$

From the diagram, we see that:

\rightarrow find circumference C by integrating $d l$ for $\phi: 0 \rightarrow 2 \pi$

$$
\begin{aligned}
& C=\int d l=\int_{0}^{2 \pi} \sqrt{2} e^{\phi} d \phi \\
& C=\sqrt{2}\left[e^{\phi}\right]_{0}^{2 \pi} \\
& C=\sqrt{2}\left[e^{2 \pi}-1\right]
\end{aligned}
$$

(2) Area Enclosed

$$
\begin{aligned}
& \phi: 0 \\
& \phi d \phi \\
& d \text { decent } \\
& d S \\
& =e^{\phi} \\
& \text { eyratir }
\end{aligned}
$$

$$
\begin{aligned}
& (d l)^{2}=(r d \phi)^{2} \underbrace{\hat{\phi} \cdot \hat{\phi}}_{(1)}+2 r d \phi d r \underbrace{\hat{\phi} \cdot \hat{r}}_{(O)}+(d r)^{2} \underbrace{\hat{r} \cdot \hat{r}}_{(l)} \\
& (d l)^{2}=(r d \phi)^{2} \times(d r)^{2}
\end{aligned}
$$

$$
d l=\sqrt{(r d \phi)^{2}+(d r)^{2}} \rightarrow \text { must take out } d \phi
$$

$$
d l=\sqrt{(d \phi)^{2}\left[(r)^{2}+\left(\frac{d r}{d \phi}\right)^{2}\right]}
$$

$$
d l=d \phi \sqrt{r^{2}+\left(\frac{d r}{d \phi}\right)^{2}} \rightarrow r=e^{\phi} \quad \frac{d r}{d \phi}=e^{\phi}
$$

$$
d l=d \phi \sqrt{e^{2 \phi}+e^{2 \phi}}
$$

\rightarrow need to find a differential area element, called $d S$

$$
\begin{aligned}
& d l=d \phi \sqrt{e^{2 \phi}+e^{2 \ell}} \\
& d l=d \phi \sqrt{2 e^{2 \phi}} \\
& d l=\sqrt{2} e^{\phi} d \phi
\end{aligned}
$$

$$
d S=r d r d \phi \quad r=e^{\phi} \quad r: 0 \rightarrow e^{\phi} \quad \phi: 0 \rightarrow 2 \pi
$$

\rightarrow solve for A by integrating with respect to $d S$

$$
\begin{aligned}
& A=\int d S=\iint r d r d \phi \\
& A=\int_{0}^{2 \pi} \int_{0}^{e^{\phi}} r d r d \phi \\
& A=\int_{0}^{2 \pi}\left[\frac{r^{2}}{2}\right]_{0}^{e^{p}} d \phi \\
& A=\frac{1}{2} \int_{0}^{2 \pi}\left[e^{2 \phi}\right] d \phi
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{d l}=(r d \phi) \hat{\phi}+(d r) \hat{r} \\
& \overrightarrow{d l} \cdot \overrightarrow{d l}=[(r d \phi) \hat{\phi}+(d r) \hat{r}]=[(r d \phi) \hat{\phi}+(d r) \hat{r}]
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2}\left[\frac{1}{2} e^{2 \phi}\right]_{0}^{2 \pi} \\
A & =\frac{1}{4}\left[e^{4 \pi}-1\right]
\end{aligned}
$$

$$
A=\frac{1}{2} \int_{0}^{2 \pi}\left[e^{2 \phi}\right] d \phi
$$

1.10 Examples and Important Integrals

Some Important Integrals
(1) $\int_{a}^{b} \sin ^{2} \theta d \theta$ or $\int_{a}^{b} \cos ^{2} \theta d \theta$

If $b-a=m \pi$ (where m is an integer) \rightarrow megegral is always $\frac{m \pi}{2}$
(2) $\int_{a}^{b} \sin \theta \cos \theta d \theta$

If $b-a=m \pi$ (where m is an integer) \longrightarrow integral is always 0

