10.1 Introduction
\rightarrow Whereas electrostatics has stationary charges, magnetostatics has steady magnetic fields
Magnetostatics: the study of magnetic fields in systems where electric charges move at uniform velocity (doesn't change with time)
\rightarrow We use \vec{B} to represent magnetic flux density (magnetic field)
\rightarrow units of $\mathrm{Wb} / \mathrm{m}^{2}$
\rightarrow Letis suppose a charge q is placed in the region where both the electric field \vec{E} and the magnetic field \vec{B} exist
\rightarrow it the charge is at rest... only electric force exists

$$
\vec{F}_{e}=q \cdot \vec{E} \quad \text { ELECTRIC FORCE }
$$

\rightarrow if the charge is in motion with a velocity of \vec{u}, it will experience an additional magnetic force \vec{F}_{m}
\rightarrow if your test charge is moving,

$$
\vec{F}=q(\vec{E}+\vec{u} \times \vec{B}) \quad \text { LORENTZ FORCE }
$$

\rightarrow Unit analysis! $\rightarrow \vec{B}$ is measured in Teslas $\left.[T] \quad \begin{array}{l}1 T=1 \frac{\omega b}{m^{2}}=\frac{N \cdot s}{C \cdot m} \\ \end{array}\right\} \Phi_{B}$ is measured in webers $[\omega b]\left\{\begin{array}{l}\text { is }\end{array}\right.$

The cross product is crucial for the mathematical study of magnetic fields! If you have vectors \vec{A} and \vec{B} at an angle of θ to each other, then we define the cross product as:
$\vec{A} \times \vec{B}=|\vec{A}||\vec{B}| \sin \theta \rightarrow t \rightarrow$ the direction of $\vec{A} \times \vec{B}$ is b to the two vectors (normal to the plane)
magnitude of the cross product
direction can be determmed easily using Fleming's right - or left hand rules
(1) Fleming's Left Hand Rule

(2) Fleming's Right Hand Rule

Note: \vec{C} is the direction of the cross product of \vec{A} and \vec{B}
How do we know if the direction of $\vec{A} \times \vec{B}=\vec{C}$ is positic/negative?
4 Let's follow thin convention for each coordinate system

Cartesian
Cylindrical
Spherical

\longrightarrow When we go with the arrows, the cross-product is in the + re direction r. $\because \hat{\imath}-+\hat{z}$ $\hat{\phi} \times \hat{z}=+\hat{r}$ $\hat{\phi} \times \hat{r}=+\hat{\theta}$
\leftrightarrows When wo go 1

$$
\text { Ex: } \hat{x} \times \hat{y}=+\hat{z} \quad \hat{\phi} \times \hat{z}=+\hat{r} \quad \hat{\phi} \times \hat{r}=+\hat{\theta}
$$

L When we go against the arrows, the cross-product is in the -re direction

$$
E_{x}: \hat{y} \times \hat{x}=-\hat{z} \quad \hat{z} \times \hat{\phi}=-\hat{r} \quad \hat{r} \times \hat{\varphi}=-\hat{\theta}
$$

10.3 Gauss Law for Magnetism
\rightarrow Magnets will always have a north and south pole 4 the magnetic field lines leave the north pole and into the south pole 4 the magnetic field times must make a closed loop this means the flux on a closed surface is zero!

$$
\oint_{S} \vec{B} \cdot \overrightarrow{d S}=0
$$

gauss law for Magnetism (and Maxwell Equation)

Lo only trine in the classical world

Biot-Savart Law: gives the contribution $\overrightarrow{d B}$ to the magnetic field at a point P due to a small element of current in the direction $\overrightarrow{d l}$
$\overrightarrow{d l}$ is a small length element of the wire

\hat{r} is a unit vector
into the rage

The differential magnetic field $\overrightarrow{d S}$ due to the differential current element $I \overrightarrow{d l}$ is:

$$
\begin{aligned}
& \overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{I \vec{d} l \times \hat{r}}{r^{2}} \quad \text { BIOT-SAVART } \\
& \text { LAW } \\
& \mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{~N}}{\mathrm{~A}^{2}} \text { or } \frac{T \cdot m}{A}
\end{aligned}
$$

L permeability of free space
© out of page
© into the page

To determine the TOTAL MAGNETIC FIELD \vec{B} :

$$
\vec{B}=\int \overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \int \frac{I \overrightarrow{d l} \times \hat{r}}{r^{2}} \quad \begin{aligned}
& \text { TOTAL MAGNETIC FIELD FROM } \\
& \text { INTEGRATING THE BIOT-SAVAKT LAW }
\end{aligned}
$$

Steps to Evaluate \vec{B}
(1) Pick an appropriate coordinate system
(2) Define arbitrary point A on circuit and $\overrightarrow{d l}$ in terms of coordinate parameters
(3) Evaluate $\overrightarrow{d l} \times \hat{r}$ (magnitude and direction)
(4) Look for symmetry \rightarrow decomvose $\overrightarrow{d B}$ if it exists only m one specific direction
(5) Integrate to find \vec{B}
10.5 Biot-Savart Law for Moving Charges

We can modify the Brot-Savart Law equation to be written in terms of charge and velocity (useful for moving charges ea certain speed)

$$
\begin{aligned}
& \overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d l} \times \hat{r}}{r^{2}} \quad \text { but } I=\frac{d q}{d t} \quad \text { (current is charge per unit time) } \\
& \overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{d q}{d t} \frac{\overrightarrow{d l} \times \hat{r}}{r^{2}} \quad \text { but } \overrightarrow{\mathrm{V}}=\frac{\overrightarrow{d l}}{d t} \\
& \overrightarrow{d B}=\frac{\mu_{0} d q \vec{v} \times \hat{r}}{4 \pi r^{2}} \quad \text { BIOT-SAUART LAW FOR }
\end{aligned}
$$

10.6a Example \#1

Find the magnetic field at an arbitrary point P on the axis of a circular loop of radius a carrying a current I

Diagram:

\Downarrow

Biot-Savaet Law:

$$
\begin{aligned}
& \overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d l} \times \hat{r}}{r^{2}} \\
& \overrightarrow{d B}=\frac{\mu_{0} I d l}{4 \pi r^{2}}
\end{aligned}
$$

\rightarrow The Piot-Savart Law determines $\overrightarrow{\alpha B}$ at P, so we must identify vectors $\overrightarrow{d l}$ and \hat{r}
\rightarrow When we go around the ring, the $\overrightarrow{d B}$ components that are perpendicular to the axis will cancel, giving a net magnets field along the x-axis
\rightarrow We just need to find $\overrightarrow{d B}_{x}$ and integrate!

Aside: $d B_{x}=d B \cos \theta ; \cos \theta=\frac{a}{r} ; r=\sqrt{a^{2}+x^{2}}$
$+\overrightarrow{d l} \times \hat{r} \rightarrow$ we know $\overrightarrow{d l}$ b \hat{r} so $\theta=90^{\circ}$ $=d l(r) \sin 90^{\circ} \quad$ and $|\hat{r}|=1$
$=d l$

$$
\stackrel{\Downarrow}{d B_{x}}=\frac{\mu_{0} I d l}{4 \pi r^{2}} \cos \theta=\frac{\mu_{0} I d l a}{4 \pi r^{3}}=\frac{\mu_{0} I d l a}{4 \pi\left(a^{2}+x^{2}\right)^{8 / a}}
$$

\downarrow

$$
\bar{B}=\int d \vec{B}_{x} \hat{x}=\frac{\mu_{0} I_{a}}{4 \pi} \int \frac{d l}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{\mu_{0} I_{a}}{4 \pi\left(x^{2}+a^{2}\right)^{3 / 2}} \int d l
$$

$$
\begin{aligned}
\vec{B} & =\frac{\mu_{0} \operatorname{Ia}(x / z a)}{2 \mu_{x}\left(x^{2}+a^{2}\right)^{3 / 2}} \hat{x} \\
& =T_{a}^{2}
\end{aligned}
$$

$$
\vec{B}=\frac{\mu_{0} I_{a^{2}}^{2}}{2,} \hat{x}
$$

$$
\vec{B}=\frac{\mu_{0} I_{a^{2}}}{2\left(x^{2}+a^{2}\right)^{3 / 2}} \hat{x}
$$

10.6b Example \#2

A thin, straight wire is carrying current I. Calculate the magnetic field at point P on an axis going halfway through the wire. Assume the leads to the ends of the wire cancel the field at point P (eg. You twist the wires)

Diagram:

Aside: $|\overrightarrow{d l} \times \hat{r}|=|\vec{d} l||\hat{r}| \sin \theta$

$$
\begin{aligned}
& \text { Aside: } \begin{aligned}
& \mid d l \times r \mid \\
&=d x(1) \sin \theta \leftarrow \sin \theta=\sin (\pi-\theta) \\
&=d x \sin (\pi-\theta) \text { but } \sin (\pi-\theta)=h / r \\
&=d x\left(\frac{h}{r}\right)(+\hat{z}) \text { by inspection } \\
& \Rightarrow r=\sqrt{x^{2}+h^{2}} \\
& \Rightarrow \int \frac{d x}{\left(x^{2}+h^{2}\right)^{3 / 2}}=\frac{x}{h^{2} \sqrt{h^{2}+x^{2}}}
\end{aligned} \quad \vec{B}
\end{aligned}
$$

Biot-Sarart Law:

$$
\begin{aligned}
\overrightarrow{d B} & =\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d l} \times \hat{r}}{r^{2}} \\
\overrightarrow{d B} & =\frac{\mu_{0}}{4 \pi} \frac{I d x h}{r^{3}} \hat{z} \\
\overrightarrow{d B} & =\frac{\mu_{0} I k d x}{4 \pi\left(x^{2}+h\right)^{3 / 4}} \hat{z} \\
\vec{B} & =\int \overrightarrow{d B} \hat{z}
\end{aligned}
$$

$$
\vec{B}=\frac{\mu_{0} I h}{4 \pi} \int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{d x}{\left(x^{2}+h^{2}\right)^{3 / 2}} \hat{z}
$$

$$
\vec{B}=\frac{\mu_{0} I h}{4 \pi}\left[\frac{x}{h^{2} \sqrt{h^{2}+x^{2}}}\right]_{-c / 2}^{4 / 2} \tilde{z}
$$

$$
\vec{B}=\frac{\mu_{0} I h(2 L)}{4 \pi h^{2} \sqrt{4 h^{2}+L^{2}}} \hat{z}
$$

$$
\vec{B}=\frac{\mu_{0} I h L}{2 \pi h^{2} \sqrt{4 h^{2}+L^{2}}} \hat{z}
$$

