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PHYS 111 
TUTORIAL TOPIC: ROTATIONAL KINEMATICS & ENERGY 

This tutorial will cover a detailed introduction to the rotational world. Similar to the linear world, the rotational world is a part of 
everyday life and we need to develop different ways of expressing and quantifying motion in the rotational world. We’ll start off by 
introducing angular or rotational terminology, which will allow us to talk about rotational kinematics. Once we’ve familiarized 
ourselves with rotational kinematics, we can move on to rotational kinetic energy and moment of inertia, which will be used in the 
an updated law for the conservation of energy that we can apply to questions related to rolling motion. 

ANGULAR POSITION, VELOCITY AND ACCELERATION 
When objects were moving in a straight line or at an angle, it was useful to establish a coordinate system. You would usually have 
an origin point, and an x- or y-direction where the object could relate to so that we could measure the object’s position, velocity 
and acceleration.  

But are linear terms really useful in describing objects that are rotating? We probably want something more convenient. Therefore, 
we need to define angular quantities that are analogous to an object’s linear position, velocity and acceleration. As a general 
summary, we used to use 𝑥𝑥 for position, 𝑣𝑣 for velocity, and 𝑎𝑎 for acceleration. Now, we will use 𝜃𝜃 for angular position, 𝜔𝜔 for 
angular velocity, and 𝛼𝛼 for angular acceleration. Let’s start by drawing a circle and defining these various angular quantities. 

Angular Position 𝜽𝜽 is the angle that the object is at from a reference line 
(where 𝜃𝜃 = 0° or 0 radians). By convention, counterclockwise (𝜽𝜽 < 𝟎𝟎) 
is positive while clockwise (𝜽𝜽 > 𝟎𝟎) is negative 

• Units are in radians, which are dimensionless  
o A radian is the angle for which the arc length on a circle 

of radius 𝑟𝑟 is equal to the radius of the circle 
 

• What is the arc length? 
o The arc length is given by 𝒔𝒔 = 𝒓𝒓𝒓𝒓 
o If we do a full 360° revolution (1 rev) on the circle, the 

radius of the circle is 𝑟𝑟 and the arc length is the 
circumference of the circle, or 2𝜋𝜋𝜋𝜋 

o This means 1 rev = 360° = 2π radians 
 

• Commonly, we want to know the angular displacement 𝚫𝚫𝜽𝜽 (or a 
change in position) so that we can figure out angular velocity 

Δ𝜃𝜃 = 𝜃𝜃𝑓𝑓 − 𝜃𝜃𝑖𝑖  

Angular Velocity 𝝎𝝎 is defined as angular displacement over time, just like its linear counterpart. So now, we have an expression 
for the average angular velocity, in units of radians per second or s-1: 

𝜔𝜔avg =
Δ𝜃𝜃
Δ𝑡𝑡

 

• If the angular velocity is constant, then 𝜔𝜔 = 𝜔𝜔avg = Δ𝜃𝜃/Δ𝑡𝑡, which for one revolution means that Δ𝜃𝜃 = 2𝜋𝜋 and Δ𝑡𝑡 =
𝑇𝑇, where 𝑇𝑇 is the period. The period for constant angular velocity is then defined as: 

𝑇𝑇 =
2𝜋𝜋
𝜔𝜔

 

Figure 1. Angular Position, Velocity and Acceleration 
on an Axis of Rotation 
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Angular Acceleration 𝜶𝜶 is defined as the change in angular velocity over time, also like its linear counterpart. We can then 
create an expression for the average angular acceleration, in units of radians per second squared, or s-2: 

𝛼𝛼avg =
Δ𝜔𝜔
Δ𝑡𝑡

 

ROTATIONAL KINEMATICS 
In the linear world of kinematics, we know that the acceleration due to gravity is constant. From that, we get a set of kinematics 
equations that we can use. What about the rotational world of kinematics? Well, if we say that the angular acceleration is constant, 
couldn’t we use the same set of kinematics equations with our angular quantities? Let’s write these out, but first let’s jot down what 
linear quantities relate to which rotational quantities. 

Quantity Linear World Rotational World 

Displacement Δ𝑥𝑥 𝜃𝜃 
Velocity 𝑣𝑣 𝜔𝜔 

Acceleration 𝑎𝑎 𝛼𝛼 

Kinematics Equation 1 𝑣𝑣𝑓𝑓 = 𝑣𝑣𝑖𝑖 + 𝑎𝑎𝑎𝑎 𝜔𝜔𝑓𝑓 = 𝜔𝜔𝑖𝑖 + 𝛼𝛼𝛼𝛼 

Kinematics Equation 2 Δ𝑥𝑥 = 𝑣𝑣𝑖𝑖𝑡𝑡 +
1
2
𝑎𝑎𝑡𝑡2 Δ𝜃𝜃 = 𝜔𝜔𝑖𝑖𝑡𝑡 +

1
2
𝛼𝛼𝑡𝑡2 

Kinematics Equation 3 Δ𝑥𝑥 = 𝑣𝑣𝑓𝑓𝑡𝑡 −
1
2
𝑎𝑎𝑡𝑡2 Δ𝜃𝜃 = 𝜔𝜔𝑓𝑓𝑡𝑡 −

1
2
𝛼𝛼𝑡𝑡2 

Kinematics Equation 4 Δ𝑥𝑥 =
1
2
�𝑣𝑣𝑖𝑖 + 𝑣𝑣𝑓𝑓�𝑡𝑡 Δ𝜃𝜃 =

1
2
�𝜔𝜔𝑖𝑖 + 𝜔𝜔𝑓𝑓�𝑡𝑡 

Kinematics Equation 5 𝑣𝑣𝑓𝑓2 = 𝑣𝑣𝑖𝑖2 + 2𝑎𝑎Δ𝑥𝑥 𝜔𝜔𝑓𝑓2 = 𝜔𝜔𝑖𝑖
2 + 2𝛼𝛼Δ𝜃𝜃 

 

When we solve kinematic problems involving rotation, we simply apply these newly-defined angular kinematics equations in the 
same way we did with the linear ones. Let’s go through a couple of problems. 

PRACTICE PROBLEM #1 
You are playing fetch with your dog. You throw a ball with an initial angular speed of 36.0 rad/s and your dog catches the ball 
0.595 s later. When your dog catches the ball, its angular speed has decreased to 34.2 rad/s due to air resistance. 

(a) What is the ball’s angular acceleration, assuming it to be constant? 
(b) How many revolutions does the ball make before being caught? 

Make a Plan: This is our first venture into rotational kinematics. But, the approach is almost identical to linear kinematics. We just 
need three parameters in order to solve for a fourth using one of the kinematics equations. So, we have an initial angular speed 
(𝜔𝜔𝑖𝑖), a final angular speed (𝜔𝜔𝑓𝑓), and time (𝑡𝑡). This means we can solve for 𝛼𝛼 using a kinematics equation for part (a), and then 
determine the angular displacement (Δ𝜃𝜃) to answer part (b). 
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Step #1: Draw Diagram & State Known Values 

Although a diagram isn’t necessary for this question, we should probably get used to labelling some items in the rotational world. 
So let’s draw a diagram for this scenario and state known values. 

 
Step #2: Use Kinematics Equations to Solve 

Part (a) is asking us to solve for the angular acceleration of this scenario. We are given 𝜔𝜔𝑖𝑖,𝜔𝜔𝑓𝑓 , 𝑡𝑡 and asked to find 𝛼𝛼 so we use 
this kinematics equation: 

𝜔𝜔𝑓𝑓 = 𝜔𝜔𝑖𝑖 + 𝛼𝛼𝛼𝛼 

𝛼𝛼 =
𝜔𝜔𝑓𝑓 − 𝜔𝜔𝑖𝑖

𝑡𝑡
=

34.2 − 36.0
0.595

 

𝛼𝛼 = −3.025 s−2 

Therefore the angular acceleration is -3.025 s-2 

Part (b) is asking us to solve for the number of revolutions that the ball makes before it is caught. We’ll have to find the angular 
displacement Δ𝜃𝜃 and then convert that into revolutions. Let’s use another kinematics equation to find Δ𝜃𝜃: 

Δ𝜃𝜃 =
1
2
�𝜔𝜔𝑖𝑖 + 𝜔𝜔𝑓𝑓�𝑡𝑡 =

1
2

(36.0 + 34.2)0.595 

Δ𝜃𝜃 = 20.8845 rad 

We know that 1 rev = 360° = 2π rad so: 

Δ𝜃𝜃 = 20.8845 rad �
1 rev
2π rad

� 

Δ𝜃𝜃 = 3.324 rev 

Therefore the ball revolves 3.324 times before it is caught. 

PRACTICE PROBLEM #2 
A pulley rotating in the counterclockwise direction is attached to a mass suspended from a string. The mass causes the pulley’s 
angular velocity to decrease with a constant angular acceleration 𝛼𝛼 = -2.10 rad/s2. 

(a) If the pulley’s initial angular velocity is 5.40 rad/s, how long does it take for the pulley to come to rest?  
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(b) Through what angle does the pulley turn during this time? 

Make a Plan: Once again, a kinematics problem. We have angular acceleration, initial velocity, and final velocity (since the pulley 
comes to rest). This means we can use a kinematics equation to solve for time in part (a) and then displacement in part (b). 

Step #1: Draw Diagram & State Known Values 

We should probably draw a diagram to get used to rotational motion. Let’s try that, and state our given values: 

 
Step #2: Apply Kinematics Equations and Solve 

In Part (a), we’re asked to solve for the time it takes for the pulley to come to rest. We have three parameters, we can pick the 
right kinematics equation to solve for 𝑡𝑡: 

𝜔𝜔𝑓𝑓 = 𝜔𝜔𝑖𝑖 + 𝛼𝛼𝛼𝛼 

𝑡𝑡 =
𝜔𝜔𝑓𝑓 − 𝜔𝜔𝑖𝑖

𝛼𝛼
=

0 − 5.40
−2.10

 

𝑡𝑡 = 2.571 s 

Therefore it takes 2.571 seconds for the pulley to come to rest. 

In Part (b), we’re asked to solve for the angle the pulley turns during this time. So we want Δ𝜃𝜃: 

𝜔𝜔𝑓𝑓2 = 𝜔𝜔𝑖𝑖
2 + 2𝛼𝛼Δ𝜃𝜃 

Δ𝜃𝜃 =
𝜔𝜔𝑓𝑓2 − 𝜔𝜔𝑖𝑖

2

2𝛼𝛼
=

02 − 5.402

2(−2.10)  

Δ𝜃𝜃 = 6.943 rad 

Therefore, the pulley turns 6.943 radians to come to rest. 

RELATING LINEAR AND ROTATIONAL QUANTITIES 
With all this talk about linear and rotational quantities, we’ve kept the analyses separate. But what if there’s a question that 
involves both? We’ll have to figure out a way to connect the two worlds together. Let’s try and see if there’s a way to do this, and it 
all starts by looking at a rotating object that follows a circular path. 
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When you take a snapshot of that circular, rotating motion, that object is moving in a direction tangential to the circle, with a linear 
speed and acceleration. So let’s first take a look at speed. We know that the angular velocity of this object spinning around in a 
circle is 𝜔𝜔. From our equation for the period, 𝑇𝑇, we know that: 

𝑇𝑇 =
2𝜋𝜋
𝜔𝜔
→  𝜔𝜔 =

2𝜋𝜋
𝑇𝑇

 

How can we relate this to tangential speed (𝑣𝑣𝑡𝑡)? Well, similar to our experience with circular motion and centripetal acceleration, 
the tangential speed is going to be calculated by how much distance the object travels in a given about of time. Since the time to 
do one revolution around the circular motion is the period, 𝑇𝑇, that means the distance travelled will be the circumference of the 
circle, or 2𝜋𝜋𝜋𝜋. This means we have: 

𝑣𝑣𝑡𝑡 =
2𝜋𝜋𝜋𝜋
𝑇𝑇

= 𝑟𝑟 �
2𝜋𝜋
𝑇𝑇
� = 𝑟𝑟𝜔𝜔 

We now have a direct relationship between the linear and rotational worlds with the following equation: 

𝒗𝒗𝒕𝒕 = 𝒓𝒓𝒓𝒓 

Now, let’s take a look at acceleration. We know that angular acceleration in the rotational world is given by: 

𝛼𝛼 =
Δ𝜔𝜔
Δ𝑡𝑡

 

If we look at tangential acceleration, we have: 

𝑎𝑎𝑡𝑡 =
Δ𝑣𝑣𝑡𝑡
Δ𝑡𝑡

=
Δ𝑟𝑟𝑟𝑟
Δ𝑡𝑡

= 𝑟𝑟 �
Δ𝜔𝜔
Δ𝑡𝑡
� = 𝑟𝑟𝑟𝑟 

This gives us a direct relationship between linear and rotational acceleration: 

𝒂𝒂𝒕𝒕 = 𝒓𝒓𝒓𝒓 

But we also know that in the linear world, there is going to be centripetal acceleration, defined by: 

𝑎𝑎cp =
𝑣𝑣2

𝑟𝑟
=

(𝑟𝑟𝑟𝑟)2

𝑟𝑟
= 𝑟𝑟𝜔𝜔2 

So we have a third relationship that we can leverage when required: 

𝒂𝒂𝐜𝐜𝐜𝐜 = 𝒓𝒓𝝎𝝎𝟐𝟐 

Now that we can relate the linear and rotational worlds, it’s time to revisit and update some topics from the past, specifically with 
respect to rolling motion and rotational kinetic energy. Previously, we’ve only looked at objects moving from one point to another 
without any rotational motion. What if we combined both? We’ll need additional tools to help analyze such scenarios. 

ROTATIONAL KINETIC ENERGY AND MOMENT OF INERTIA 
When we look at rolling motion, it is a combination of both translational motion and rotational motion. So, think of an object of 
radius 𝑟𝑟 that rolls or rotates with an angular speed of 𝜔𝜔, and translates or moves with a linear speed of 𝑣𝑣. That means we need to 
consider the kinetic energy in both the linear and rotational worlds and add them up to get the total kinetic energy in an object that 
rolls and moves at the same time. 
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We already know that translational kinetic energy can be calculated using our linear world equation: 

𝑲𝑲𝑬𝑬𝒕𝒕 =
𝟏𝟏
𝟐𝟐
𝒎𝒎𝒗𝒗𝟐𝟐 

But what about rotational kinetic energy? We need to come up with another equation to help define this. Since we already know 
that 𝑣𝑣 = 𝑟𝑟𝑟𝑟, why don’t we just plug that in to 𝐾𝐾𝐸𝐸𝑡𝑡 to get 𝐾𝐾𝐸𝐸𝑟𝑟? 

𝐾𝐾𝐸𝐸𝑟𝑟 =
1
2
𝑚𝑚(𝑟𝑟𝑟𝑟)2 =

1
2
𝑚𝑚𝑟𝑟2𝜔𝜔2 =

1
2
𝐼𝐼𝜔𝜔2 

𝑲𝑲𝑬𝑬𝒓𝒓 =
𝟏𝟏
𝟐𝟐
𝑰𝑰𝝎𝝎𝟐𝟐 

We now have an equation for rotational kinetic energy, also in units of joules. But, it may be more convenient to express (𝑚𝑚𝑟𝑟2) as 
something else called the moment of inertia 𝑰𝑰, which is considered the rotational equivalent of mass. In other words, just like how 
mass determines how much force is required for a certain amount of acceleration… the moment of inertia determines how much 
rotational force (torque) is required for a certain amount of angular acceleration in the rotational world. The moment of inertia 
expresses an object’s tendency to resist angular acceleration. So we define the moment of inertia as: 

𝐼𝐼 = 𝑚𝑚𝑟𝑟2 

But is this equation always true? No! Because the moment of inertia 
depends on the particular shape, or mass distribution, of an object. 
When we calculate the rotational kinetic energy (KEr), we’re trying to 
calculate the total rotational kinetic energy of the rotating object (a full 
360° or 2π radian spin). That equation we’ve presented up there is just 
the moment of inertia at a particular point in the shape. 

So how do we calculate the total moment of inertia 𝐼𝐼? We would need 
calculus. But long story short, let’s look at a hoop of total mass 𝑀𝑀 and 
radius 𝑅𝑅 as an example. We would break up the entire object into 
infinitely small elements, and consider their individual contributions (or 
individual moments of inertia) to the total moment of inertia. We then have 
a new equation for the moment of inertia, where 𝑚𝑚𝑖𝑖 is the mass of each 
individual element, and 𝑟𝑟𝑖𝑖 is the distance the individual element is away 
from the axis of rotation: 

𝐼𝐼 = �𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖2

𝑖𝑖

 

For the hoop example here, we know that the total mass of the hoop is 𝑀𝑀 so all the little 𝑚𝑚𝑖𝑖 ’s should add up to 𝑀𝑀. We also know 
that the distance away from the axis of rotation (which is the center of the hoop) is 𝑅𝑅, so 𝑟𝑟𝑖𝑖 is the same for each small element. So 
for a hoop, the moment of inertia is: 

𝐼𝐼hoop = 𝑀𝑀𝑅𝑅2 

But what about a solid disk? If we have the same total mass 𝑀𝑀 and form a uniform disk of the same radius 𝑅𝑅, the moment of 
inertia, as expected, would be different. Why? Because 𝑟𝑟𝑖𝑖 ≠ 𝑅𝑅 for each individual element 𝑚𝑚𝑖𝑖. The elements at the outermost 
ring of the solid disk will have 𝑟𝑟𝑖𝑖 = 𝑅𝑅, but the elements within the solid disk will have 𝑟𝑟𝑖𝑖 < 𝑅𝑅, down to the central element which 

Figure 2. Moment of Inertia of a Hoop 
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has 𝑟𝑟𝑖𝑖 = 0. That means that the contribution from the small elements to the overall moment of inertia will get smaller and smaller 
as your element gets closer to the center of the disk, since 𝑟𝑟𝑖𝑖 → 0. It then makes sense that the overall moment of inertia for a 
solid disk will be less than the overall moment of inertia for a hoop. After a detailed calculation (with calculus) summing over all the 
mass elements, we get the following result: 

𝐼𝐼disk =
1
2
𝑀𝑀𝑅𝑅2 

Here’s a table of different moments of inertia for uniform, rigid objects of various shapes of mass 𝑀𝑀: 

Shape Moment of Inertia Shape Moment of Inertia 

Hoop or 
Cylindrical Shell 
Axis: Center 

𝐼𝐼 = 𝑀𝑀𝑅𝑅2 Hollow Sphere 
Axis: Center 𝐼𝐼 =

2
3
𝑀𝑀𝑅𝑅2 

Disk or 
Solid Cylinder 
Axis: Center 

𝐼𝐼 =
1
2
𝑀𝑀𝑅𝑅2 Solid Sphere 

Axis: Center 𝐼𝐼 =
2
5
𝑀𝑀𝑅𝑅2 

Disk or 
Solid Cylinder 
Axis: Edge 

𝐼𝐼 =
3
2
𝑀𝑀𝑅𝑅2 Solid Sphere 

Axis: Edge 𝐼𝐼 =
7
5
𝑀𝑀𝑅𝑅2 

Long Thin Rod 
Axis: Center 𝐼𝐼 =

1
12

𝑀𝑀𝐿𝐿2 
Solid Plate 
Axis: Center in 
Plane of Plate 

𝐼𝐼 =
1

12
𝑀𝑀𝐿𝐿2 

Long Thin Rod 
Axis: End 𝐼𝐼 =

1
3
𝑀𝑀𝐿𝐿2 

Solid Plate 
Axis: Center 
Perpendicular to 
Plane of Plate  

𝐼𝐼 =
1

12
𝑀𝑀(𝐿𝐿2 + 𝑊𝑊2) 
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Now, let’s revisit the Law of Conservation of Energy of Rolling Motion. With objects that roll, we already came to the 
conclusion that we need to consider translational kinetic energy and rotational kinetic energy. Therefore, we define the kinetic 
energy of rolling motion as: 

𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐸𝐸𝑡𝑡 + 𝐾𝐾𝐸𝐸𝑟𝑟 

𝐾𝐾𝐾𝐾 =
1
2
𝑚𝑚𝑣𝑣2 +

1
2
𝐼𝐼𝜔𝜔2 

If we do not have angular velocity handy to plug into this equation, we can redefine 𝜔𝜔 using 𝑣𝑣 = 𝑟𝑟𝜔𝜔 to get: 

𝐾𝐾𝐾𝐾 =
1
2
𝑚𝑚𝑣𝑣2 +

1
2
𝐼𝐼 �
𝑣𝑣
𝑟𝑟
�
2

=
1
2
𝑚𝑚𝑣𝑣2 +

1
2 𝐼𝐼𝑣𝑣

2

𝑟𝑟2
 

𝐾𝐾𝐾𝐾 =
1
2
𝑣𝑣2 �𝑚𝑚 +

𝐼𝐼
𝑟𝑟
� 

Apart from this, we should also update our equation for mechanical energy to encompass everything we have covered so far in 
this course: 

𝑀𝑀𝑀𝑀 = 𝐾𝐾𝐾𝐾 + 𝑃𝑃𝑃𝑃 

𝑀𝑀𝑀𝑀 = 𝐾𝐾𝐸𝐸𝑡𝑡 + 𝐾𝐾𝐸𝐸𝑟𝑟 + 𝑃𝑃𝐸𝐸𝑔𝑔 + 𝑃𝑃𝐸𝐸𝑠𝑠 

Now, let’s go through a few practice problems related to moment of inertia and rotational kinetic energy.  

PRACTICE PROBLEM #3 
A 1.20 kg disk with a radius of 10 cm rolls without slipping. If the linear speed of the disk is 1.41 m/s, find: 

(a) The translational kinetic energy of the disk 
(b) The rotational kinetic energy of the disk 
(c) The total kinetic energy of the disk 

Make a Plan: We know that this is an energy problem, and we know that there is a disk that rolls and moves. We already have the 
equations for rotational and translation kinetic energy, so let’s use those. 

Step #1: Draw Diagram & State Known Values 

Let’s first draw a diagram of this system and state our known values. 
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Step #2: Apply Energy Equations to Solve 

To find the answer to Part (a), we simply use the equation for translational kinetic energy: 

𝐾𝐾𝐸𝐸𝑡𝑡 =
1
2
𝑚𝑚𝑣𝑣2 =

1
2

(1.20)(1.41)2 

𝐾𝐾𝐸𝐸𝑡𝑡 = 1.193 J 

To find the answer to Part (b), we just use the equation for rotational kinetic energy. But, that means we need moment of inertia, 
𝐼𝐼, as well as angular velocity 𝜔𝜔. Since this is a solid disk, we know that 𝐼𝐼 = 1

2
𝑚𝑚𝑟𝑟2 and we can relate 𝑣𝑣 = 𝑟𝑟𝜔𝜔 so we have: 

𝐾𝐾𝐸𝐸𝑟𝑟 =
1
2
𝐼𝐼𝜔𝜔2 =

1
2
�

1
2
𝑚𝑚𝑟𝑟2� �

𝑣𝑣
𝑟𝑟
�
2

=
1
4
𝑚𝑚𝑣𝑣2 =

1
4

(1.20)(1.41)2 

𝐾𝐾𝐸𝐸𝑟𝑟 = 0.596 J 

Now, to answer Part (c), we just sum up the two types of kinetic energies: 

𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐸𝐸𝑡𝑡 + 𝐾𝐾𝐸𝐸𝑟𝑟 = 1.193 + 0.596 

𝐾𝐾𝐾𝐾 = 1.789 J 

Therefore the total kinetic energy of the disk is 1.789 J. 

PRACTICE PROBLEM #4 
A block of mass 𝑚𝑚 is attached to a string that is wrapped around a wheel of radius 𝑅𝑅 and mass 𝑀𝑀. The wheel rotates freely about 
its axis and the string wraps around its circumference without slipping. Initially, the wheel rotates with an angular speed 𝜔𝜔, 
causing the block to rise with a linear speed of 𝑣𝑣. To what height does the block rise before coming to rest? 

Make a Plan: This is a pulley question. But now, the pulley is no longer massless and we have to consider it as an object. The 
question gives us several key pieces of information. First, the pulley is a solid disk, so its moment of inertia is 𝐼𝐼 = 1

2
𝑀𝑀𝑅𝑅2. 

Second, the string wraps onto the disk without slipping, so we can relate linear to angular velocity: 𝑣𝑣 = 𝑅𝑅𝜔𝜔. Finally, the question 
states that the wheel rotates freely, so it means that the mechanical energy of the system is conserved. This means we can 
assume that when the block comes to rest, all of its kinetic energy should be converted to gravitational potential energy. 

Step #1: Draw Diagram & State Known Values 

Let’s draw a diagram and label it properly, while stating known values and equations. 
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Step #2: Apply Energy Equations to Solve 

We can approach this like any other conservation of energy problem. Let’s look at the initial and final energies, knowing that they 
are going to be conserved. 

𝑀𝑀𝐸𝐸𝑖𝑖 = 𝑀𝑀𝐸𝐸𝑓𝑓 

𝐾𝐾𝐸𝐸𝑡𝑡𝑡𝑡 + 𝐾𝐾𝐸𝐸𝑟𝑟𝑟𝑟 + 𝑃𝑃𝐸𝐸𝑔𝑔𝑔𝑔 = 𝐾𝐾𝐸𝐸𝑡𝑡𝑡𝑡 + 𝐾𝐾𝐸𝐸𝑟𝑟𝑟𝑟 + 𝑃𝑃𝐸𝐸𝑔𝑔𝑔𝑔 
1
2
𝑚𝑚𝑣𝑣𝑖𝑖2 +

1
2
𝐼𝐼𝜔𝜔𝑖𝑖

2 + 𝑚𝑚𝑔𝑔ℎ𝑖𝑖 =
1
2
𝑚𝑚𝑣𝑣𝑓𝑓2 +

1
2
𝐼𝐼𝜔𝜔𝑓𝑓2 + 𝑚𝑚𝑚𝑚ℎ𝑓𝑓 

1
2
𝑚𝑚𝑣𝑣2 +

1
2
�

1
2
𝑀𝑀𝑅𝑅2�𝜔𝜔2 + 0 = 0 + 0 + 𝑚𝑚𝑚𝑚ℎ 

1
2
𝑚𝑚𝑣𝑣2 +

1
4
𝑀𝑀𝑅𝑅2𝜔𝜔2 = 𝑚𝑚𝑚𝑚ℎ 

ℎ =
1
𝑚𝑚𝑚𝑚

�
1
2
𝑚𝑚𝑣𝑣2 +

1
4
𝑀𝑀𝑅𝑅2 �

𝑣𝑣
𝑅𝑅
�
2
� 

ℎ =
𝑣𝑣2

2𝑔𝑔
�1 +

𝑀𝑀
2𝑚𝑚

� 

PRACTICE PROBLEM #5 
The moment of inertia of a 0.98 kg wheel rotating about its center is 0.13 kg·m2. What is the radius of the wheel, assuming the 
weight of the spokes can be ignored? 

Make a Plan: This is a moment of inertia problem. We are given the mass of the wheel, which is assumed to be a cylindrical shell 
or a ring. We are also given the value of 𝐼𝐼. So all we have to do is choose the correct equation for moment of inertia based on the 
shape, and solve for the radius. 

Step #1: State Known Values and Solve 

This question really doesn’t require a diagram. We know that we’re look at a cylindrical shell or hoop, so we know that: 

𝐼𝐼 = 𝑀𝑀𝑅𝑅2 

𝑅𝑅 = � 𝐼𝐼
𝑀𝑀

= �0.13
0.98

 

𝑅𝑅 = 0.36 m 

Therefore, the radius of the wheel is 0.36 m. 

PRACTICE PROBLEM #6 
Two masses (𝑚𝑚1 = 5.0 kg and 𝑚𝑚2 = 3.0 kg) hang on each side of a pulley of mass 𝑀𝑀. This is called an Atwood’s machine. The 
two masses are released from rest, with 𝑚𝑚1 at a height of 0.75 m above the floor. When 𝑚𝑚1 hits the ground, its speed is 1.8 m/s. 
Assuming that the pulley is a uniform disk with a radius of 12 cm, determine the pulley’s mass. 
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Make a Plan: We have quite a few things going on in this problem. We have up/down motion with the two masses, and rotational 
motion with the pulley. We should start with an initial vs. final diagram, labelling as much as we can. Then, we should probably 
figure out which energies to look at. 

Step #1: Draw Diagram & State Known Values 

Let’s first draw a diagram of this system of objects and label what we know. We’ll just draw the initial stage in its entirety, because 
there’s a lot to draw and a lot of parameters to label. 

 
Step #2: Use Energy Equations to Solve 

We know that this is a conservation of energy equation. There are initial and final speeds, as well as heights. We also know that 
energy is conserved in this system so we have: 

𝑀𝑀𝐸𝐸𝑖𝑖 = 𝑀𝑀𝐸𝐸𝑓𝑓 

𝐾𝐾𝐸𝐸1𝑖𝑖 + 𝐾𝐾𝐸𝐸2𝑖𝑖 + 𝐾𝐾𝐸𝐸𝑝𝑝𝑝𝑝 + 𝑃𝑃𝐸𝐸1𝑖𝑖 + 𝑃𝑃𝐸𝐸2𝑖𝑖 = 𝐾𝐾𝐸𝐸1𝑓𝑓 + 𝐾𝐾𝐸𝐸2𝑓𝑓 + 𝐾𝐾𝐸𝐸𝑝𝑝𝑝𝑝 + 𝑃𝑃𝐸𝐸1𝑓𝑓 + 𝑃𝑃𝐸𝐸2𝑓𝑓 

0 + 0 + 0 + 𝑚𝑚1𝑔𝑔ℎ𝑖𝑖 + 0 =
1
2
𝑚𝑚1𝑣𝑣𝑓𝑓2 +

1
2
𝑚𝑚2𝑣𝑣𝑓𝑓2 +

1
2
𝐼𝐼𝜔𝜔2 + 0 + 𝑚𝑚2𝑔𝑔ℎ𝑓𝑓 

𝑚𝑚1𝑔𝑔ℎ1𝑖𝑖 =
1
2
𝑣𝑣𝑓𝑓2(𝑚𝑚1 + 𝑚𝑚2) +

1
2
�

1
2
𝑀𝑀𝑅𝑅2� �

𝑣𝑣𝑓𝑓
𝑅𝑅
�
2

+ 𝑚𝑚2𝑔𝑔ℎ2𝑓𝑓 

1
4
𝑀𝑀𝑣𝑣𝑓𝑓2 = 𝑚𝑚1𝑔𝑔ℎ1𝑖𝑖 − 𝑚𝑚2𝑔𝑔ℎ2𝑓𝑓 −

1
2
𝑣𝑣𝑓𝑓2(𝑚𝑚1 + 𝑚𝑚2) 

𝑀𝑀 =
4
𝑣𝑣𝑓𝑓2
�𝑔𝑔�𝑚𝑚1ℎ1𝑖𝑖 − 𝑚𝑚2ℎ2𝑓𝑓� −

1
2
𝑣𝑣𝑓𝑓2(𝑚𝑚1 + 𝑚𝑚2)� 

𝑀𝑀 =
4𝑔𝑔�𝑚𝑚1ℎ1𝑖𝑖 − 𝑚𝑚2ℎ2𝑓𝑓�

𝑣𝑣𝑓𝑓2
− 2(𝑚𝑚1 + 𝑚𝑚2) 

𝑀𝑀 =
4(9.8)�5(0.75) − 3(0.75)�

(1.8)2 − 2(5 + 3) 
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𝑀𝑀 = 2.148 kg 

Therefore, the mass of the pulley is 2.148 kg.  

PRACTICE PROBLEM #7 
A solid sphere with a diameter of 0.17 m is released from rest. It then rolls (without slipping) down a ramp that is 0.61 m tall. The 
ball leaves the bottom of the ramp, which is located at the edge of a table 1.22 m above the ground. The ball leaves the bottom of 
the ramp horizontally.  

(a) Through what horizontal distance does the ball move before landing? 
(b) How many revolutions does the ball make during its fall? 
(c) If the ramp were to be made frictionless, would the horizontal distance travelled increase, decrease, or stay the same? 

Make a Plan: This is a multi-step problem. A sphere rolls without slipping down an incline and gains speed, then it’s launched 
horizontally off the edge of the ramp. From this point onward, we’re looking at a projectile motion problem. For the ramp portion, 
we can use conservation of energy to determine the horizontal launch speed of the ball at the bottom of the ramp. Then we can 
use linear kinematics to solve for the horizontal distance travelled. 

Step #1: Draw Diagram & State Known Values 

Let’s draw a diagram of the entire scenario, and label it with everything we’re given. 

 
Step #2: Determine Horizontal Launch Speed Using Conservation of Energy 

Looking at the Initial and Launch phases, we see that there is translational and rotational kinetic energy involved, plus gravitational 
potential energy. So we set up our energy equation: 

𝑀𝑀𝐸𝐸𝑖𝑖 = 𝑀𝑀𝐸𝐸𝑓𝑓 

𝐾𝐾𝐸𝐸𝑡𝑡𝑡𝑡 + 𝐾𝐾𝐸𝐸𝑟𝑟𝑟𝑟 + 𝑃𝑃𝐸𝐸𝑖𝑖 = 𝐾𝐾𝐸𝐸𝑡𝑡𝑙𝑙 + 𝐾𝐾𝐸𝐸𝑟𝑟𝑟𝑟 + 𝑃𝑃𝐸𝐸𝑙𝑙  
1
2
𝑚𝑚𝑣𝑣𝑖𝑖2 +

1
2
𝐼𝐼𝜔𝜔𝑖𝑖

2 + 𝑚𝑚𝑚𝑚ℎ𝑖𝑖 =
1
2
𝑚𝑚𝑣𝑣𝑙𝑙2 +

1
2
𝐼𝐼𝜔𝜔𝑙𝑙

2 + 𝑚𝑚𝑚𝑚ℎ𝑙𝑙 

0 + 0 + 𝑚𝑚𝑚𝑚ℎ𝑖𝑖 =
1
2
𝑚𝑚𝑣𝑣𝑙𝑙2 +

1
2
�

2
5
𝑚𝑚𝑟𝑟2� �

𝑣𝑣𝑙𝑙
𝑟𝑟
�
2

+ 0 
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𝑚𝑚𝑚𝑚ℎ𝑖𝑖 =
1
2
𝑚𝑚𝑣𝑣𝑙𝑙2 +

1
5
𝑚𝑚𝑣𝑣𝑙𝑙2 

𝑚𝑚𝑚𝑚ℎ𝑖𝑖 =
7

10
𝑚𝑚𝑣𝑣𝑙𝑙2 

𝑔𝑔ℎ𝑖𝑖 =
7𝑣𝑣𝑙𝑙2

10
 

𝑣𝑣𝑙𝑙 = �10𝑔𝑔ℎ𝑖𝑖
7

 

𝑣𝑣𝑙𝑙 =
�(10)(9.8)(0.61)

7
 

𝑣𝑣𝑙𝑙 = 2.922 m/s 

We now have the horizontal launch speed, and we can determine how far the ball travels before it reaches the ground. 

Step #3: Determine Distance Travelled Using Linear Kinematics 

To answer Part (a), we need linear kinematics. So we need to split our analysis into the x- and y-directions.  

x-direction 
 

y-direction 

𝑣𝑣𝑙𝑙𝑥𝑥 =
Δ𝑥𝑥
Δ𝑡𝑡

;    𝑣𝑣𝑙𝑙𝑙𝑙 = 𝑣𝑣𝑙𝑙  

Δ𝑥𝑥 = 𝑣𝑣𝑙𝑙𝑥𝑥Δ𝑡𝑡  (need to find Δ𝑡𝑡) 

Δ𝑦𝑦 = −1.22;    𝑎𝑎 = −9.8;   𝑣𝑣𝑙𝑙𝑙𝑙 = 0;     Δ𝑡𝑡 =? 

Δ𝑦𝑦 = 𝑣𝑣𝑙𝑙𝑙𝑙𝑡𝑡 +
1
2
𝑎𝑎𝑡𝑡2 

𝑡𝑡 = �2Δ𝑦𝑦
𝑎𝑎

= �2(−1.22)
9.8

 

𝑡𝑡 = 0.499 s 

Now that we’ve found time, we can solve for Δ𝑥𝑥: 

Δ𝑥𝑥 = 𝑣𝑣𝑙𝑙𝑡𝑡 = 2.922(0.499) 

Δ𝑥𝑥 = 1.458 m 

Therefore, the horizontal distance travelled is 1.458 m. 

Step #4: Determine Number of Revolutions the Sphere Spins 

In order to find the number of revolutions for Part (b), we need angular speed. We can use 𝑣𝑣𝑙𝑙 = 𝑟𝑟𝜔𝜔 for this: 

𝜔𝜔 =
𝑣𝑣𝑙𝑙
𝑟𝑟

=
2.922
0.17

2
= 34.376

rad
s

 

And then we can find the angular displacement Δ𝜃𝜃: 

Δ𝜃𝜃 = 𝜔𝜔𝑡𝑡 = (34.376)(0.499) = 17.153 rad 
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Δ𝜃𝜃 = 17.153 rad �
1 rev

2𝜋𝜋 rad
� 

Δ𝜃𝜃 = 2.730 rev 

Therefore 2.73 revolutions occur before the ball hits the ground. 

Step #5: Thinking About a Frictionless Surface 

If the ramp were to be made frictionless, Part (c) asks us whether the horizontal distance travelled would increase, decrease, or 
stay the same. With a frictionless ramp, the sphere would slide instead of rolling. It would therefore store no energy in its rotation, 
and all of its gravitational potential energy would become translational kinetic energy. This would then make the ball launch from 
the table edge with a higher speed (since rotational kinetic energy is zero) and therefore the landing distance would increase! 
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