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Abstract|This paper discusses the relation between bifurcations
and power systems stability through a thorough analysis of sev-
eral examples, to clarify some ideas regarding the usefulness and
limitations of bifurcation theory in network studies and operation,
particularly in voltage stability related issues. Di�erent types of
load models are used in a sample system to analyze their e�ect on
system stability and bifurcation. Finally, the Ecuadorian National
Interconnected System (SNI in Spanish) is used to depict and dis-
cuss the e�ect of load modeling in saddle-node bifurcation analysis
of real power systems.
Keywords: bifurcations, voltage collapse, load modeling, stability,
eigenvalue analysis.

I. INTRODUCTION

During the past decade utilities have reported serious compli-
cations in maintaining network stability in their power systems,
particularly voltage stability, as some events occur and parameters
change in the system [1]{[3]. The study of several cases has led
the power systems community to identify di�erent causes for this
problem.

Hopf and saddle-node bifurcations have been recognized as some
of the reasons, albeit not the only ones, for voltage stability prob-
lems in a variety of power system models [4]{[9]. Local bifurcations
are detected by monitoring the eigenvalues of the current operating
point. As certain parameters in the system change slowly, allow-
ing the system to quickly recover and maintain a stable operating
point, the system eventually turns unstable, either due to one of
the eigenvalues becoming zero (saddle-node, transcritical, pitchfork
bifurcations), or due to a pair of complex conjugate eigenvalues
crossing the imaginary axes of the complex plane (Hopf bifurca-
tion). The instability of the system is re
ected on the state vari-
ables, usually represented by frequency, angles and voltages, by an
oscillatory behavior or a continuos change (voltage decrease, i.e.,
collapse, and frequency and angle increase, i.e., loss of synchro-
nism). In some cases these bifurcations can be associated to the
power transfer limit of the transmission system; in other instances
the bifurcations appear due to voltage control problems, like fast
acting automatic voltage regulators (AVR) in the generator [10], or
voltage dependent current order limiters (VDCOL) in HVDC links
[7]. In all cases these bifurcations occur on very stressed systems,
i.e., the region of stability for the current operating point (stable
equilibrium point or s.e.p.) is small, hence, the system is not able
to withstand small perturbations and becomes unstable. Although
there are reports of these bifurcations occurring in unstressed sys-
tems [11], this cannot be considered typical, since power system
controls are designed so that eigenvalues of several operating points
are well into the left half complex plane.

Some voltage collapse problems can also be associated to voltage
control devices like under-load tap changer (ULTC) transformers or
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Fig. 1. Sample system for bifurcation analysis.

AVRs [12]{[15]. In some of these cases, but not all, the voltage con-
trols force the eigenvalues to instantaneously jump into the unstable
region, making the system immediately unstable. This phenomena
is not directly associated to a bifurcation, since the eigenvalues do
not go through zero or the imaginary axis. Nevertheless, transcriti-
cal bifurcation theory can be used to explain the phenomena when
AVR limits are assumed to apply gradually [13].

Recent literature shows that there is not a consensus in the power
system community regarding the importance and usefulness of bi-
furcation analysis of power systems (e.g., [16]). Therefore, this pa-
per concentrates mainly on clarifying some issues regarding local
saddle-node bifurcations, by clearly depicting their e�ect and rela-
tionship to the voltage collapse phenomena for di�erent load mod-
els in several sample systems. This does not rule out the fact that
other type of bifurcations, i.e., transcritical or Hopf, do also occur in
real systems, with similar catastrophic results for system (voltage)
stability. Although bifurcations cannot be considered as the only
cause for voltage stability problems, as discussed above, the e�ect
of saddle-nodebifurcations in system stability cannot be overlooked
based on this sole argument.

The �nal section of this paper concentrates on applying the re-
sults obtained for the sample systems to the 115 bus SNI Ecuadorian
system [17], to discuss some of the applications and shortcomings
of bifurcation theory in a more realistic environment.

II. EXAMPLES

In this section the stability of four sample systems is thoroughly
analyzed. Local saddle-nodebifurcationsare depictedand discussed
to highlight some of their main characteristics. All four cases dis-
cussed here are based on the system depicted in Fig. 1.

The generator is modeled with the classical second order me-
chanical di�erential equations. The damping torques are assumed
to have a relatively large value to indirectly simulate the e�ect of
damper windings in the generator. The AVR is modeled by keep-
ing the generator terminal voltage constant at 1 pu, but no limits
are included in this simple model. Although this is not a detailed
model of the generator by any means, it gives a good starting point
for analyzing the signi�cance of saddle-node bifurcations in system
stability, without adding unnecessary complexities that only ob-
scure some of the questions that are being addressed in this paper.
For an analysis of bifurcations in detailed generator models review
reference [11].

The transmission system is simplymodeled as a constant lumped
reactance, which is a typical representation of these elements in
transient stability studies, where the system frequency oscillates
slowly around the nominal value (e.g., 60Hz), allowing for a quasi-
steady state or phasor analysis of the system. Consequently, this
type of methodology cannot be used to simulated high frequency
voltage problems in the system.
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Fig. 2. (a) Minimum magnitude of the s.e.p. (u.e.p.) eigenvalues,
and (b) minimum singular value of the s.e.p. as a function of P .
Notice the sharp change in the eigenvalues magnitude and singular
values when the system approaches bifurcation.

The four study cases are obtained by changing the load model at
the receiving end of the transmission line, as shown below. Some of
these examples are discussed from a di�erent point of view in [18].

A. Generator-In�nite Bus

The �rst load model is an in�nite bus, which is drawing active
power P > 0 from the generator at a constant voltage V > 0. This
is the classical generator-in�nite bus model utilized to introduce
basic ideas of angle and frequency stability in power systems, hence,
the same example is used here to introduce some basic concepts of
bifurcation analysis. For this simple case, di�erential equations (1)
represent the system.
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All equilibrium points can be easily found by solving equations
(1) with [ _� _!]T = 0, yielding equilibria (�0; 0), and (�� � �0;0)
with �0 = sin�1(PX=V ) (other equilibrium points are not of inter-
est). Hence, all the eigenvalues and eigenvectors associated to these
equilibria can be calculated from the Jacobian matrix (2).
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From the eigenvalues of J it can be readily shown that (�0; 0) is a
s.e.p., i.e., all eigenvalues are in the left half complex plane, whereas
(�� � �0; 0) are unstable equilibrium points (u.e.p.) of type one,
i.e., only one eigenvalue is on the right half plane. If P changes, i.e.,
the system load changes, then for any value of P > Pmax = V=X,
one eigenvalue of J becomes zero (J is singular) and no equilibria
exist. When P = Pmax, the maximum power transfer point for the
transmission system, J is also singular and two equilibrium points
(�=2;0) and (�3�=2;0) exist, i.e., the s.e.p. and one u.e.p. have
merged. The point (�=2;0; Pmax) corresponds to a saddle-node
bifurcation, since it meets all the transversality conditions required
for this type of bifurcation in state-parameter space [7, 19, 20].

Figures 2, 3, and 4 were obtained from equations (1) by setting
M = D = 0:1pu, X = k = 0:5pu, and V = 1pu. In Fig. 2 the
minimum magnitude of the complex eigenvalues and the minimum
singular value of the s.e.p. (�0; 0) are plotted for a continuously
increasing P load; the u.e.p. (� � �0;0) presents the same pro�les.
At the value Pmax = 2pu one eigenvalue (singular value) of the
s.e.p. and the u.e.p. becomes zero. Observe that the pro�le of these
two measures is highly nonlinear and varies only slightly up to the
load level of P � 1:8, decreasing rapidly after that. Similar pro�les
can be observed in larger and more detailed modeled systems [4, 9,
21], making these measures inadequate to monitor system proximity
to bifurcation.

Other techniques have been proposed to avoid using eigenvalues
or singular values for measuring proximity to bifurcation (see refer-
ence [22] for a summary). In particular, Transient Energy Function
(TEF) techniques have been shown to have a \linear" pro�le and
yield additional information regarding the stability of the system
[23], making these methods more suited for measuring proximity
to bifurcation but at a higher computational cost. For the sample
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Fig. 3. Bifurcation diagrams: (a) in (�,!,P ) axes; (b) P -� node
curve; (c) potential energy Wp between s.e.p. and closest u.e.p.
Right v and left w eigenvectors at the bifurcation point are also
depicted; note that v is tangent to the bifurcation diagram.

system under discussion, the energy can be de�ned as a summa-
tion of the kinetic and the potential energy as shown in (3). The
potential energy can be approximated in this case by the integral
of the power-angle product, when assuming only small variations
of the system frequency (a typical conjecture in transient stability
studies).

V (�;!; P ) = Wk(!) +Wp(�;P ) (3)
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By using the potential energy distance V (�u; 0; P ) between the
s.e.p. and the \closest" u.e.p., as depicted in Fig. 3(c), one can
get a good idea of the distance to bifurcation, due to the quasi-
linear pro�le of this measure, and also visualize the relative size of
the stability region, including all system nonlinearities. The latter
property is rather important, since no technique based on eigen-
values or linearizations of the system around equilibrium points
can give the user this information, due to the elimination of the
nonlinearities that characterize the stability of the system for large
perturbations like line openings at �xed load levels. It is interesting
to observe that this particular energy function V (�) is the integral
of the area of the bifurcation diagrams depicted in Figs. 3(a) and
(b), for a chosen load level P (i.e., equal area criterion), being this
the reason for the \linear" pro�le of the TEF; this property has
been demonstrated for other system models and energy functions
in reference [24]. Similar TEF pro�les have also been observed for
highly nonlinear AC/DC system models when close to bifurcation
[25]. Hence, the energy measurement clearly depict the reduction
of the stability region as the system approaches bifurcation, making
it more sensitive to small perturbations that can easily drive it to
instability.

The continuos lines in Figs. 3(a) and (b) represent the s.e.p.s,
and the dashed lines the corresponding \closest" u.e.p.s for each
value of the parameter P . Figure 3(b) is the projection of Fig.
3(a) in the (�;P ) plane, yielding a typical \nose" curve for angle
variables and a di�erent view of the classical P{� stability curve.
Some interesting observations can be made in these �gures:

� The normalized left eigenvector v at the bifurcation point is
tangent to the bifurcation diagram [26]; hence, by looking
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Fig. 4. Time domain simulation for a change in P from 1.99 to
2.01 at t = 2s. Observe the slow initial change in the state variables
(�,!).

at the maximum entries in this vector, one can pinpoint the
areas (state variables) that are changing the most and driving
the system to bifurcation, so that corrective measures can be
taken to avoid stability problems [9, 27]. This eigenvector
also yields information regarding the initial dynamics of the
system at the bifurcation point [6].

� The normalized right eigenvector w at the bifurcation does
not have a direct geometric interpretation in bifurcation dia-
grams, but it has been shown to yield information regarding
the equations that are most sensitive to changes at the bifur-
cation point [9, 27], and can be used to devise a technique
to move away from this instability [28]. This eigenvector de-
pends on the time constants (M in the sample system) of the
di�erential equations [26], whereas v is independent of them.

� The bifurcation diagram can be used to determine the dis-
tance to the bifurcation point, so that an operator knows in
state and parameter space how close the system is to the in-
stability point. Nevertheless, this diagram by itself does not
yield the size of the stability region associated to the di�erent
s.e.p.s depicted in it, and cannot give the operator a sense
of the type of perturbations that the system can withstand
at some speci�c load level, unless it is used in conjunction
with and \energy" measure that takes into consideration the
nonlinearities in the system.

Finally, Fig. 4 depicts the dynamics of the system as the load
is increased slightly beyond the bifurcation value; a rather small
system perturbation. Notice the separation or lost of synchronism
of the generator with respect to the in�nite bus, with initial slow
dynamics of the state variables (�; !) [6]. This particular example
does not present any stability problems that could be characterized
as voltage collapse, however, it clearly depicts an instability due to
a bifurcation problem, and if voltages were allowed to change the
angular-frequency instabilitywould necessarily force the voltages to
collapse. This is the reason why bifurcation studies should be done
considering all system dynamics and not only voltage controls, to
correctly capture all the bifurcation phenomena.

B. PQ Dynamic Load

The in�nite bus load model is now replaced by a more \realistic"
constant active and reactive power model. This model is meant to
simulate the behavior of typical static loads when ULTCs are taken
into consideration [12]. Furthermore, introducinga dynamicvoltage
term in the reactive power load roughly simulates the response of
induction motors to sudden voltage changes under normal voltage
operating conditions [29, 30]. This cannot be consideredan accurate
model of the actual system load, but allows to introduce and depict
some of the stability problems, particularly voltage collapse, that
occur when a saddle-node bifurcation is encountered by the system.

The di�erential equations used to model this sample system are
equations (1) plus equation (4) below, and the Jacobian correspond-
ing to an equilibrium point (�0; 0; V0; P ) of this set of equations is
represented by (5).
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Fig. 5. Bifurcation diagrams: (a) in (�,V ,P ) axes; (b) minimum
magnitude of s.e.p. eigenvalues as a function of load level P ; (b)
P -V node curve; (c) potential energyWp between s.e.p. and closest
u.e.p. Right v and left w eigenvectors at the bifurcation point are
depicted. The vectorw0 is the projection ofw onto the (�,V ) plane.
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Fig. 6. Time domain simulation for a change in P from 0.61 to 0.62
at t = 2s. Observe the fast voltage collapse and the mechanical
instability re
ected in � and !.
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Here k is a scalar representing constant power factor, and � is the
time constant of the dynamic voltage term. When � ! 0, equation
(4) becomes an algebraic constraint, however, the dynamics of the
system lose physical meaning since this set of di�erential equations
and algebraic constraints cannot be quali�ed as a \causal" system
according Kwatny's et al de�nition [5]. Furthermore, this system
presents a degenerate bifurcation point in state-parameter space
where two stable equilibriumpoints coalesce. For a detailed analysis
of these types of system models review references [31]{[33].

Figures 5 and 6 were obtained using the same constant values as
in the previous example, and setting � = 1ms to simulate fast load
dynamics in the context of a typical transient stability study. Figure
5(a) depicts a saddle-node bifurcation diagram for � and V (! = 0
for all equilibria), i.e., a s.e.p. and a u.e.p. coalesce at a singular
point (Fig. 5(b)) for the parameter value Pmax = 0:618034, with
equilibria disappearing for values of P > Pmax. Pmax corresponds
again to the point of maximum power transfer, as it is shown in
the next section with an R-L load. Figure 5(c) depicts the classical



P -V nose curve, which is a projection of the bifurcation diagram
in the (P;V ) plane. A similar result as the one depicted in Fig.
3(b), i.e., a P -� nose curve, can also be obtained here by projecting
the bifurcation diagram in the (P; �) plane; however, in this case
the bifurcation occurs at a value of � � 30� << 90�. Observe that
the right eigenvector v is also tangent to the bifurcation diagram
at the saddle-node bifurcation point, with the entries in this vector
pointing to a voltage problem regardless of the value of � > 0.

The energy function for this particular system is represented by
equation (6) [34]. The results of evaluating the energy di�erence
between the s.e.p.s and corresponding u.e.p.s in the bifurcation di-
agram of Fig. 5(a) are depicted in Fig. 5(d). Notice once more the
quasi-linear pro�le of the TEF, representing the reduction of the
stability region as the system approaches bifurcation.
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(V 2

0 � V 2)� kP [ln(V0)� ln(V )] (6)

Figures 6 depict the time domain simulation of the di�erential
equations (1) and (4) for a slight increase in load power P . In
this plots the same patterns of the previous example appear, i.e.,
the state variables start changing slowly to then rapidly render the
systemunstable. In this case, due to the small voltage time constant
as compared to the machine inertia, the voltage collapses at t � 5s
rather quickly when compared to the angle and frequency. This
particular voltage behavior due to the di�erences in time constants,
have led many researchers to only consider voltage dynamics for
the analysis of bifurcations problems, ignoring frequency dynamics.
However, the previous example clearly shows that this assumption
is not completely justi�able.

This sample system is a classical benchmark for voltage stability
studies, due to the characteristic voltage behavior discussed in this
section.

C. RL Loads

Now the PQ dynamic load is replaced by an RL dynamic load,
i.e., the load is represented by a constant power factor impedance,
with the same dynamic voltage term as in the previous case. Hence,
di�erential equations (7) are used to model this particular system,
with G representing the load conductance and the slow varying
parameter in this example.
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Using the same constant values as in the previous examples, one
obtains Figs. 7 and 8. Figure 7(a) depicts the bifurcation diagram
for changes in the parameterG; observe that no bifurcations occur
in this case, as shown by the eigenvaluesplot of the system equilibria
in Fig. 7(b). Furthermore, only one s.e.p. can be obtained for
each value of G � 0. Nevertheless, due to the relation between
conductance G and the active power P depicted in Fig. 7(d), this
system presents exactly the same P -V nose curve as in the case
of the PQ load model (Fig. 7(c)), with all equilibria in this curve
being stable. The tip of this nose curve is not a bifurcation point,
although it corresponds to the system's maximum power transfer
point Pmax, i.e., jG(1 + jk)j = 1=X (G = 4=

p
5 = 1:78885, and

Pmax = 0:618034). The nose curve in this case cannotbe considered
a bifurcation diagram, since G is the parameter that changes in the
system and not P .

Figures 8 corroborate the previous discussion. A relatively large
change in G, which takes the system around the maximum power
transfer point Pmax, does not render the system unstable, taking
it to a new s.e.p. in spite of the large perturbation.

An exact energy function cannot be found for this sample system,
due to the presence of a resistive term in the model [35]. Although
an approximate TEF could be constructed in this case, it cannot be
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at t = 2s, taking the systems around the maximum power transfer
point Pmax = 0:618034pu. Observe that all state variables (�,!,V )
remain stable.

readily used as in previous examples to obtain a relative measure
of the stability region as the conductanceG changes.

Finally, the system load is changed to a static RL load model,
eliminating the dynamic voltage dependence in equations (7) by
setting � = 0, i.e., the third di�erential equation becomes an alge-
braic constraint. Despite this change in load model, and contrary
to what happens in the case of the PQ load model when � ! 0, the
results remain exactly the same with the only di�erence that V is
allowed to change instantaneously.

III. APPLICATIONS

The foregoing discussion can be directly extended to larger and
more complex power system models. Transient stability analysis is
typically done on a balanced phasor model of the network, which
can be represented by the set of nonlinear di�erential and alge-
braic constraints (8), where x 2 <n stands for the state variables,
y 2 <m portrays a set of implicitly de�ned variables, and � 2 <
is a parameter used to simulate slow changing conditions (small



perturbations) in the system.

_x = f(x;y; �) (8)

0 = g(x;y; �)

This model has the di�culty of not fully representing real physical
quantities, which is re
ected in the presence of the algebraic con-
straints g(�) and the use of reactive powers throughout the equa-
tions. Nevertheless, this set of equations can be used to represent
any degree of complexity in modeling and system size, within the
bounds of the assumptions used to build the model.

For equations (8), the algebraic constraints must meet certain
conditions in order for the model to approximate physical reality
[5, 7, 26, 31, 32]. Particularly, at equilibrium points (x0;y0; �),
such that f(x0;y0; �) = 0 and g(x0;y0 ; �) = 0, the Jacobian
of these constraints Dygj(x0;y0;�) should be invertible, rendering
the system \causal" [5], otherwise singular perturbations or noise
techniques must be used to analyze the dynamics of the system
[31, 32]. Furthermore, if Dyg(�) is invertible (nonsingular) along
system trajectories, the system can be represented by the set of
di�erential equations

_x = f(x;y�1(x; �); �) = F(x; �) (9)

This reduction is actually unnecessary, since one only needs to check
for and remove singularities in the algebraic equations Jacobian.
For a detailed discussion on this issues and their relation to bifur-
cation analysis in power systems review [7, 26].

For bifurcation analysis of this system model, the eigenvalues
and eigenvectors of the system Jacobian (10) must be monitored.

J =

�
Dxf j0 Dyf j0
Dxgj0 Dygj0

�
(10)

For saddle-node bifurcations in particular, one needs only to look
for a singularity of this Jacobian and test for the corresponding
transversality conditions [7, 26]. The latter is usually unnecessary
since saddle-node bifurcations occur generically in di�erential equa-
tions (9) [19]; nevertheless, under certain operating conditions like
remote voltage control, which give the system equations a special
symmetry, transcritical bifurcations can also be encountered.

Embedded in this set of equations are the algebraic and/or dif-
ferential equations representing the load. For this paper a mixed
load model represented by equations (11) is used, since it has been
shown to adequately represent a variety of system loads in typical
transient stability studies [29, 30, 37].
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Here Pl and Ql are the powers injected by the load, and Vl 6 �l
is the load phasor voltage at bus l. Pl0 , Pl1 , Pl2 , Ql0 , Ql1 , and
Ql2 are constant weighting factors that de�ne the steady state base
load. �lfP

, �lvP , �lfQ
, and �lvQ

represent the time constants of

the frequency and voltage dependent dynamic terms, and !nG is
the system reference frequency; note that these time constants can
be set to zero to represent static load models. �Pl0 , �Pl1 , �Pl2 ,
�Ql0 , �Ql1 , and�Ql2 are used to model a direction of load change
as the parameter � slowly varies. For most bifurcation studies it is
assumed that the pattern of load change can be represented with
one degree of freedom (�), and that this evolution of load drives the
system to bifurcation. Notice that di�erential equations (11) can
be rewritten as�

_�l � !nG
_Vl

�
=

"
�lfP

�lvP
�lfQ

�lvQ

#�1 �
�Pl(�;V; �)
�Ql(�;V; �)

�

where �Pl(�;V; �) and �Ql(�;V; �) are the active and reactive
power mismatches at the load buses, respectively.

Although the issue of whether this load model is a \realistic"
representation of the actual system load does not pertain to this
particular paper, it is a very valid question, since as demonstrated

in this paper and others before (e.g., [36]), the results of stabil-
ity studies are closely related to system modeling, particularly load
modeling [37]. This is an old discussion that has not been resolved
to the total satisfaction of all the power system community. Nev-
ertheless, the load model must be valid in the context of the tools
that are used for stability studies; for instance, very fast dynamics
like thyristor switching of motor drives cannot be fully represented
in typical transient stability programs, since these tools have been
designed to deal with quasi-steady state models, i.e., balanced pha-
sor models that treat transformers and transmission lines as lumped
one-phase impedances without any frequency dependence. For fast
load dynamics a very detailedmodel of the whole system is needed,
being tools like the EMTP more appropriate environments for ana-
lyzing stability of these models; however, these types of studies are
very expensive, with costs growing exponentially with system size.
Hence, a compromise and a critical view of the results yielded by
some of these programs is needed, and bifurcation analysis is not
an exception, i.e., the output and cost of these studies are closely
related to the models used.

The SNI Ecuadorian system is used in this paper due to its par-
ticular voltage stability problems, and also to depict the e�ect of
di�erent load models in saddle-node bifurcation analysis of real
systems. The results shown here have been used to con�rm sus-
picions regarding the possible causes of the voltage problems in
the system, and to study some possible solutions. The generators
in this case are simply model using the second order di�erential
equations with constant terminal voltage used in the previous ex-
amples, which is an acceptable model to address the main issues in
the present discussion. A continuation method was used to obtain
the bifurcation diagrams in Figs. 9, 10 and 11 [15, 20, 22]. This
method allows to trace bifurcation manifolds (diagrams) for any
type of system model; however, the technique is particularly suited
to detect saddle-node bifurcations, yielding a close approximation
of the bifurcation point (singularity point) and the corresponding
right eigenvector v [26], without having to actually calculate and
trace the system eigenvalues and eigenvectors as the parameter �
changes. The problem with this approach is that it cannot detect
Hopf bifurcations, nor di�erentiate between transcritical and pitch-
fork bifurcations. For the latter, one needs to check for the transver-
sality conditions of the system at the bifurcation point, which is a
costly task. The former needs of the computation of the system
equilibria eigenvalues to detect the crossing of the imaginary axis,
since the Jacobian J in (10) does not become singular in this case;
a very expensive procedure when dealing with relatively large sys-
tems. Furthermore, to discern which type of Hopf has taken place
(subcritical or supercritical), one needs to run a costly transient
simulation or use special techniques that take into considerations
additional nonlinear terms in the system [8, 19, 20]. Nevertheless,
for PQ load models and typically small resistive losses in the trans-
mission system, Hopf bifurcations are unlikely to occur [10].

Figures 9 and 10 depict the projections of the bifurcation di-
agram onto di�erent (P; V ) planes (P -V nose curves) for various
system models. Due to system size, detecting possible occurrences
of Hopf bifurcations before a saddle-node was not pursued, since
Hopf bifurcations are beyond the scope of this paper. For this rea-
son the author has chosen not to di�erentiate between s.e.p.s and
u.e.p.s in these �nal �gures; nevertheless, one typically expects to
have stable equilibria above the saddle-node bifurcation for these
system models. In all these �gures, the voltage pro�les in buses
15 (a 138KV bus located in Machala, a city in the south-west of
Ecuador) and 34 (a 138KV bus located in Manabi, a province in the
central west coast of Ecuador), were plotted to depict two distinct
system nose curves. Bus 34 was particularly chosen since the right
and left eigenvectors at the bifurcation point, pinpoint that partic-
ular area as the one with the largest reactive power de�cits, fully
matching the operational knowledge of the actual system. Although
the bifurcation diagram projections in Fig. 9(a) do not yield much
information regarding the size of the stability region by themselves,
the area on the diagrams can be associated to an energy measure
due to the PQ load model used in this case, giving an idea of how
stable the system is at a particular load level. Furthermore, the
parameter � in this case can be associated to a total MVA sys-
tem load (1292MVA), yielding a maximum loadability margin of
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Fig. 9. Bifurcation diagrams of the SNI Ecuadorian system for (a)
PQ and (b) mixed load models.
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Fig. 10. Bifurcation diagrams of the SNI Ecuadorian system for
(a) PQ and (b) mixed load models when Q limits are considered in
the generators.

296MVA (�max = 0:229133).

In Fig. 9(b), the mixed load model (11) was used to obtain
new bifurcations diagrams and a di�erent saddle-node bifurcation.
Notice again the wide changes in voltage magnitude at bus 34 for
changing loading conditions, indicating once more the lack of reac-
tive power support that is the characteristic of this system. The
value of �max = 0:417712 is practically twice as mush as the one in
the previous case, since now the loads reduced their power demand
as the voltages decrease, allowing the system to handle \heavier"
loading conditions. The latter comment should be regarded with
caution, since the loading level indicated by � does not have a one-
to-one correspondence to MVA loading levels as in the previous
�gure. Due to the relatively large resistive terms in this system
model, one cannot use the simple analogy of the bifurcation dia-
gram area to convey an idea of the size of the stability region for
each value of �; for this particular load model only time simulations
can yield the robustness of the system to large perturbations at a
given load level. Nevertheless, close to the saddle-node bifurcation
one expects the system to have a small stability region due to the
merging of the s.e.p and a u.e.p.

Figures. 10 depict the e�ect of generator Q limits in saddle-
node bifurcations. These Q limits were roughly modeled by �x-
ing the reactive power output of the generator at its limits [12],
which is not an accurate model, but the approach allows for a �rst
understanding of the general e�ects of AVR limits in saddle-node
bifurcations for di�erent load models. In Figs. 10 one can clearly
observe that the Q limits signi�cantly reduce the loadabilitymargin
in both cases, since major generating facilities reach maximum re-
active power limits, i.e., vapor turbines in El Salitral (located near
the largest load center in Ecuador, the coastal city of Guayaquil)
at � = 0:05109 = 66MVA in Fig. 10(a), and the Agoyan hydro
station (a relatively large generation station in the central Andean
region) at � = 0:1747 in Fig. 10(b). Furthermore, Fig. 10(a) de-
picts an immediate system instability at � = 0:0615 = 79:5MVA,
due to some generators reaching maximum reactive limits at the
largest Ecuadorian generating station (Paute, a 1000 MVA hydro
complex located in the south central Ecuadorian Andes) and com-
pletely losing voltage control of the system. Notice the rather small
loadability margin of the system in Fig. 10(a). These particular
problems have been detected during the actual system operation,
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Fig. 11. Bifurcation diagrams of the SNI Ecuadorian system when
a 70 MVAR synchronous compensator is placed on bus 34. Figure
(a) corresponds to PQ load models, and �gure (b) to mixed load
models. Q limits are enforced in the generators.

and they are the reason for the repetitivevoltage problems through-
out the network.

Based on the results of the bifurcation analyses of the previous
cases, a 70MVAR synchronous compensator is placed on bus 34,
which is one of the possible solutions under consideration at the
Ecuadorian utility (INECEL in Spanish) to improve the stability
of the SNI system. The new system yields Figs. 11; observe the
signi�cant improvement in system loadability. However, Fig. 11(a)
still presents a Q limit instability at � = 0:132 = 170:5MVA, due
to a maximum reactive limit in the hydro generating station of
Agoyan.

IV. CONCLUSIONS

The paper has thoroughly discussed the limitations and typi-
cal uses of saddle-node bifurcations. The relation between these
particular bifurcations and voltage collapse has also been analyzed
for several system models. Particularly, the e�ect of di�erent load
models in saddle-node bifurcations has been addressed in a variety
of test systems, including a real 115 bus system.

The results from bifurcation studies presented in the paper can-
not be dismissed based solely on the idea that the load and system
model are not \realistic." Observe that similar arguments can be
used to ignore the output of Power Flow studies; research and ex-
perience, however, have demonstrated the validity and limitations
of these types of analyses. This paper answers the latter two ques-
tions pertaining saddle-node bifurcation studies, and demonstrates
that these analyses and the related methods are thoroughly valid,
as the results for a real system show when compared to the ac-
tual operational knowledge of it. Nevertheless, as with any other
system analysis technique, the user must discern the usefulness of
these results based on the methods and models used.
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