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Abstract—Several techniques have been proposed in the liter-
ature to forecast electricity market prices and improve forecast
accuracy. However, no studies have been reported examiningthe
economic impact of price forecast inaccuracies on forecastusers.
Therefore, in this paper, the application of electricity market
price forecasts to short-term operation scheduling of two typical
and inherently different industrial loads is examined and the
associated economic impact is analyzed. Using electricitymarket
price forecasts as the expected next-day electricity prices, optimal
operating schedules and the associated costs are determined
for each load. These costs are compared with those of a
“perfect” price forecast scenario in which actual prices are used
to determine the operating schedules. Numerical results and
discussions are provided based on price forecasts with different
error characteristics.

Index Terms—Price forecasting, scheduling, forecasting error,
economic value, economic benefit, demand-side management.

I. I NTRODUCTION

SHORT-term operation scheduling in a competitive electric-
ity market is a challenging task because of the uncertainty

associated with future electricity prices. One feasible approach
to deal with this challenge is to generate and employ “accu-
rate” forecasts of future prices. This approach is particularly
efficient if the forecasts enjoy a high level of accuracy [1].
However, producing price forecasts with very low error levels
is not always possible.

In recent years, several techniques have been applied to
short-term electricity market price forecasting (e.g., [2]–[4]);
a summary of the applied techniques is presented in [5].
Significantly different levels of forecast accuracy have been
observed for the studied markets. For example, forecast errors
ranging from about 5% to 20% were reported for the Spanish
[2], PJM [6] and Ontario [7], [8] electricity markets. Such large
variations in price forecasting errors mainly depend on the
characteristics of the market under consideration and volatility
of market prices [8], [9]. In addition, various approaches have
been reported in the literature for improving the accuracy
of electricity market price forecasts. For example, in [10],
wavelet transforms were employed to improve the accuracy of
an ARIMA model by about 2.7 percentage points. However,
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no works have been reported which either analyze the eco-
nomic impact of using inaccurate price forecasts for operation
scheduling, or study the economic benefits of improving price
forecasting accuracy for forecasts users.

In this paper, electricity market price forecasts with different
levels of accuracy are used to optimally schedule the next-
day operation of two industrial loads: a process industry
owning on-site generation facilities, and a municipal water
plant with load-shifting capabilities. These two loads are
inherently different in the way they respond to electricity
prices, thus, the process industry produces electricity on-site
when electricity market prices are high, whereas the water
plant shifts its consumptions from high price hours to low
price hours. Therefore, the main contribution of this work is
to analyze and quantify the economic impact of employing
imperfect electricity price forecasts for scheduling the short-
term operation of typical demand-side market participants.

It should be noted that some approaches have been reported
in the literature to deal with the problem of future price
uncertainty in operation planning in competitive market envi-
ronments. For example, in [11]–[13], market prices are mod-
eled using time series models, and scenario-based techniques
are employed to derive optimal operational strategies. On the
other hand, the focus of the present work is on analyzing
the economic impact of applying short-term price forecasts
in operation scheduling from the demand-side’s point of view.

The rest of this paper is organized as follows: A review of
the relevant literature and the methodology employed for the
analyses are presented in Section II. The industrial loads and
their characteristics are discussed in Section III. Numerical
results and discussions are provided in Section IV. Finally,
Section V summarizes the methodology and main findings of
this work.

II. M ETHODOLOGY

A. Review of Related Works

Forecasting future values of a variable and using the fore-
casts for planning purposes has been a common practice across
a wide range of industries. Thus, evaluating the value of alter-
native forecasts and how improving forecasting accuracy could
in turn improve the decision-making process has been studied
in various applications. For example, the economic value of
using probabilistic versus conventional weather forecasts in
airline flight scheduling is analyzed in [14] showing potential
cost reductions. Also, a survey of the economic value of
improving seasonal climate forecast in agriculture is presented
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in [15], where it is argued that this value is limited when
considering a wide range of circumstances.

In the electric power industry, studying the costs of load
forecasting errors has been a topic of interest, given the
importance of load forecasts for the daily operation of power
systems. For example, in [16], a large number of daily load
forecast scenarios with random errors ranging between zero
and 15% are generated and the cost of meeting the demand
under each scenario is determined; it is concluded that re-
ducing the load forecast error to about 5% is adequate, and
that lower error levels would only have a marginal economic
value. In [17], the cost of load forecast inaccuracy for two
typical power utilities are analyzed; the resulting economic
values of reducing the error are reported to vary to some extent
across the studied systems. Among several related studies,an
approach to reduce the economic impacts of load forecasting
errors in unit commitment is presented in [18]; a third cost
component, i.e., the cost of expected energy not supplied,
is considered in [19], in addition to the operation and start-
up costs studied in [16] and [17]; a method to analyze the
economic impact of forecasting errors in generation scheduling
is proposed in [20] with an emphasis on forecasting horizon;
and the economic value of improving weather forecast in
electric load forecasting models is discussed in [21]. The
findings of [19]–[21] are consistent with those in [17] and [16]
in the sense that they generally report lower system costs when
more accurate forecasts are used. In addition, a linearized
model of the unit commitment problem is presented in [22]
where the economic impact of uncertainty in wind is studied
in the context of German power system; it is reported that
the wind uncertainty mainly affect the start-up and shutdown
costs, and hence, the impact was relatively small.

While the above studies employ different methods to gen-
erate forecast scenarios, the general approach to study the
economic impact of forecast errors is to compare the costs
incurred in exact and imperfect forecast price scenarios. This
general approach is also followed in the present work, as
explained next.

B. Forecast Inaccuracy Economic Impact Index

From the demand-side point of view, the optimal operation
in a competitive electricity market environment concentrates
on the minimization of total electricity costs. The problem
of minimizing electricity costs over aK-interval planning
period for a demand-side market participant can generally be
formulated as:

min
ψk

Cost=
K∑

k=1

ρk · ψk (1)

subject to: ξ

where ψk is the net power purchased from the market in
planning intervalk, ρk is the market price for electricity for
interval k, and ξ represents the set of technical constraints.
This optimization problem needs to be solved before the start
of the planning period (e.g. the day before the operation day).
However, market pricesρk are known only after the actual

operation. Thus, (1) corresponds to an uncertain optimization
problem.

By replacing the future pricesρk by their forecast values
ρ̂k, the problem (1) turns into anexpected cost minimization
problem [1], [23], as follows:

min
ψk

E[Cost|I] =

K∑

k=1

ρ̂k · ψk (2)

subject to: ξ

whereE denotes the mathematical expectation, andI is the
available information about electricity market price behavior
at the time. Note that price forecasts are theexpected values
of future prices, i.e.E[ρk|I]=ρ̂k [23]. The solution of problem
(2) provides the demand-side market participant with optimal
power purchase schedules which minimize theexpected cost
of electricity.

In order to analyze the economic impact of using imperfect
price forecasts for demand-side short-term scheduling, two
price scenarios are considered here. In the first scenario, it
is assumed that the actual market prices are available; this
is obviously a fictitious scenario. Let denote the solution of
optimization problem (2) under this price scenario, i.e. actual
prices, byψap

k , k = 1, 2, ...,K. Thus, if schedulesψap
k were

implemented in reality, the associated cost, denoted by Costap,
would have been:

E[Cost|Actual Prices Available] =

Costap =

K∑

k=1

ρk · ψ
ap
k (3)

In the second price scenario, it is assumed that imperfect
price forecastŝρk are used to solve optimization problem (2).
Let denote the solution of (2) when using this set of forecast
prices by ψfp

k . Thus, if schedulesψfp
k are implemented in

practice, the cost incurred by the market participant, denoted
by Costfp, will be:

E[Cost|Inaccurate Price Forecasts Available] =

Costfp =

K∑

k=1

ρk · ψ
fp
k (4)

Observe that theψfp
k is determined based on forecast prices,

but the final electricity cost is determined based on the actual
pricesρk.

The Forecast Inaccuracy Economic Impact (FIEI) index over
a K-interval planning period is defined here as:

FIEI (%) =
Costfp − Costap

Costfp
× 100 (5)

Here, a positive value of FIEI indicates the percentage of
the actual cost attributable to price forecasting error. Inother
words, the final incurred electricity cost could have been lower
by FIEI percent if the price forecasts were perfectly accurate.
A value of zero for FIEI indicates that the incurred cost is the
same for both the actual price and imperfect price forecasts
scenarios, despite the error in the latter. When FIEI is negative,
it basically means that the actual incurred cost is unexpectedly
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lower when using imperfect forecasts for scheduling. Two
factors may contribute to negative FIEIs. First, if the global
optimal solution is not obtained for (2), the cost under actual
prices may be slightly more than the cost under imperfect
forecast in unusual cases [17], which in turn leads to a negative
FIEI. Second, considering (2) and (4), operating schedulesare
found using price forecasts whereas the actual incurred costs
are determined based on actual prices; in rare cases, this may
lead to a negative FIEI depending on how forecasts deviate
from the actual prices.

The value of FIEI can only be found after “real-time”, when
the actual market prices are available. Therefore, it can only be
used as anafter-the-fact index to evaluate the overall economic
efficiency of a certain price forecasting model. Note that this
index deals with the overall economic loss associated with
using inaccurate price forecasts for scheduling, and is not
meant to measure forecasting error.

III. T HE CASE STUDY LOADS

Two main groups of bulk electricity consumers are able
to respond to electricity prices: first, those having on-site
generation facilities as an alternative source of electricity; and
second, those having a controllable load that enables them
to time-shift their operation. In the present work, two price-
responsive large industrial electricity consumers representative
of these two groups are considered for the analyses.

The first load considered in this work is a typical process-
industry having both thermal and electrical energy demand.
The process industry owns an on-site gas-engine electricity
generator equipped with a heat recovery boiler for combined
heat and power production. A traditional oil-boiler is also
available to generate thermal energy. The gas-engine is em-
ployed for electricity generation when electricity marketprices
are expected to be high. Thermal energy, a by-product of the
gas-engine that increases the overall energy efficiency, makes
on-site generation a viable option. It is assumed that reliable
forecasts of the thermal demand and electrical energy demand
are available. The objective of this load is to use electricity
market price forecasts to optimally schedule a combination
of the gas-engine, the oil-boiler, and electricity from thegrid
to minimize the total expected energy costs over a planning
period (e.g., over 24 hours). This case study is based on
the system presented in [24] with some modifications. The
process-industry load’s detail formulation and data are pro-
vided in [23].

The second load is a municipal water-plant which has
an obligation to meet its hourly water demand day-by-day.
The water plant has an inexhaustible potable water source, a
number of pumps, an elevated reservoir, and a main pipeline
to convey water from the pumping station to the elevated
reservoir. The water plant is modeled using a simplified mass-
balance model, in which the nodal pressure requirements are
assumed to be satisfied if the water level in the elevated
reservoir remains within a desired range [25]. The constant-
velocity centrifugal pumps work in parallel and their pumping
capacity is assumed to be constant during each 1-hour interval.
The water plant is assumed to have access to a reliable hour-
by-hour forecast of water demand for theK-interval operating

period. The objective in this case is to minimize the total
expected electricity cost by scheduling the pumping operation
at low price hours based on the available price forecasts. The
water-plant load’s formulation and parameters are mostly taken
from [26], and further details are provided in [23].

The next-day operation of each load is modeled over a
planning period of 24 hours, equally divided into 24 1-hour
planning intervals. The following assumptions are made for
the simulations:

• All optimization variables are assumed to be constant
over the 1-hour intervals.

• No rescheduling or revision of the initially obtained
schedules are considered during the operating period.

• The case studies are price-taker customers who cannot
impact market clearing prices by any strategic behavior;
price-maker customers are not considered here.

• The participants’ bids (offers) to purchase (to sell) elec-
tricity from (to) the market are always cleared.

• The scheduling is based on only one set of market prices
in the case of two-settlement markets, i.e., either real-time
market prices or day-ahead market prices.

IV. N UMERICAL RESULTS AND DISCUSSION

The Ontario electricity market is selected as the case-market
in this study, and the Hourly Ontario Energy Price (HOEP)
forecasts are considered as the expected future electricity
market prices [27]. The Ontario electricity market is a single-
settlement real-time market, and the HOEP is a province-
wide uniform market price applicable to most demand-side
wholesale electricity customers in Ontario.

Two alternative sets of HOEP forecasts are considered here
for the analyses. The first set is the 24-hour-ahead HOEP
forecasts generated by the Transfer Function (TF) models in
[8] for a 42-day period (six typical but different weeks in
2004); these forecasts have a MAPE1 of 16.1% over the six-
week period. The second set is the 24-hour-ahead Pre-Dispatch
Prices (PDPs) generated by Ontario’s IESO [28] for the same
period, but with a significantly higher six-week MAPE of
40% [8]. The corresponding ex-post HOEPs are used as the
“perfect” HOEP forecasts.

The cumulative distribution of the percentage errors for
the TF and PDP forecasts are presented in Fig. 1. As it is
reflected in this figure, the percentage error of the PDPs is
higher than 50% on more than 25% of the days; this level of
error is obsrved only on 3% of the days for the TF forecasts.
The unusually high PDP errors are generally because they are
being generated by mimicking the market using the available
bids and forecasts of intermittent suuply and load; these bids
and forecasts, however, are usually subject to change when
approaching real-time operation [27]. In addition, observe
from Fig. 1 that the PDPs exhibit an over-forecast tendency
compared to the TF forecasts. The over-forecast tendency in
PDPs is due to the use of hourly peak-load forecasts, while the
HOEPs are calculated using the 5-minute actual load values.

The next-day operating schedules of the two loads are
determined for each day of the 42-day study period using the

1MAPE=average(|actual price - forecast price|/actual price)
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Fig. 1. Cumulative distribution of percentage errors for the TF and PDP
forecasts.

TF forecasts, the PDPs and the ex-post HOEPs. The daily FIEI
values are calculated according to (5). In addition, the overall
economic impact is quantified using the following six-week
FIEI index:

FIEI6w(%) = 100 ×

∑42

day=1
(Costfpday − Costap

day)∑
42

day=1
Costfpday

(6)

where Costfpday and Costap
day are the daily operation costs based

on forecast prices and actual prices, respectively.
Two popular error measures in the price forecasting lit-

erature, i.e. MAPE and MAE2 are considered in this work.
The numerical results and conclusions for both measures were
observed to be consistent, and hence, only the MAPE measure
is used here.

A. The Process-industry Load

The daily FIEI and MAPE values for the 42-day period
are presented in Fig. 2 for both forecast sets. In this figure,
the daily pairs of MAPE and FIEI are sorted in a descending
order with respect to MAPEs. It can be observed from this
figure that high values of FIEI can occur at both high and low
levels of MAPEs. For example, in the case of TF forecasts
in Fig. 2-(a), the second event which represents Day 27 has
a FIEI of zero despite a MAPE of 27.5%. Similar behavior
can be observed for the 5th, 15th, 21th, 24th, 31th, and 37th

events. Also, it can be observed from Fig. 2-(b) that the FIEI
values are very close for the 2nd and the 25th events despite
the significant difference in their MAPEs. These results imply
that a high (low) value of MAPE for a given set of forecasts
does not always mean a high (low) economic loss.

Cross-examining the daily MAPE and FIEIs, i.e., comparing
the relative differences in the MAPEs of the two forecast sets
with the relative differences in the resulting FIEIs on different
days over the 42-day period, reveals that on about 80% of the
days, a higher MAPE for the PDPs has translated into a higher
FIEI compared to those of the TF forecasts. However, on about

2MAE=average(|actual price - forecast price|)
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Fig. 2. Daily MAPEs versus the corresponding FIEI for the process industry:
(a) TF forecasts, and (b) PDPs.

TABLE I
DAILY MAPES AND FIEIS FOR THREE TYPICAL DAYS

MAPE (%) FIEI (%)

TF Forecasts PDPs TF Forecasts PDPs

Day 5 16.3 28.5 0.6 12.6

Day 11 16.9 28.7 2.81 1.7

Day 39 9.4 15.6 0 5.18

20% of the days, the opposite holds true, i.e., a higher MAPE
for PDPs has actually resulted in a lower FIEI. Furthermore,
there are some instances for which the FIEI is zero or very
close to zero despite a relatively high MAPE. To discuss these
observations, one typical day of each category, namely, Day5,
Day 11, and Day 39, is selected and the corresponding forecast
MAPEs and the associated daily FIEI indices are presented in
Table I.

Observe from Table I that on Day 5, the MAPE of the
TF forecasts is 12.2 percentage points lower than that of the
PDPs. The daily FIEI index has also significantly improved
on this day, i.e., from 12.6% for the PDPs to 0.64% for the
TF forecasts. On Day 11, on the other hand, although the
MAPE of the TF forecasts is 11.8 percentage points lower
than that of the PDPs, the daily FIEI resulting from using the
TF forecasts (2.81%) is actually higher than that of the PDPs
(1.7%). In addition, despite a MAPE of 9.4% on Day 39, the
FIEI associated with the TF forecasts is zero.

The inconsistency in the relationship between the MAPE
and FIEI when two alternative sets of forecasts are considered
can be explained based on the operational characteristics of
the process industry. Thus, the process industry purchases
electricity from the market if the market price is lower than
a certain threshold. This threshold price can simply be found
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Fig. 3. Day 5: (a) actual and forecast prices, and (b) energy import schedules
for the process-industry based on the TF and PDP forecasts.

by gradually increasing the electricity market prices in the
optimization problem from zero to a value beyond which
no electricity is purchased from the market. For the system
under study, this value is found to be $53.7/MWh. Therefore,
if the electricity market prices are forecasted to be higher
than the threshold price, it would be economical to produce
the required electricity locally. Hence, forecasting the future
electricity market prices with respect to this threshold isa
crucial factor for the process-industry load.

The scheduled energy imports on Day 5 when using the
TF forecasts, the PDPs forecasts and the HOEPs as expected
future prices are shown in Fig. 3; the actual and forecast prices
are also depicted against the threshold in this figure. Observe
in Fig. 3-(a) that the relative value of the future prices with
respect to the threshold are predicted incorrectly by the PDPs
for 10 hours. For example, at Hour 10, the price forecast
is lower than $53.7/MWh whereas the actual price is higher
than $53.7/MWh; in contrast, at Hour 17, the price forecast is
higher than $53.7/MWh but the actual price is lower than $53.
The TF forecasts, on the other hand, miss the relative value of
prices with respect to the threshold for only four hours (e.g.
Hour 21 in Fig. 3-(a)). Thus, on Day 5, the prices are predicted
accurately with respect to the threshold on more hours by the
TF forecasts than by the PDPs; this has resulted in a lower
FIEI index for the TF forecasts on this day.

For Day 11, on the other hand, it was observed that the
TF forecasts wrongly predicted the market price with respect
to the threshold for five individual hours; however, the PDPs
did so for only three hours. In other words, despite the
higher MAPE of the PDPs, they performed better than the
TF forecasts in predicting the relative value of the prices with
respect to the threshold; hence, the FIEI value associated with
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Fig. 4. Day 39: (a) actual and forecast prices, and (b) energyimport schedules
for the process-industry based on the TF and PDP forecasts.

TABLE II
SIX -WEEK MAPES AND ASSOCIATEDFIEIS FOR

THE PROCESSINDUSTRY

MAPE6w (%) FIEI6w (%)

TF Forecasts PDPs TF Forecasts PDPs

16.1 40.0 2.0 4.0

using the PDPs was lower on this day.
The scheduled energy imports on Day 39 when using the

TF forecasts, the PDPs and the HOEPs are presented in Fig. 4.
Observe that the relative value of prices with respect to the
threshold are perfectly predicted by the TF forecasts despite
its MAPE of 9.4%. This has resulted in identical schedules
for the TF forecasts and the ex-post HOEPs, and thus a zero
FIEI.

The six-week MAPEs of the two forecast sets and the
associated FIEI indices are presented in Table II. From this
table, the overall six-week FIEI index associated with the TF
forecasts is 2%, which is half the FIEI value associated with
the PDPs (4%); this is, on average, a 0.08% cost reduction for
a 1% lower MAPE for the TF forecasts over the PDPs.

In order to study how improving the accuracy of a given
forecasting model could economically benefit the user, an
experiment based on the TF forecasts is discussed next. Thus, a
set of hourly artificial forecasts, denoted by AF, are generated
as follows:

AFt = HOEPt + a(TFt − HOEPt) (7)

where HOEPt and TFt are the hourly values of the HOEPs and
TF forecasts, respectively. By varying the value ofa between
0 and 1.6 with 0.1 increments, 15 sets of daily forecasts were
generated for each day of the 42-day study period. If the value
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Fig. 5. Six-week averages of the MAPEs for various simulatedforecasts,
and the corresponding FIEIs.

of AF fell below zero, that value was replaced with $1/MWh.
A value of a < 1 would imply improving the TF forecast
errors, whereas a value ofa > 1 would simulate degrading
the TF forecasts. Ana = 0 yields the HOEPs, i.e., perfect
forecasts, anda = 1 yields the TF forecasts. Due to the
unusually high errors of the PDPs, these were not considered
for this experiment.

The six-week MAPEs of the artificial forecasts AF for each
of the error levelsa and the corresponding six-week average
FIEIs are presented in Fig. 5. Observe from this figure that for
errors less than about 5%, the FIEI is negligible; this is also
consistent with findings reported in [16] and [17] for demand
forecasting errors. When MAPE falls between 6 to 16%, a 1%
improvement in MAPE would result in about 0.2% reduction
in operation costs; this reduction is higher when the forecast
MAPE falls within the 16 to 24% range (the error level in
most published works on electricity market price forecasting
falls within a 5 to 15% MAPE range). Observe that this 0.2%
cost reduction is significantly higher than the aforementioned
0.08% cost reduction when using the TF forecasts instead of
the PDPs.

B. The Water-Plant Load

The daily MAPE and FIEI pairs over the 42-day period for
the water-plant load, sorted with respect to MAPE values in a
descending order, are presented in Fig. 6. It can be observed
from this figure that, similar to the results presented in Fig.
2, high (low) values of FIEI may occur despite the low (high)
values of forecast MAPE for the water plant. In addition,
the FIEI values turned out to be negative on three occasions.
Negative FIEI values imply that using forecast prices actually
resulted in lower operations costs; these negative values are all
small and are justified in Section II-B. A common pattern in
the forecasts on these days was a small under-forecast for low-
price hours and a relatively high over-forecast for the high-
price hours.
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Fig. 6. Daily MAPEs versus the corresponding FIEI for the water plant: (a)
TF forecasts, and (b) PDPs.

TABLE III
THE MAPES AND FIEIS OF THETF FORECASTS ANDPDPS

FOR SOME TYPICAL DAYS

MAPE (%) FIEI (%)

TF Forecasts PDPs TF Forecasts PDPs

Day 1 16.9 54.8 8.5 4.5

Day 32 15.5 45.2 5.7 1.7

Cross-examining the results of the PDP and TF forecasts for
this case study reveals that on 88% of the days, the differences
in MAPE values of the TF and PDP forecasts are not consistent
with the differences in the corresponding FIEI values. In other
words, if TF forecasts have a lower MAPE than the PDPs
for the day, the FIEIs resulting from the TF forecasts are
actually higher than those of the PDPs (see Table III for
some examples). In order to explain this phenomenon, the
nature of the water-plant optimization should be considered.
The solution of the water-plant optimization problem is such
that the pumping operation is mainly scheduled over low
price hours rather than high price hours. Thus, the ability
of a forecasting model to predict the general trend of price
fluctuations is an important feature for the water plant.

The six-week FIEI values associated with using the TF and
PDP forecasts for water-plant scheduling, and the correspond-
ing forecast MAPEs, are presented in Table IV. Observe that
despite the significant difference in the MAPE values, the eco-
nomic losses resulting from both the TF and PDP forecasts are
very close, which is a counter-intuitive observation. Examining
the TF and PDP forecasts showed that despite having different
levels of errors in predicting the exact values of prices, the
TF and PDP prices performed very closely when it came to
predicting the general trend of prices.
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TABLE IV
SIX -WEEK MAPES AND ASSOCIATEDFIEIS

MAPE6w (%) FIEI6w (%)

TF Forecasts PDPs TF Forecasts PDPs

16.1 40.0 4.9 5.5

TABLE V
THE MAPES AND FIEIS FORDAY 5 FOR BOTH CASE STUDIES

MAPE (%) FIEI (%)

TF Forecasts PDPs TF Forecasts PDPs

Water Plant 16.3 28.5 10.5 11.5

Process Industry 16.3 28.5 0.6 12.6

It can be observed from the numerical results that a par-
ticular set of forecasts may result in significantly different
economic benefits when used by inherently different users.
For example, the MAPE of the TF forecasts and the PDPs
and the associated FIEIs for Day 5 for both case study
loads are presented in Table V. Observe that using the TF
forecasts for the process industry has a marginal economic
loss (FIEI=0.6%); however, the very same set of forecasts
results in a very high economic loss for the water plant
(FIEI=10.5%). In addition, the relative accuracy of a set of
forecasts versus another may be significantly different from the
view points of different users. From example, as it is shown in
Table V, while using the TF forecasts instead of the PDPs is
highly beneficial to the process industry (FIEI=0.6% versus
FIEI=12.6%), the water plant’s loss from using the PDPs
instead of the TF forecasts is not that significant (FIEI=11.5%
versus FIEI=10.5%). These results highlight that while a set of
forecasts may be considered accurate enough by one user, the
very same forecasts may be graded as inaccurate by another.

The numerical results presented for the two case study
loads in this section and Section IV-A also imply that when
comparing the economic value of two alternative forecasting
models for a particular user, the popular error measures may
not give the full picture. Specific forecasting capabilities may
be critical (e.g., the ability to forecast the prices with respect
to a threshold in the case of the process industry) depending
on the nature of the operation of the user. If a forecasting
model outperforms another in terms of such capabilities, it
would result in more economic benefits. Superior capabilities,
however, may not always be captured by the popular error
measures, such as MAPE.

Using the artificial set of price forecasts AF in (7), a similar
analysis was repeated for the water plant to determine the
average value of improving the forecasts errors for a given
forecasting model; the results are presented in Fig. 7. Observe
from this figure that the economic losses resulting from a
forecast error of 5% or less is negligible for the water plant,
similar to the process-industry load. Furthermore, when MAPE
is within a 5 to 14% range, a 1% improvement in forecast
accuracy would result in about 0.35% cost reductions for this
case study. Beyond this range, the rate of reduction is higher.
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Fig. 7. The six-week averages of the MAPEs for various simulated forecasts,
and the corresponding FIEIs.

C. Sensitivity Analysis

In order to study how simulation parameters may impact
the above numerical results, sensitivity analyses were carried
out for the two case studies.

1) The Process-Industry Load: Considering the fact that
most of the technical parameters are fixed in practice for a
given gas engine and oil boiler, only the sensitivity of the
results with respect to fuel prices is analyzed. Fuel price
fluctuations were assumed to have no impact on electricity
market prices in the short term.

A change in fuel prices affects the operation of this load
since higher fuel prices naturally result in a reduction in on-
site electricity production and the purchase of more electricity
from the market; in fact, for very high fuel prices, this load
will import all its electricity from the grid and turn the gas
engine off. On the other hand, if fuel prices drop, this load
will produce more electricity on-site; as a matter of fact, for
very low fuel prices, the process industry will generate all
its electricity locally and export the excess electricity to the
market. Note that for very low fuel prices, the market price
threshold beyond which on-site generation of electricity is
economical would be very low, whereas for very high fuel
prices, this threshold would be very high; thus, no price-
based optimization would be required in either of the two
extreme cases. However, if the threshold falls within the range
of minimum and maximum electricity market prices, this
load will optimize its operation accordingly. Therefore, the
economic value of improving forecast accuracy would depend
on how this threshold is predicted by the forecasting models.

The prices of oil and natural gas were increased by 20%
in the first scenario and the economic value of improving the
forecast accuracy was analyzed using the artificial forecasts
AF. It was observed that the new threshold was moved up
to about $63/MWh, and a 1% reduction in forecast MAPE
would result in an about 0.16% reduction in costs for MAPEs
ranging from 5 to 15%. In a second scenario, the fuel prices
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were decreased by 20% which resulted in a new threshold
of about $40/MWh. In this case, and for the aforementioned
MAPE range, the average cost reduction was about 0.1% for
a 1% improvement in forecast errors. Comparing these results
with those presented in Section IV-A shows that the economic
savings resulting from improving forecast accuracy depends on
fuel prices for the process-industry load.

2) The Water-Plant Load: For the water plan, the sensitivity
analysis was carried out by increasing (decreasing) water
demand, power consumption and water discharge capacity
of the pumps by 100% (40%); the area of the reservoir
was also changed accordingly. The average cost reductions
resulting from improving the forecast accuracy were analyzed
based on the artificial forecasts AF. No significant changes
were observed, compared to the results presented in Section
IV-B. Thus, the results presented for the water plant does not
depend on simulation parameters. One should note that optimal
pumping schedules are determined considering market price
fluctuations and water-demand patterns. Hence, such schedules
will not significantly change as long as the price and water-
demand patterns do not shift significantly. A significant shift
in water-demand fluctuations in the short-term, however, isnot
realistic and thus was not studied.

V. CONCLUSIONS

This work examined the economic impact of electricity
market price forecast errors on demand-side market customers.
Two typical price-responsive loads, i.e., a process industry
and a municipal water plant were considered. These two
case studies have different load management capabilities:the
process industry has access to an on-site source of electricity,
and the water plan can shift its demand over a planning period
to some extent. Alternative sets of imperfect electricity market
price forecasts with significantly different error characteristics
were used as the expected electricity prices. The corresponding
ex-post prices were then used to study the economic impact
of using imperfect price forecasts for operation scheduling,
comparing the costs of operation under exact and imperfect
forecast price scenarios. A sensitivity analysis was also per-
formed to asses how the operation parameters could influence
the numerical results.

It can be concluded from the presented results and discus-
sions that while the popular error measures such as the MAPE
could reflect the overall economic value of improving accuracy
level of a particular forecasting model, they may not yield
the full picture when used to compare alternative forecasting
models. Other considerations, such as how the models meet
the specific forecasting requirements of the forecast users,
should also be taken into account. This observation implies
that “accurate” price forecasting may have different meaning
for different forecast users. The interpretation mainly depends
upon the nature of the operation of the forecast users and their
specific forecasting needs; for example, while some customers,
such as the process industry in this study, need to predict future
prices with respect to a certain threshold, some others, such
as the studied water plant, need to predict the general trend
of prices over the planning period. However, the ability of

a model in meeting such specific needs may not always be
captured by the popular error measures.

VI. A CKNOWLEDGMENT

The authors would like to thank the anonymous editor
and reviewers for their valuable comments which helped us
improve the paper.

REFERENCES

[1] A. J. Conejo, F. J. Nogales, and J. M. Arroyo, “Price-taker bidding
strategy under price uncertainty,”IEEE Transactions on Power Systems,
vol. 17, no. 4, pp. 1081 – 1088, November 2002.

[2] F. J. Nogales, J. Contreras, A. J. Conejo, and R. Espinola, “Forecasting
next-day electricity prices by time series models,”IEEE Transactions
on Power Systems, vol. 17, no. 2, pp. 342–348, May 2002.

[3] A. M. Gonzalez, A. M. S. Roque, and J. Garcia-Gonzalez, “Modeling
and forecasting electricity prices with input/output hidden Markov
models,”IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 13–24,
Feb. 2005.

[4] N. Amjady and F. Keynia, “Day-ahead price forecasting ofelectric-
ity markets by mutual information technique and cascaded neuro-
evolutionary algorithm,”Power Systems, IEEE Transactions on, vol. 24,
no. 1, pp. 306–318, Feb. 2009.

[5] T. Niimura, “Forecasting techniques for deregulated electricity market
prices - extended survey,” in2006 IEEE PES Power Systems Conference
and Exposition PSCE ’06, Oct. 29-Nov. 1 2006, pp. 51 – 56.

[6] F. J. Nogales and A. J. Conejo, “Electricity price forecasting through
transfer function models,”Journal of the Operational Research Society,
pp. 1–7, 2005.

[7] C. P. Rodriguez and G. J. Anders, “Energy price forecasting in the
Ontario competitive power system market,”IEEE Transactions on Power
Systems, vol. 19, no. 1, pp. 366–374, Feb. 2004.

[8] H. Zareipour, C. Canizares, K. Bhattacharya, and J. Thomson, “Applica-
tion of public-domain market information to forecast Ontario wholesale
electricity prices,”IEEE Transactions on Power Systems, vol. 21, no. 4,
pp. 1707–1717, November 2006.

[9] H. Zareipour, K. Bhattacharya, and C. Canizares, “Electricity market
price volatility: the case of Ontario,”Energy Policy, vol. 35, no. 9, pp.
4739–4748, September 2007.

[10] A. J. Conejo, M. A. Plazas, R. Espinola, and A. B. Molina,“Day-ahead
electricity price forecasting using the wavelet transformand ARIMA
models,”IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 1035–
1042, May 2005.

[11] M. A. Plazas, A. J. Conejo, and F. J. Prieto, “Multimarket optimal
bidding for a power producer,”IEEE Transactions on Power Systems,
vol. 20, no. 4, pp. 2041 – 2050, Nov. 2005.

[12] M. Carrion, A. B. Philpott, A. J. Conejo, and J. M. Arroyo, “A
stochastic programming approach to electric energy procurement for
large consumers,”IEEE Transactions on Power Systems, vol. 22, no. 2,
pp. 744 – 754, May 2007.

[13] T. Li, M. Shahidehpour, and Z. Li, “Risk-constrained bidding strategy
with stochastic unit commitment,”IEEE Transactions on Power Systems,
vol. 22, no. 1, pp. 449–458, Feb. 2007.

[14] R. Keith and S. M. Leyton, “An experiment to measure the value of
statistical probability forecasts for airports,”Weather and Forecasting,
vol. 22, no. 4, pp. 928 – 935, 2007.

[15] F. J. Meza, J. W. Hansen, and D. Osgood, “Economic value of seasonal
climate forecasts for agriculture: Review of ex-ante assessments and
recommendations for future research,”Journal of Applied Meteorology
and Climatology, vol. 47, no. 5, pp. 1269 – 1286, 2008.

[16] D. K. Ranaweera, G. G. Karady, and R. G. Farmer, “Economic impact
analysis of load forecasting,”IEEE Transactions on Power Systems,
vol. 12, no. 3, pp. 1388 – 1392, Aug. 1997.

[17] B. F. Hobbs, S. Jitprapaikulsarn, S. Konda, V. Chankong, K. A. Loparo,
and D. J. Maratukulam, “Analysis of the value for unit commitment of
improved load forecasts,”IEEE Transactions on Power Systems, vol. 14,
no. 4, pp. 1342 – 1348, Nov. 1999.

[18] J.-D. Park, Y.-H. Moon, and H.-J. Kook, “Stochastic analysis of the
uncertain hourly load demand applying to unit commitment problem,”
in Power Engineering Society Summer Meeting, 2000. IEEE, vol. 4,
2000, pp. 2266–2271.



IEEE TRANSACTIONS ON POWER SYSTEMS 9

[19] M. A. Ortega-Vazquez and D. S. Kirschen, “Economic impact assess-
ment of load forecast errors considering the cost of interruptions,” in
Proc. the IEEE PES Annual General Meeting, June 2006, p. 8 pages.

[20] E. Delarue and W. D’Haeseleer, “Adaptive mixed-integer programming
unit commitment strategy for determining the value of forecasting,”
Applied Energy, vol. 85, no. 4, pp. 171 – 181, 2008.

[21] T. J. Teisberg, R. F. Weiher, and A. Khotanzad, “The economic value of
temperature forecasts in electricity generation.”Bulletin of the American
Meteorological Society, vol. 86, no. 12, pp. p1765 – 1771, 2005.

[22] F. Musgens, , and K. Neuhoff, “Modelling dynamic constraints in
electricity markets and the costs of uncertain wind output,” Cam-
bridge Working Papers in Economics, 2006, available [on line] at:
http://www.dspace.cam.ac.uk/handle/1810/131648.

[23] H. Zareipour, “Price forecasting and optimal operation of wholesale cus-
tomers in a competitive electricity market,” Ph.D. dissertation, University
of Waterloo, Department of Electrical and Computer Engineering, 2006,
available [online] at: www.lib.uwaterloo.ca.

[24] E. Gomez-Villalva and A. Ramos, “Optimal energy management of an
industrial consumer in liberalized markets,”IEEE Transactions on Power
Systems, vol. 18, no. 2, pp. 716–723, May 2003.

[25] L. E. Ormsbee and K. E. Lansey, “Optimal control of watersupply
pumping systems,”Journal of Water Resources Planning and Manage-
ment, vol. 120, no. 2, pp. 237–252, March/April 1994.

[26] B. Baran, C. von Lucken, and A. Sotelo, “Multi-objective pump schedul-
ing optimisation using evolutionary strategies,”Advances in Engineering
Software, vol. 36, no. 1, pp. 39–47, Jan. 2005.

[27] H. Zareipour, C. A. Canizares, and K. Bhattacharya, “The operation
of Ontario’s competitive electricity market: Overview, experiences, and
lessons,”IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1782–
1793, Nov. 2007.

[28] The Ontario Electricity System Operator (IESO), [online] at:
http://www.ieso.ca/, 2009.

Hamidreza Zareipour (S’03, M’07) received his Bachelor (1995) and Master
(1997) degrees in Electrical Engineering from K. N. Toosi University of
Technology, and Tabriz University in Iran. He worked as a lecturer at Persian
Gulf University, Bushehr, Iran, from 1997 to 2002. He received his Ph. D
degree in Electrical Engineering from the University of Waterloo, Ontario,
Canada in 2006, and currently is an Assistant Professor withthe Department of
Electrical and Computer Engineering, University of Calgary, Calgary, Alberta,
Canada. His research focuses on economics, planning, and management of
electric energy systems in a competitive electricity market environment.
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