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Abstract—Several techniques have been proposed in the liter- no works have been reported which either analyze the eco-
ature to forecast electricity market prices and improve forecast nomic impact of using inaccurate price forecasts for opamnat

accuracy. However, no studies have been reported examininbe  gepeqyling, or study the economic benefits of improvingepric
economic impact of price forecast inaccuracies on forecastsers. forecasting accuracy for forecasts Lsers

Therefore, in this paper, the application of electricity market X o . . .
price forecasts to short-term operation scheduling of two ypical In this paper, electricity market price forecasts with eliéint

and inherently different industrial loads is examined and te levels of accuracy are used to optimally schedule the next-
associated economic impact is analyzed. Using electricitparket day operation of two industrial loads: a process industry
price forecasts as the expected next-day electricity pricg optimal owning on-site generation facilities, and a municipal wate

operating schedules and the associated costs are determihe . .
for each load. These costs are compared with those of aPlant with load-shifting capabilities. These two loads are

“perfect” price forecast scenario in which actual prices ae used inherently different in the way they respond to electricity
to determine the operating schedules. Numerical results ah prices, thus, the process industry produces electricitgiten

discussions are provided based on price forecasts with défent \hen electricity market prices are high, whereas the water
error characteristics. plant shifts its consumptions from high price hours to low
Index Terms—Price forecasting, scheduling, forecasting error, price hours. Therefore, the main contribution of this wask i
economic value, economic benefit, demand-side management. tg analyze and quantify the economic impact of employing
I. INTRODUCTION imperfect electricity price forecasts for scheduling tthers-
term operation of typical demand-side market participants

HORT-term operation scheduling in a competitive electric- It should be noted that some approaches have been reported

'ty. r?a(;ke_tt;]sfatchalltlangtlngttask becaCL)Jse ?f th%uncer:]alq}y the literature to deal with the problem of future price
associated with future electricity prices. One feasibjerapc uncertainty in operation planning in competitive marketien

to deal with this challenge_is to ge_nerate and e_mploy_ “acc%nments. For example, in [11]-[13], market prices are mod-
rate” forecasts of future prices. This approach is pariyl led using time series models, and scenario-based te@miqu

le_|ﬁ|C|ent i thed fo.recas'Fs efnjoy a thlgh_t:]evel Olf accuracly [1§re employed to derive optimal operational strategies.@n t
OWever, producing price forecasts with very Iow error 16ve . o hand, the focus of the present work is on analyzing

IS |n0t alwa%/s possible. | techni h b i dthte economic impact of applying short-term price forecasts
n recent years, several techniques have been applie in%peration scheduling from the demand-side’s point ofwie
short-term electricity market price forecasting (e.g}-[2]);

f th lied techni ; ted | The rest of this paper is organized as follows: A review of
a summary ol the applied techniques 1s presented in [ﬂ'e relevant literature and the methodology employed fer th
Significantly different levels of forecast accuracy haverbe

. analyses are presented in Secfidn Il. The industrial loads a
observed for the studied markets. For example, forecastserr. y P

. their characteristics are discussed in Secfioh Ill. Nuoadri
ranging from about 5% to 20% were reported for the Span'?@sults and discussions are provided in Secligh IV. Fipally

[2], PIM[6] and Ontario [7], [8] electricity markets. Suciige SectionY summarizes the methodology and main findings of
variations in price forecasting errors mainly depend on ﬂ?ﬁis work

characteristics of the market under consideration andilitla

of market prices [8], [9]. In addition, various approachasé

been reported in the literature for improving the accuracy Il. METHODOLOGY
of electricity market price forecasts. For example, in [LOA. Review of Related \Works

wavelet transforms were employed to improve t_he accuracy OfForec:asting future values of a variable and using the fore-
an ARIMA model by about 2.7 percentage points. Howeveéasts for planning purposes has been a common practicesacros
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in [15], where it is argued that this value is limited whemperation. Thus[{1) corresponds to an uncertain optiioizat
considering a wide range of circumstances. problem.

In the electric power industry, studying the costs of load By replacing the future priceg;, by their forecast values
forecasting errors has been a topic of interest, given thg, the problem[fll) turns into aexpected cost minimization
importance of load forecasts for the daily operation of pow@roblem [1], [23], as follows:
systems. For example, in [16], a large number of daily load K
forecast scenarios with random errors ranging between zero min  E[Costl] = Z b - i )
and 15% are generated and the cost of meeting the demand k Pt
under each scenario is determined; it is concluded that re-
ducing the load forecast error to about 5% is adequate, and
that lower error levels would only have a marginal economithere E' denotes the mathematical expectation, dnd the
value. In [17], the cost of load forecast inaccuracy for twavailable information about electricity market price baba
typical power utilities are analyzed; the resulting ecoitomat the time. Note that price forecasts are #ipected values
values of reducing the error are reported to vary to somenext@f future prices, i.eE|p;|I]=p; [23]. The solution of problem
across the studied systems. Among several related stuies(d) provides the demand-side market participant with ogkim
approach to reduce the economic impacts of load forecastip@wer purchase schedules which minimize éxpected cost
errors in unit commitment is presented in [18]; a third cosif electricity.
component, i.e., the cost of expected energy not supplied/n order to analyze the economic impact of using imperfect
is considered in [19], in addition to the operation and starprice forecasts for demand-side short-term scheduling, tw
up costs studied in [16] and [17]; a method to analyze th@ice scenarios are considered here. In the first scenario, i
economic impact of forecasting errors in generation sclieglu is assumed that the actual market prices are available; this
is proposed in [20] with an emphasis on forecasting horizois; obviously a fictitious scenario. Let denote the solutidn o
and the economic value of improving weather forecast @ptimization problem[2) under this price scenario, i.guat
electric load forecasting models is discussed in [21]. Thwices, byyi" k = 1,2,..., K. Thus, if schedules);” were
findings of [19]-[21] are consistent with those in [17] ané][1 implemented in reality, the associated cost, denoted by*€os
in the sense that they generally report lower system costmwhwould have been:
more accurate forecasts are used. In addition, a linearized . .
model of the unit commitment problem is presented in [22] E[CosfActual Prices Availablp=

subject to: £

where the economic impact of uncertainty in wind is studied Cosf® — a ap 3

in the context of German power system; it is reported that ost™ = Zpk Vi )

the wind uncertainty mainly affect the start-up and shutdow k=1

costs, and hence, the impact was relatively small. In the second price scenario, it is assumed that imperfect

While the above studies employ different methods to geRrice forecastg, are used to solve optimization problefd (2).
erate forecast scenarios, the general approach to study ¢fedenote the solution ofX(2) when using this set of forecast
economic impact of forecast errors is to compare the cofices by ¢y’ Thus, if schedules) are implemented in
incurred in exact and imperfect forecast price scenaribgs T Practice, the cost incurred by the market participant, teho
general approach is also followed in the present work, 8% CosP, will be:

explained next. E[Costlnaccurate Price Forecasts Availgbte

K
B. Forecast Inaccuracy Economic Impact Index Cost ="y - oy (4)

From the demand-side point of view, the optimal operation h=1

in a competitive electricity market environment concetetsa Observe that theb;f is determined based on forecast prices,
on the minimization of total electricity costs. The problenbut the final electricity cost is determined based on theactu

of minimizing electricity costs over d-interval planning pricespy.

period for a demand-side market participant can generaly b The Forecast Inaccuracy Economic Impact (FIEI) index over

formulated as: a K-interval planning period is defined here as:
K
Cost? — Cost®
i = . FIEl (%) = —————— x 100 5
min  Cost ;pk b 1) (%) CosP ®)
subject to: ¢ Here, a positive value of FIEI indicates the percentage of

the actual cost attributable to price forecasting erroithmer
where v, is the net power purchased from the market iwords, the final incurred electricity cost could have beeveio
planning intervalk, p; is the market price for electricity for by FIEI percent if the price forecasts were perfectly actura
interval k&, and ¢ represents the set of technical constraints value of zero for FIEI indicates that the incurred cost is th
This optimization problem needs to be solved before the staame for both the actual price and imperfect price forecasts
of the planning period (e.g. the day before the operatior).dagcenarios, despite the error in the latter. When FIEI is thaga
However, market pricep, are known only after the actualit basically means that the actual incurred cost is unexuibct
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lower when using imperfect forecasts for scheduling. Twperiod. The objective in this case is to minimize the total
factors may contribute to negative FIEls. First, if the glbb expected electricity cost by scheduling the pumping opmrat
optimal solution is not obtained fofl(2), the cost under attuat low price hours based on the available price forecasts. Th
prices may be slightly more than the cost under imperfestater-plant load’s formulation and parameters are moakgn
forecast in unusual cases [17], which in turn leads to a negatfrom [26], and further details are provided in [23].
FIEI. Second, considerinfl(2) arld (4), operating schecales The next-day operation of each load is modeled over a
found using price forecasts whereas the actual incurrets cgslanning period of 24 hours, equally divided into 24 1-hour
are determined based on actual prices; in rare cases, tlyis mnning intervals. The following assumptions are made for
lead to a negative FIEI depending on how forecasts devidte simulations:
from the actual prices. « All optimization variables are assumed to be constant
The value of FIEI can only be found after “real-time”, when  gver the 1-hour intervals.

the actual market prices are available. Therefore, it caynlmn ., No rescheduling or revision of the initially obtained
used as aafter-the-fact index to evaluate the overall economic schedules are considered during the operating period.

efficiency of a certain price forecasting model. Note th# th , The case studies are price-taker customers who cannot
index deals with the overall economic loss associated with impact market clearing prices by any strategic behavior;
using inaccurate price forecasts for scheduling, and is not price-maker customers are not considered here.
meant to measure forecasting error. » The participants’ bids (offers) to purchase (to sell) elec-
tricity from (to) the market are always cleared.
1. THE CASE STUDY LOADS « The scheduling is based on only one set of market prices
Two main groups of bulk electricity consumers are able in the case of two-settlement markets, i.e., either read-i
to respond to electricity prices: first, those having oe-sit  market prices or day-ahead market prices.
generation facilities as an alternative source of eletgriand
second, those having a controllable load that enables them IV. NUMERICAL RESULTS AND DISCUSSION
to time-shift their operation. In the present work, two pric

responsive large industrial electricity consumers repregive , his study, and the Hourly Ontario Energy Price (HOEP)

of these two groups are considered for the analyses. forecasts are considered as the expected future elegtricit

The first load considered in this work is a typical ProCessy ket prices [27]. The Ontario electricity market is a &ng

industry having both thermal and electrical energy demargsttlement real-time market, and the HOEP is a province-

The process |_ndustry_owns an on-site gas-engine eleyt_rlq}\t,ide uniform market price applicable to most demand-side
generator equipped with a heat recovery b0|_ler f(_)r C(_)mbln olesale electricity customers in Ontario.

heat and power production. A traditional oil-boiler is also 14 aiternative sets of HOEP forecasts are considered here
available to generate thermal energy. The gas-engine is g} the analyses. The first set is the 24-hour-ahead HOEP
ployed for electricity generation when electricity marRetes o acagts generated by the Transfer Function (TF) models in
are expected to be high. Thermal energy, a by-product of tﬂﬂ for a 42-day period (six typical but different weeks in
gas-engine that increases the overall energy efficiencyema2004); these forecasts have a MAPE 16.1% over the six-
on-site generation a viable option. It is assumed thatblia ,, oo\ period. The second set is the 24-hour-ahead Pre-Dispat
forecasts of the thermal demand and electrical energy démay}i.og (PDPs) generated by Ontario's IESO [28] for the same
are available. The objective of this load is to use eledyrici period, but with a significantly higher six-week MAPE of

market price forecasts to optimally schedule a combinatiogyo,, [8]. The corresponding ex-post HOEPs are used as the
of the gas-engine, the oil-boiler, and electricity from tjréd “perfect” HOEP forecasts.

to minimize the total expected energy costs over a planningrhe cymulative distribution of the percentage errors for

period (e.g., over 24 hours). This case study is based ffa TE and PDP forecasts are presented in Hig. 1. As it is
the system presented in [24] with some modifications. Thefected in this figure, the percentage error of the PDPs is
process-industry load's detail formulation and data a® Prhigher than 50% on more than 25% of the days; this level of
vided in [23]. _ . _ error is obsrved only on 3% of the days for the TF forecasts.
The second load is a municipal water-plant which hagye nysually high PDP errors are generally because they are

an obligation to meet its hourly water demand day'by'daﬂeing generated by mimicking the market using the available

The water plant has an inexhaustible p_otable water. SOUrC8yids and forecasts of intermittent suuply and load; theds bi
number of pumps, an elevated reservoir, and a main pipeliagy forecasts, however, are usually subject to change when
to convey water from the pumping station to the elevatedh, 4 hing real-ime operation [27]. In addition, observ
reservoir. The water plant is modeled using a simplified masg,y, Fig [ that the PDPs exhibit an over-forecast tendency
balance model, in W,h'(,:h the nodal pressure r_eqwrements efﬁnpared to the TF forecasts. The over-forecast tendency in
assumed to be satisfied if the water level in the elevatgghoe is que to the use of hourly peak-load forecasts, whle th
reservoir remains within a desired range [25]. The constaioeps are calculated using the 5-minute actual load values.
velocity centrifugal pumps work in parallel and their pumpi 11,4 next-day operating schedules of the two loads are

capacity is assumed to be constant during each 1'h°_urmter\ﬁletermined for each day of the 42-day study period using the
The water plant is assumed to have access to a reliable hour-

by-hour forecast of water demand for theinterval operating  !MAPE=averagdéctual price - forecast priplactual price)

The Ontario electricity market is selected as the case-ehark
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values are calculated according kb (5). In addition, theale FIEI-MAPE Pair Number
economic impact is quantified using the following six-wee
FIEI index:

Fig. 2. Daily MAPEs versus the corresponding FIEI for thegess industry:
é; l(Cosﬁ’a _ COS@Z ) (a) TF forecasts, and (b) PDPs.
FIEls., (%) = 100 x = Y Y (6)

42 p
day=1 Costiay TABLE |
o DAILY MAPES AND FIEIS FOR THREE TYPICAL DAYS
where Coéa?ay z_;md Cosjay are the_ daily operation costs based MAPE (%) FIEl (%)
on forecast prices and actual prices, respectively. TFE Forecasts| PDPs || TF Forecasts| PDPs
Two popular error measures in the price forecasting lit- Day 5 163 285 0.6 126
erature, i.e. MAPE and MAEare considered in this work. Day 11 16.9 28.7 28l 1.7
The numerical results and conclusions for both measures wer Day 39 9.4 15.6 0 518
observed to be consistent, and hence, only the MAPE measure

is used here.

20% of the days, the opposite holds true, i.e., a higher MAPE
A. The Process-industry Load for PDPs has actually resulted in a lower FIEI. Furthermore,

The daily FIEI and MAPE values for the 42-day periocjhere are some instances for which the FIEI is zero or very
are presented in Figl 2 for both forecast sets. In this figuféose to zero despite a relatively high MAPE. To discussehes

the daily pairs of MAPE and FIEI are sorted in a descendi bservations, one typical day of each category, namely,Day
order with respect to MAPES. It can be observed from thjg@y 11, and Day 39, is selected and the corresponding fdrecas
figure that high values of FIEI can occur at both high and loMAPEs and the associated daily FIEI indices are presented in

levels of MAPEs. For example, in the case of TF forecas@bleu'

in Fig. [3-(a), the second event which represents Day 27 hafobserve from Tablél | that on Day 5, the MAPE of the
a FIEI of zero despite a MAPE of 27.5%. Similar behaviof F forecasts is 12.2 percentage points lower than that of the
can be observed for the's 15", 21th 24th 31t and 37» PDPs. The daily FIEI index has also significantly improved

events. Also, it can be observed from Affy. 2-(b) that the FIEP this day, i.e., from 12.6% for the PDPs to 0.64% for the
values are very close for the"®and the 25 events despite 1 forecasts. On Day 11, on the other hand, although the
the significant difference in their MAPES. These resultslimp MAPE of the TF forecasts is 11.8 percentage points lower

that a high (low) value of MAPE for a given set of forecastthan that of the PDPs,_ the daily FI.EI resulting from using the

does not always mean a high (low) economic loss. TF forecasts (2._81%) is actually higher than that of the PDPs
Cross-examining the daily MAPE and FIEIs, i.e., comparizg-?%)- In addition, despite a MAPE of 9.4% on Day 39, the

the relative differences in the MAPES of the two forecass seff|E! associated with the TF forecasts is zero.

with the relative differences in the resulting FIEIs on eiiint ~ The inconsistency in the relationship between the MAPE

days over the 42-day period, reveals that on about 80% of #ad FIEI when two alternative sets of forecasts are consitier

days, a higher MAPE for the PDPs has translated into a higlf@n be explained based on the operational characteristics o

FIEI compared to those of the TF forecasts. However, on abdl¢ Process industry. Thus, the process industry purchases
electricity from the market if the market price is lower than

2MAE=averagefactual price - forecast prite a certain threshold. This threshold price can simply be doun
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Fig. 3. Day 5: (a) actual and forecast prices, and (b) enemppit schedules Fig. 4. Day 39: (a) actual and forecast prices, and (b) eniengprt schedules
for the process-industry based on the TF and PDP forecasts. for the process-industry based on the TF and PDP forecasts.

TABLE I
SIX-WEEK MAPES AND ASSOCIATEDFIEIS FOR

by gradually increasing the electricity market prices i th THE PROCESSI NDUSTRY

optimization problem from zero to a value beyond which

lon p MAPEg,, (%) FIEls., (%)
no electricity is purcha§ed from the market. For the system TF Forecasts] PDPs || TF Forecasts| PDPs
under study, this value is found to be $53.7/MWh. Therefore, 61 20.0 20 20

if the electricity market prices are forecasted to be higher
than the threshold price, it would be economical to produce
the required electricity locally. Hence, forecasting tlufe

electricity market prices with respect to this thresholdais The scheduled energy imports on Day 39 when using the

crucial factor for the process-industry load. TF forecasts, the PDPs and the HOEPs are presented i Fig. 4.

The scheduled energy imports on Day 5 when using t : . .
erve that the relative value of prices with respect to the
TF forecasts, the PDPs forecasts and the HOEPs as expeﬁqea . .
future prices are shown in Fill 3; the actual and forecasepri reshold are perfectly predicted by the TF forecasts despi
’ its MAPE of 9.4%. This has resulted in identical schedules

are also depicted against the threshold in this figure. ®Bse¥or the TF forecasts and the ex-post HOEPs, and thus a zero
in Fig.[3-(a) that the relative value of the future priceshNitFIEI '

respect to the threshold are predicted incorrectly by the$D The six-week MAPES of the two forecast sets and the

for 10 hours. For example, at Hour 10, the price forecast . L . .
is lower than $53.7/MWh whereas the actual price is high ;somated FIEI indices are presented in T&fle Il. From this
than $53.7/MWh; in contrast, at Hour 17, the price forecast lable, the overall six-week FIEI index associated with the T

higher than $53.7/MWh but the actual price is lower than $5 recasts is 2%, which is half the FIEI value associated with

: . the PDPs (4%); this is, on average, a 0.08% cost reduction for
The TF forecasts, on the other hand, miss the relative vdlue 1% lower MAPE for the TF forecasts over the PDPs.

prices with respect to the threshold for only four hours .(e.S1 | der to studv how i ing th ¢ .
Hour 21 in Fig[3-(a)). Thus, on Day 5, the prices are predicte 1 ©'0€r 10 study now improving the accuracy ot a given
lecasting model could economically benefit the user, an

accurately with respect to the threshold on more hours by t i T
TF forecasts than by the PDPs: this has resulted in a lo eriment based on the TF forecasts is discussed next, Zhus

using the PDPs was lower on this day.

FIEI index for the TF forecasts on this day. set of hourly artificial forecasts, denoted by AF, are geteera
For Day 11, on the other hand, it was observed that the follows:
TF forecasts wrongly predicted the market price with respec AF, = HOEP, + a(TF, — HOER) )

to the threshold for five individual hours; however, the PDPs

did so for only three hours. In other words, despite thehere HOERand TF are the hourly values of the HOEPs and
higher MAPE of the PDPs, they performed better than thie- forecasts, respectively. By varying the valuendfetween

TF forecasts in predicting the relative value of the pricéhw 0 and 1.6 with 0.1 increments, 15 sets of daily forecasts were
respect to the threshold; hence, the FIEI value associaithd wgenerated for each day of the 42-day study period. If theevalu
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of AF fell below zero, that value was replaced with $1/MWh.

A value of ¢ < 1 would imply improving the TF forecast Fig. 6. Daily MAPES versus the corresponding FIEI for theergilant; ()

errors, whereas a value af > 1 would simulate degrading TF forecasts, and (b) PDPs.

the TF forecasts. Am = 0 yields the HOEPs, i.e., perfect

forecasts, andv = 1 yields the TF forecasts. Due to the TABLE IlI
IV hiah f the PDPs. th t idered THE MAPES AND FIEIs OF THETF FORECASTS ANDPDPs
unusually high errors of the s, these were not considere FOR SOME TYPICAL DAYS
for this gxperlment. o MAPE (%) FIEI (%)
The six-week MAPEs of the artificial forecasts AF for each TF Forecasts| PDPs || TF Forecasts| PDPs
of the error levels: and the corresponding six-week average Day 1 16.9 t18 85 15
FIEls are presented in Fifll 5. Observe from this figure that fo Day 32 155 152 57 17

errors less than about 5%, the FIEI is negligible; this i® als
consistent with findings reported in [16] and [17] for demand

forecasting errors. When MAPE falls between 6 to 16%, a 1% .
improvement in MAPE would result in about 0.2% reduction Cross-examining the results of the PDP and TF forecasts for

in operation costs; this reduction is higher when the foseca!S case study reveals that on 88% of the days, the diffesenc
MAPE falls within the 16 to 24% range (the error level iH’n MAPE values of the TF and PDP forecasts are not consistent

most published works on electricity market price forecagti with the_diﬁerences in the corresponding FIEI values. Imeot
falls within a 5 to 15% MAPE range). Observe that this 0.2940rds, if TF forecasts have a lower MAPE than the PDPs
cost reduction is significantly higher than the aforemereiy ©f the day, the FIEIs resulting from the TF forecasts are

0.08% cost reduction when using the TF forecasts instead@ually higher than those of the PDPs (see Tdhle III for
the PDPs. some examples). In order to explain this phenomenon, the

nature of the water-plant optimization should be considere

The solution of the water-plant optimization problem istsuc
B. The Water-Plant Load that the pumping operation is mainly scheduled over low

The daily MAPE and FIEI pairs over the 42-day period foprice hours rather than high price hours. Thus, the ability

the water-plant load, sorted with respect to MAPE values indd a forecasting model to predict the general trend of price
descending order, are presented in Elg. 6. It can be obserflggtuations is an important feature for the water plant.
from this figure that, similar to the results presented in. Fig The six-week FIEI values associated with using the TF and
B, high (low) values of FIEI may occur despite the low (highlPDP forecasts for water-plant scheduling, and the correbspo
values of forecast MAPE for the water plant. In additioning forecast MAPES, are presented in Tablg IV. Observe that
the FIEI values turned out to be negative on three occasiodsspite the significant difference in the MAPE values, the ec
Negative FIEI values imply that using forecast prices dbtua nomic losses resulting from both the TF and PDP forecasts are
resulted in lower operations costs; these negative valgeslla very close, which is a counter-intuitive observation. Exany
small and are justified in Sectid@TIFB. A common pattern ithe TF and PDP forecasts showed that despite having differen
the forecasts on these days was a small under-forecastior Itevels of errors in predicting the exact values of priceg th
price hours and a relatively high over-forecast for the higlTF and PDP prices performed very closely when it came to
price hours. predicting the general trend of prices.
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TABLE IV
SIX-WEEK MAPES AND ASSOCIATEDFIEIS 15 20
MAPEg,, (%) FIElg., (%) 14} = = = MAPE| | ——FIEI 128
TF Forecasts| PDPs || TF Forecasts| PDPs 131 426
16.1 40.0 4.9 5.5 121 124
11+ —122
10+ —20
TABLE V = or 8 3
THE MAPES AND FIEIS FORDAY 5 FOR BOTH CASE STUDIES 3:, 8 —15&/
MAPE (%) FIEI (%) o7 m%
TF Forecasts| PDPs || TF Forecasts| PDPs 6 12
Water Plant 16.3 28.5 10.5 115 5t 1
Process Industry 16.3 28.5 0.6 12.6 4 8
3+ 16
2+ 14
1+ —12
0 e 0

i i i i i i i i i i i i i
0 0102030405060708091011121314151.6

It can be observed from the numerical results that a Error Level a
ticular set of forecasts may result in significantly diffieirc
economic benefits when used by inherently different use'Esl.
For example, the MAPE of the TF forecasts and the PDR
and the associated FIEIs for Day 5 for both case study
loads are presented in Talld V. Observe that using the TF
forecasts for the process industry has a marginal econongjc Sensitivity Analysis

loss (FIEI=0.6%); however, the very same set of forecasts ) , ,
results in a very high economic loss for the water plant N Order to study how simulation parameters may impact

(FIEI=10.5%). In addition, the relative accuracy of a set ¢f'¢ above numerical results, sensitivity analyses wereechr
forecasts versus another may be significantly differembftioe out for the two case studies. o

view points of different users. From example, as it is shown i 1) The Process-Industry Load: Considering the fact that
Table[M, while using the TF forecasts instead of the PDPsROSt of the technical parameters are fixed in practice for a
highly beneficial to the process industry (FIEI=0.6% versiven gas engine and oil boiler, only the sensitivity of the
FIEI=12.6%), the water plants loss from using the pppPE€sults _Wlth respect to fuel prices is a.nalyzed. Fuel price
instead of the TF forecasts is not that significant (FIEISea. fluctuations were assumed to have no impact on electricity
versus FIEI=10.5%). These results highlight that whiletzoge Market prices in the short term.

forecasts may be considered accurate enough by one user, i change in fuel prices affects the operation of this load

very same forecasts may be graded as inaccurate by anotREIce higher fuel prices naturally result in a reduction i o

site electricity production and the purchase of more eilgttr

The numerical results presented for the two case StUflym the market; in fact, for very high fuel prices, this load

loads in this section and Sectign TV-A also imply that whep imnort all its electricity from the grid and turn the gas

comparing the economic value of two alternative forecgstiréngine off. On the other hand, if fuel prices drop, this load

modgls for a part_icular user, f[he popular_error measures mg produce more electricity on-site; as a matter of fact; f
not give the full picture. Specific forecasting capabittimay very low fuel prices, the process industry will generate all

be critical (e.g., the ability to forecast the prices witlspect its electricity locally and export the excess electricitythe

to a threshold in the case of the process industry) dependiag yet Note that for very low fuel prices, the market price

-site generation of electricgy i

: . ! ) dtonomical would be very low, whereas for very high fuel
would result in more economic benefits. Superior capagsljti prices, this threshold would be very high; thus, no price-

however, may not always be captured by the popular erigrqqq optimization would be required in either of the two
measures, such as MAPE. extreme cases. However, if the threshold falls within thegea
Using the artificial set of price forecasts AF [d (7), a similaof minimum and maximum electricity market prices, this
analysis was repeated for the water plant to determine tlo@d will optimize its operation accordingly. Thereforéet
average value of improving the forecasts errors for a giv@sonomic value of improving forecast accuracy would depend
forecasting model; the results are presented in[Fig. 7. ®@bseon how this threshold is predicted by the forecasting models
from this figure that the economic losses resulting from a The prices of oil and natural gas were increased by 20%
forecast error of 5% or less is negligible for the water planih the first scenario and the economic value of improving the
similar to the process-industry load. Furthermore, whernR#A forecast accuracy was analyzed using the artificial fotecas
is within a 5 to 14% range, a 1% improvement in foreca®tF. It was observed that the new threshold was moved up
accuracy would result in about 0.35% cost reductions far thio about $63/MWh, and a 1% reduction in forecast MAPE
case study. Beyond this range, the rate of reduction is high&ould result in an about 0.16% reduction in costs for MAPEs
ranging from 5 to 15%. In a second scenario, the fuel prices

. 7. The six-week averages of the MAPESs for various sitedl&orecasts,
the corresponding FIEls.
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were decreased by 20% which resulted in a new thresha@dmodel in meeting such specific needs may not always be

of about $40/MWh. In this case, and for the aforementionedptured by the popular error measures.

MAPE range, the average cost reduction was about 0.1% for

a 1% improvement in forecast errors. Comparing these gesult

with those presented in SectibnTV¥-A shows that the economic

savings resulting from improving forecast accuracy depemd ~ The authors would like to thank the anonymous editor

fuel prices for the process-industry load. and reviewers for their valuable comments which helped us
2) TheWater-Plant Load: For the water plan, the sensitivityimprove the paper.

analysis was carried out by increasing (decreasing) water

demand, power consumption and water discharge capacity

of the pumps by 100% (40%); the area of the reservoir

was also changed accordingly. The average cost reductiod$ A. J. Conejo, F. J. Nogales, and J. M. Arroyo, “Price-takedding

. . . strategy under price uncertaintyEEE Transactions on Power Systems,
resulting from improving the forecast accuracy were aradyz vol. 17, no. 4, pp. 1081 — 1088, November 2002.

based on the artificial forecasts AF. No significant changgg] F. J. Nogales, J. Contreras, A. J. Conejo, and R. EspifiBlarecasting
were observed, compared to the results presented in Section next-day electricity prices by time series modelEEE Transactions

on Power Systems, vol. 17, no. 2, pp. 342-348, May 2002.
=Bl Thus, the results presented for the water plant doés n ] A. M. Gonzalez, A. M. S. Roque, and J. Garcia-Gonzalezotiding

depend on simulation parameters. One should note thatalptim ~ and forecasting electricity prices with input/output Hedd Markov
pumping schedules are determined considering market price models,"|EEE Transactions on Power Systems, vol. 20, no. 1, pp. 13-24,

: Feb. 2005.
fluctuations and water-demand patterns. Hence, such sldsedLJ[4] N. Amiady and F. Keynia, “Day-ahead price forecasting etéctric-

will not significantly change as long as the price and water- " ity markets by mutual information technique and cascadedrare
demand patterns do not shift significantly. A significantftshi ~ evolutionary algorithm,Power Systems, |EEE Transactions on, vol. 24,
in water-demand fluctuations in the short-term, howeverpis no. 1, pp. 306-318, Feb. 2009. .
.. . [5] T. Niimura, “Forecasting techniques for deregulatedcticity market
realistic and thus was not studied. prices - extended survey,” 2006 | EEE PES Power Systems Conference
and Exposition PSCE '06, Oct. 29-Nov. 1 2006, pp. 51 — 56.
[6] F. J. Nogales and A. J. Conejo, “Electricity price forsiiag through
V. CONCLUSIONS transfer function modelsJournal of the Operational Research Society,
. . o L pp. 1-7, 2005.
This work examined the economic impact of electricity[7] C. P. Rodriguez and G. J. Anders, “Energy price forecasin the

market price forecast errors on demand-side market custome  Ontario competitive power system markd&EE Transactions on Power

: : . . . Systems, vol. 19, no. 1, pp. 366-374, Feb. 2004.
Two typical price-responsive loads, i.e., a process imglust 8] H. Zareipour, C. Canizares, K. Bhattacharya, and J. Ewm*Applica-

and a municipal water plant were considered. These two tion of public-domain market information to forecast Oravholesale
case studies have different load management capabilities: electricity prices,"IEEE Transactions on Power Systems, vol. 21, no. 4,

. o . pp. 1707-1717, November 2006.
process industry has access to an on-site source of elggtric [9] H. Zareipour, K. Bhattacharya, and C. Canizares, “leity market

and the water plan can shift its demand over a planning period price volatility: the case of OntarioEnergy Policy, vol. 35, no. 9, pp.
to some extent. Alternative sets of imperfect electricitgrket 47394748, September 2007.

. . . . . P [10] A.J. Conejo, M. A. Plazas, R. Espinola, and A. B. Molifi@ay-ahead
price forecasts with significantly different error chagaetics electricity price forecasting using the wavelet transfoamd ARIMA

were used as the expected electricity prices. The correlspgpn models,”| EEE Transactions on Power Systems, vol. 20, no. 2, pp. 1035—
ex-post prices were then used to study the economic impact 1042, May 2005.

; ; ; ; :[11] M. A. Plazas, A. J. Conejo, and F. J. Prieto, “Multimarkaptimal
of using imperfect price forecasts for operation schedlin bidding for a power producerEEE Transactions on P Systems,

comparing the costs of operation under exact and imperfect yol. 20, no. 4, pp. 2041 — 2050, Nov. 2005.
forecast price scenarios. A sensitivity analysis was akse p[12] M. Carrion, A. B. Philpott, A. J. Conejo, and J. M. ArraydA

; ; stochastic programming approach to electric energy pemsant for
formed to asses how the operation parameters could influence large consumers JEEE Transactions on Power Systems, vol, 22, no. 2,

the numerical results. pp. 744 — 754, May 2007.
It can be concluded from the presented results and discli$] T. Li, M. Shahidehpour, and Z. Li, “Risk-constraineddtiing strategy

; ; with stochastic unit commitment/EEE Transactions on Power Systems,
sions that while the popular error measures such as the MAPE vol. 22, no. 1, pp. 449-458, Feb. 2007,

could reflect the overall economic value of improving accyra 14] R. Keith and S. M. Leyton, “An experiment to measure theue of
level of a particular forecasting model, they may not yield statistical probability forecasts for airportsfieather and Forecasting,

; ; ; vol. 22, no. 4, pp. 928 — 935, 2007.
the full picture wheq used_ to compare alternative forengsti (15 F. 3. Meza. J. W, Hansen. and D. Osgood, “Economic vafseasonal
models. Other considerations, such as how the models meet ¢jimate forecasts for agriculture: Review of ex-ante as®ests and

the specific forecasting requirements of the forecast users recommendations for future researctigurnal of Applied Meteorology

should also be taken into account. This observation impliﬁ%] g”dKC”R”;?]tg\'lsgg'r é;’o'c';“é T("érga)?pénljzggllzzgfr}]g?qgécommpact

that ‘_‘accurate” price forecaSting_ may haV? diﬁer_ent megni analysis of load forecasting/EEE Transactions on Power Systems,
for different forecast users. The interpretation mainipeleds vol. 12, no. 3, pp. 1388 — 1392, Aug. 1997.

upon the nature of the operation of the forecast users aiird tH&/] B- F. Hobbs, S. Jitorapaikulsarn, S. Konda, V. ChankdfigA. Loparo,
and D. J. Maratukulam, “Analysis of the value for unit conmmeint of

specific forecaSting r!eedS; fo_r example, while some cu_snszme improved load forecasts|EEE Transactions on Power Systems, vol. 14,

such as the process industry in this study, need to predigtgfu no. 4, pp. 1342 — 1348, Nov. 1999.

prices with respect to a certain threshold, some others) s8] J--D. Park, Y.-H. Moon, and H.-J. Kook, *Stochastic s of the

as the studied water plant, need to predict the general trend uncertain hourly load demand applying to unit commitmertbfem,
p ! p g in Power Engineering Society Summer Meeting, 2000. |IEEE, vol. 4,

of prices over the planning period. However, the ability of 2000, pp. 2266-2271.
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