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Abstract—This paper presents the mathematical formulation
and architecture of a robust Energy Management System for
isolated microgrids featuring renewable energy, energy storage
and interruptible loads. The proposed strategy addresses the
challenges of renewable energy variability and forecast un-
certainty using a two-stage decision process combined with a
receding horizon approach. The first-stage decision variables are
determined using a cutting-plane algorithm to solve a Robust
Unit Commitment; the second stage solves the final dispatch
commands using a three-phase Optimal Power Flow. This novel
approach is tested on a modified CIGRE test system under
different conditions. The proposed algorithm is able to produce
reliable dispatch commands without considering probabilistic
information from the forecasting system. These results are
compared with deterministic and stochastic formulations. The
benefits of the proposed control are demonstrated by a reduction
in load interruption events, and by increasing available reserves
without an increase in overall costs.

Index Terms—Microgrid, robust optimization, energy manage-
ment system, optimal dispatch, Optimal Power Flow, uncertain-
ties.

NOMENCLATURE
Indices
w Non-dispatchable generation units.
g Dispatchable generation units.
k Iterations.
kt Time step for the three-phase OPF.
kt, RHOPF simulation time-step counter [5-min].
l Loads.
n Number of steps for the look-ahead window
S ESS units.
S Scenario counter for the simulation.
t Time step for the RUC.
t, RUC simulation time-step counter [1-hr].
Parameters
r Budget of uncertainty [hrs].

AP, ;" Max error, at time ¢ [p.u.].
772’:,170“ ESS input/output efficiencies for unit s [%].

gs
WMPE  Parameter matrix to transfer dual variables to sub-
problem.
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Model parameters.

EMP Frontier SoC variables in the OPF from the RUC.

cr Power cost for g [$/kW].

Cy Start-up cost for generator g, [$].

C;’ Shut-down cost for generator g, [$].

Cy Commitment cost for generator g, [$].

C., Cs;, Power curtailment and interruptible load cost
[$/KW].

kmaz Maximum number of iterations cutting-plane.

M ;“’, M g" Min-up and min-down time for unit g [hrs].
prres, Pt Max and min power limit for unit g [kW].
P5. Forecast for unit w, at time time ¢ [KW].

Py Power for load [, at time t [KW].
RYP, R4" Ramp-up and ramp-down limit for unit g [kW/hr].

M Constant for the disjunctive constraints.

watsp Parameter to transfer AP, ; to the master-problem.
Y MPk Parameters to transfer commitment
results to the sub-problem at iteration k.
Sets
u Uncertainty set.
Variables

alf T3 o4k+1 Dual variables of (6a)-(6d).
B17TL 3281 Dual variables of (3b)-(3c).

AP, + Forecast error unit w, time ¢, [p.u.].

APQW+ Variable for upward error, at time ¢ [p.u.].
AP, ;~ Variable for downward error, at time ¢ [p.u.].
) Perturbation in the base RO-problem.

PO Dual variable of (2).

S; SoC variables S1 ¢+ ... Ss¢, at time ¢, [kWh].
pdF 14251 Dual variables of (3a).

0 Auxiliary variable.

61§j1-56§j1 Dual variables of (4a)-(4e).

b1F 1 paFt1 p5F+1 Disjunctive constraints binary variables.
Eshed Energy storage shedding, storage s [kWh].

F Variable to fix S, ;—o to first-stage.

P4, P,y Power curtailed and load shed, at time ¢ [kW].
Py Power output for unit g, at time ¢ [kW].

Py Power output for storage s, at time ¢ [kW].

P;f;t, Psifg ESS output and input power, at time ¢ [kW].

St State-of-Charge of storage unit s, at time ¢ [kWh].

ty, Time step at which the unit starts or shuts down.

Vgt Ug,t Shut-down and start-up for unit g, at time ¢.
W ¢ Status for unit g, at time t.
Tt Commitment variables vector, {wy ¢, Vg ¢, Ug ¢}

I. INTRODUCTION

RIVEN by sustainability and green energy goals, elec-
trical generation is shifting towards distributed, smaller-
scale, non-dispatchable sources based on renewable energy. In



this context, microgrids are key elements in the integration
of scattered energy sources, providing control over clusters
of local generators and loads [1]. However, there are control
challenges associated with a critical demand-supply balance,
since renewable energy sources are often low-inertia and
averaging effects are limited. These challenges become more
apparent in the case of isolated microgrids, due to the lack of
real and reactive power support from the main grid [2].

In the literature, these control challenges in isolated mi-
crogrids have been tackled using Renewable Energy (RE)
forecasts and deterministic Receding Horizon Control (RHC)
strategies. Dispatch commands calculated using RHC antici-
pate the effects of future events such as variations in generation
and demand. This approach also accounts for the effects of
present actions in future time steps [3[|-[7]. However, even
though deterministic algorithms based on RHC can handle
moderately variable renewable sources, they do not explicitly
consider forecasting errors; thus, their performance is strongly
dependent on the accuracy of the forecasting engine. Ap-
proaches that combine forecasting and dispatch have been
proposed to tackle the issue of forecasting uncertainty in
the Energy Management System (EMS). A resource-aware
utility maximization model for energy management is pro-
posed in [8]] which incorporates an Auto-Regressive Moving
Average (ARMA) model for RE. Also, an algorithm proposed
in [9] is based on Artificial Bee Colony (ABC) to solve
the Economic Dispatch (ED) problem, using Artifical Neural
Networks (ANN) combined with Markov Chains for online
short-term forecasting with error correction; the forecasting
model look-ahead window is 7.5 s using data with a 2.5 s
data resolution, which is insufficient for Unit Commitment
(UC), as it requires longer look-ahead windows. The approach
proposed here addresses this shortcoming by incorporating
information about the forecasting system’s uncertainty into the
dispatch algorithm. In this work, historical performance of the
forecasting system is used to produce commitment solutions
that hedge the microgrid’s dispatch against forecasting errors.
The EMS is designed using a two-stage decision process,
where a novel Robust Unit Commitment (RUC) model is used
to decide generators’ on/off status, and a detailed three-phase
Optimal Power Flow (OPF) is used to determine the actual
dispatch of units.

Several recent research papers have proposed uncertainty-
aware dispatch strategies. For example, approaches using
probabilistic constraints have been implemented in [10]—
[12]; however, such probabilistic framework typically requires
assumptions regarding the shape of Probability Distribution
Functions (PDFs), which may lead to weak representations of
uncertainty. In [10], the authors propose a DC-OPF model
with probabilistic constraints approximated using scenarios
to address computational issues. Another approach presented
in [11]] considers the RE sources as a disturbance with Gaus-
sian PDF in the nodal power balance equations, approximating
the probabilistic constraint using a sample approximation
approach. In [12]], forecast errors are modeled as independent,
normally distributed random variables, which allows rewriting
the probabilistic energy-balance equation in an equivalent
deterministic form. However, such modeling simplifications

IEEE SYSTEMS JOURNAL, ACCEPTED APRIL 2018

do not properly represent the uncertainty of forecasting er-
ror, specifically because these do not account for the time-
dependency of the random variables and the dynamics of
the corresponding probability distributions. In general, these
approaches that use a probabilistic framework to account for
uncertainty, result in approximated formulations solved with
existing optimization models assuming PDFs that may lead to
weak representations of uncertainty [13]].

As an alternative, scenario-based approaches have been
proposed, as for example in [14], where the authors discuss
a heuristic methodology that combines a master Stochastic
Unit Commitment (SUC) using historical samples with a slave
distribution system OPF solved using OpenDSS. However, the
use of historical performance scenarios to represent future
uncertainty requires abundant data, and does not allow the
decision maker to directly adjust the level of conservatism of
the models.

In light of the limitations of probabilistic and scenario-
based approaches, Robust Optimization (RO) offers an at-
tractive framework for dispatch formulations, accounting for
uncertainties without requiring probabilistic assumptions. This
characteristic makes RO very appealing for remote micro-
grid applications, where historical data to generate scenarios
might be limited and/or unreliable. For example, a controller
proposed in [15]] features a distributed robust optimization
algorithm for grid-connected microgrids. The solution method
requires a central hub that exchanges dual values information
with all Distributed Energy Resources (DERs) units, and uses
a single polyhedral uncertainty set for all the energy sources in
the system. Moreover, this approach is only concerned with the
ED problem and does not consider UC or OPF in the formu-
lation. In [16], the authors exploit the decomposable structure
of the robust counterpart of a simplified economic dispatch
to develop a distributed solution algorithm; the proposed
approach guarantees convergence under heterogeneous and
asynchronous communications. In [[17], the authors present a
robust wind dispatch and bidding algorithm with independent
uncertainty sets for prices and available generation. The au-
thors in [[18] propose a combination of RHC and a robust
counterpart to produce safe intervals for the operation of wind
power facilities. The work in [[19] presents a comprehensive
framework for the application of RO in combination with
agent-based modeling for a grid-connected microgrid EMS.
Uncertainty sets are defined using upper- and lower-limits of
random variables without cardinality constraints, which allows
the formulation of Mixed-Integer Linear Programming (MILP)
robust counterparts.

The recent applications of the RO framework to microgrid
EMSs have concentrated on grid-connected microgrids, which
feature somewhat different operational challenges. In particu-
lar, the issues of critical demand-supply balance and limited
system reserves in isolated microgrids make uncertainty man-
agement a critical issue in the EMSs for these types of mi-
crogrids. Furthermore, EMSs for grid-connected applications
feature simplified system models, which are not adequate for
isolated microgrids [2]. In view of these limitations, the focus
of this paper is the development of an autonomous, automatic
dispatch control of generation and loads in isolated microgrids,
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Fig. 1. Hierarchical approach to control of microgrids.

with explicit consideration of the uncertainty associated with

forecast values. The present work tackles the aforementioned

technical challenges as follows:

¢ Combine RO and RHC to manage forecasting errors in a
novel EMS architecture suitable for the operation of isolated
microgrids.

o Use a RUC modeling approach to enable the controller to
adjust the reserve levels according to the uncertainty in the
RE forecast error.

o A practical and flexible procedure to define polyhedral un-
certainty sets based on the past performance of the available
forecasting system and the desired level of conservatism.

The resulting dispatch algorithm combines simplified mod-
els for the scheduling of units under uncertainty, while re-
taining a high level of modeling detail for the calculation of
final dispatches. The commitment solution of RUC is able
to satisfy the constraints for the worst-case scenario in the
look-ahead window, given a pre-defined level of conservatism
(budget of uncertainty). The final dispatch is refined with a
recourse action obtained from a detailed three-phase OPF. The
RUC solution results from a primal cutting-plane algorithm
based on an uncertainty policy obtained from the analysis of
historical forecasting system errors. The second stage OPF is
based on the three-phase models in [7]], [20] and solved with
an interior-point method. The performance of the proposed
EMS architecture is compared with a deterministic and a
scenario-based Stochastic Optimization (SO)-based approach
for different levels of conservatism.

The rest of the paper is structured as follows: Section II
presents a background review of relevant dispatch principles
to manage uncertainty. Section III provides the details of the
proposed architecture to integrate the RO-based UC with a
previously proposed three-phase OPF. Section IV describes the
proposed RUC formulation for isolated microgrids considering
storage, discussing relevant implementation details. Section
V presents and discusses simulation results for the proposed
robust EMS in a realistic microgrid test system for various
case studies. Finally, Section VI highlights some relevant
conclusions and the main contributions of the paper.

II. ROBUST EMS ARCHITECTURE

Figure E] shows the different control levels, actions and
variables associated with each layer of a hierarchical control
structure of microgrids, as defined in [2]. Thus, microgrid
control tasks are organized hierarchically in 3 layers: primary,

secondary, and tertiary controls. The primary control operates
at a device level and performs primary regulation using high
sampling rates. Secondary controls oversee the operation of
the controllable assets within the microgrid, and can operate
either in a distributed or centralized fashion, and basically
represents the EMS. Tertiary control coordinates the operation
of neighboring microgrids. Time frames associated with the
tasks in each layer must be properly separated in order to
decouple the control actions and prevent interference.

The proposed technique focuses on the secondary control
layer, also referred to as the microgrid EMS. The EMS
determines appropriate dispatch settings in the microgrid by
performing two tasks: a UC and an OPF. In particular, a
centralized EMS is assumed to have total control over the
DERs. The controller solves the optimal dispatch problem to
determine the least-cost power sharing between the assets, con-
sidering DER capabilities, reserves, and operational security
requirements.

The proposed EMS architecture, depicted in Fig. [2] features
a two-stage decision process, combining the solution of a RUC
in the first stage, with a highly detailed OPF, proposed in [7]],
in the second. This is accomplished by using an approximation
of the microgrid power dispatch problem as the recourse in
the RUC MILP formulation in order to obtain the hedged
solution of the first-stage. The RUC sub-problem constitutes a
linear approximation of the OPF for the worst-case scenario of
AP, +, and is used in the master-problem to obtain a hedged
commitment solution, as explained in detail in Section IV.
Based on the results of the RUC, the three-phase OPF produces
the final dispatch decisions. It is important to note that the
first decision stage corresponds to a two-stage RO formulation,
featuring a linear dispatch model as recourse. Thus, in order
to avoid confusion, the second stage of the RUC formulation
is referred to as recourse hereinafter.

The calculations of the RUC and three-phase OPF use
different time resolutions in the forecasting inputs and mod-
eling. This feature enables the use of appropriate forecasting
techniques depending on the length of the look-ahead window
and required level of detail for each stage. The proposed
implementation uses 1-hour time-steps (¢) for the RUC, and
5-minute time-steps (k;) for the three-phase OPF. Also, in-
stead of using constant-length look-ahead windows as in the
classical RHC, the proposed EMS has a variable-size three-
phase OPF look-ahead window that shrinks in order to keep a
fixed boundary condition provided by the RUC. Thus, after the
execution of the RUC at a given time-step ¢, the first OPF is
solved at time-step k; with a look-ahead window that considers
5-minute time-steps k; + 1 to k; + 15, whereas the nth OPF
is solved at time-step k; + n — 1, with a look-ahead window
that considers 5-minute time-steps k; + n to k; + 15.

To avoid depleting the available energy from the Energy
Storage Systems (ESSs), the OPF requires a target State-of-
Charge (SoC) at the end of its shrinking look-ahead window.
This target SoC is obtained in the model by defining the SoC
of ESSs at the end of the first hour as a first-stage variable
in the RUC; thus, a unique target SoC is available for OPF
calculations as a frontier condition. The calculation process is
shown in Fig. [3 and is summarized as follows:
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Fig. 2. EMS architecture.

o The RUC is calculated hourly with a 15-minute lead to
the corresponding time ¢, using the most recent forecast
generated at the time of execution, where the forecast is
updated on an hourly basis. The RUC is solved with a
constant length n-hour look-ahead window in order to obtain
the commitment decisions and the target SoC of the storage
at t = 2, which serves as the boundary condition for the
three-phase OPF.

o The OPF starts with an initial 75 minute look-ahead window,
which corresponds to 15 5-minute k; steps; this window
shrinks as time gets closer to the next hour in order to
maintain the same frontier condition (a lower limit of the
SoC of ESSs). A new solution of the RUC is calculated
when the OPF reaches a 15 minute look-ahead window,
providing a new SoC boundary condition and commitment
decisions that allows the OPF to reset its look-ahead window
to 75 minutes. This 15-minute overlap provides sufficient
time for a new run of the RUC, considering corrective
actions in case of infeasibility of the OPF. The OPF does
not take into account other than the nearest hour, until a new
solution of the RUC is available. The forecast used by the
OPF has a 5-minute time resolution and is updated every 5
minutes, in order to use the best information available. The
final dispatch obtained with a three-phase OPF models is
more realistic than the one used in the RUC sub-problem
linear model approximation. Also, the frontier condition
obtained from the RUC solution allows the OPF to consider
future system conditions (beyond the nearest hour) in the
operation of ESSs, and prevent the depletion of the ESSs
within the OPF horizon.

III. MATHEMATICAL FORMULATION FOR ROBUST
MICROGRID EMS

A. Microgrid Modeling

In order to solve the dispatch problem, the proposed EMS
builds on a decomposition approach used in [7], which refines
the final calculation using a three-phase OPF. The OPF device
models are based on ABCD parameter matrices with phasors
represented in rectangular coordinates, proposed in [7], [21].
The following are the main elements of the mathematical
formulation of the MILP UC problem:

1) Cost Function: The most common cost function to be
minimized is the actual cost of operating the generation units,
including fuel and commitment costs. The cost function also
includes costs associated with power curtailment and inter-
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ruptible loads (e.g., demand response), providing complete
recourse. It can be represented as follows:

; Z [C;ug,t 4+ C;]’Ug,t + C’;”w%t
L g

Commitment cost

)

+ Cng,t + CoPey + CyPuy At
S—— S——

Linear fuel cost.  Power curtail  Interrupted Load
co!

cost.

2) Operational Constraints: The following constraints en-
sure supply-demand balance, and guarantee that the the mi-
crogrid is operated within acceptable technical limits:

ng,t +ZP$¢(1*pr,t)*Pc,t:ZPz,rPu,f, Vit )
g w 1

where the uncertainty is represented explicitly by AP, ; using
an affine parameterization [22]. In principle, this is similar to
the reserve value in a deterministic UC.

3) DER Operational Limits: The following DER output and
ramping limits must be included, forcing the output to zero if
the unit is not committed:

Pgmm cwgr < Py <P wg Vt, g (3a)
Pyt — Pyio1 — gy - P < RYP Vt,g  (3b)
Pyi—1— Pyy— vy - P"" < RI Vt,g  (3c)

These constraints are of particular importance in microgrid
operation with small- and medium-size diesel fleets, in order to
avoid carbon build-up [23]]. Minimum up and down constraints
are also required as follows:

Ugt — Vgt = Wyt — Wy t4+1 Vta g (3d)
Vgt + g < 1 Vi,g  (3e)
Wyt — Wgt—1 — Wy, <0 Vi :
o ! Vtg (3D
1§tu—(t—1)§M;‘p
Wg t—1 — Wyt + Wy t, S 1 Vtu :
Vt,g  (3g)

1<t,—(t—1)< M
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Even though DER units in microgrids feature a highly flex-
ible operation, (3d)-(3g) are still necessary in cases where
Combined Heat and Power (CHP) units are included or when
commitment decisions are revised to account for required
reactive power support.

4) ESS Modeling: ESS units s are a subset of the dis-
patchable units g considered continuously committed, which
in addition to the power limits defined by (3a), are subject to
other constraints such as the ESS SoC balance constraints and
limits, modeled by the following constraints:

P < prer Vt, s (4a)

Pyt < Pt Vi, s (4b)

P, = Pff{t - P;? Vt, s (4¢)

Smin < g, < §mar Vt, s (4d)
- pout

Ss’t+1:SS’t+<P;3n;n— 'r]g;"t ) At Vt, S (46)

This model can be used to represent a wide range of devices
such batteries and hydrogen-storage systems, and is known as
the SoC book-keeping model, which is widely used for these
types of applications (e.g., [S], [24]).

5) Uncertainty Set Constraints: In order maintain tractabil-
ity, the uncertainty set must be defined as a simplex, such that
the RUC can be modeled as an MILP. In order to accomplish
this, polyhedral uncertainty sets ¢/ must be used [25]], in which
the constraints that represent U are as follows:

AP, = AP, — AP, vt (5a)
AP, = AP, ™ <0 vt (5b)
AP, — AP, ;" <0 vt (5¢)
APw t+ + APw t_
’ t | r<
Z |: A-Pw,tmaw <0 (5d)

t

In the context of this paper, the budget of uncertainty I' repre-
sents the number of periods in which the RE-power deviates
from the forecasted value, and AP, ;""" is the maximum
value of this mismatch, thus defining a cardinal uncertainty
set [26], [27]. This model takes into account the decision-
maker risk preference by the selection of I' and AR, ,"*".
The parameters of the uncertainty set can be readily obtained
from the historical performance of the forecasting system, as
discussed next.

B. Robust Optimization UC

The set of equations presented in Section IV-A must be
arranged in an RO setting in order to formulate the RUC
considering storage. The objective of the RUC model is
to yield the least-cost uncertainty-immune solution for the
commitment variables given a bounded uncertainty set. The
first-stage variables zy4, are calculated before the uncertain
variables are revealed. Recourse variables z5;, are determined
after the uncertainty is revealed; hence, recourse actions enable
the system to adapt to the final outcome of the uncertain
variables [28|].

In the proposed RUC model for isolated microgrids, the
binary variables of the UC problem are determined assuming

that the uncertainty is in the forecasted power output of the
RE sources only. This problem can be formulated as follows:

t+n t+n
nzlllflzt: Ji(z1¢) + mgiXIngi}lZ:JQ(vayt) (6a)
‘Worst-case recourse
s.t. Hy(z1,p) <0 vVt (6b)
Hs (2o, Y1, p, FIt,0) <0 Vvt (6¢)
Hs (21, zat, Yt, p, F |, 0) <0 vt (6d)
oel (6e)

where J; corresponds to the commitment costs in (1) and J
represents the other cost terms. Constraints H; are deemed
part of the first-stage of the RUC, and not affected by § € U4.
These equations are relevant to first-stage variables zi; =
[wlﬁt <o Wy Ut - - - Ug tV1t - - - 'Ug7t517t=2 e 537,5:2]71, which
in this particular application correspond to equations (3d)-(3g).
Also, state variables correspond to the SoCs of ESSs, i.e.,
ye =[S1t --- Ss,t]T for t > 2. Note that in order to maintain
S, t=2 as a first-stage variable, the formulation of H> does not
include S, ; limit constraints (4d), nor the charging equation
(4e) for t = 2. The system parameters p are the different
operation limits of the units, such as the ramping rates, max-
imum and minimum power output, and the ESS efficiencies.
Constraints Hs represents equations (3a)-(3c), (4a)-(4e) for
t > 2, which are relevant to the recourse variables zo; =
[Pl_yt,...,Pg7t,Pc_yt,PShyt,Pffgt,...,P;’;t,Pfﬁ...Rjj;]T. Fi-
nally, the uncertainty in the forecast §, which represents vec-
tors 6, = [AP,¢,..., AP, ¢1,] composed of the individual
deviations from the forecast of each non-dispatchable unit w
over the entire look-ahead window. Note that the uncertainty
term affects the final solution of the commitment variables,
since they are strongly coupled by the system balance con-
straints (2) and the SoC equations (4d)-(4e) for ¢ = 2, which
constitute H3. Thus, the solution takes into account the least
favorable realization of the forecasted variable and minimizes
the cost of hedging against that particular scenario [29].

C. Nonlinear OPF Model

The OPF model is ESS is similar to the one proposed
in [[7], representing generators as three-phase sources behind
synchronous impedances, transformers and feeders based on
ABCD parameter matrices in rectangular coordinates, and
loads as a per-phase mix of constant power and constant
impedance. The ESS model was also used in [7] to
calculate the control and state variables of the ESS; however,
given that in the proposed architecture the SoC is a fixed value
at the end of the shrinking horizon, a modification is required
to avoid expensive load interruption in cases where ESSs are
required to charge but the OPF is unable to reach the target
SoC. This is achieved by including a positive variable E"¢? in
the equation of the frontier condition that is strongly penalized
in the objective function, allowing the OPF to lower the
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target SoC. This can be accomplished by adding the following
constraints to the original OPF model:

S k15 = EMP — pshed Vs (7a)
pehed (2MP G hin) >0 Vs (7b)
Eshed < |8 hin —EMP Vs (7¢)

where S; 1, +r is a parameter corresponding to the initial SoC
in the n'™ OPF of hour ¢ (initial condition), and S k, 115 is a
variable corresponding to the SoC at the end of the shrinking
horizon (end condition). In this case, the end condition is
set equal to the frontier condition from the RUC, i.e., the

EMP parameter, minus the variable £5"¢?, In cases where the
RUC sets a target of net charge (Ssykﬁn < EMP)_ equation
(7¢) limits variable Egh“l to a maximum of Eiwp — S ky4ns
whereas equation (7b) forces E5"¢? to zero for target of net
discharge.

IV. ROBUST DISPATCH IMPLEMENTATION

The proposed EMS implementation solves the RUC first
using the primal cutting-plane decomposition algorithm which
employs a master- and sub-problem iterative framework [30],
[31].The primal cutting-plane algorithm is regarded as a
constraint-and-column generation strategy or delayed column
generation [32].

The proposed implementation is shown in Fig. [
the master-problem determines the commitment (xk+1 =
[kl phtt k+1]) and frontier condition of the ESSs SoC

b gt

(8%221) gfor a given APMtk. The sub-problem determines
AP, **1 using a solution from the commitment ¥ and S¥_,
from the previous iteration. The result is used to build the
cuts introduced in the master-problem at each k-iteration. The
method iterates exchanging the information about the cuts and
the commitment decisions, until the RUC solution is obtained
either by achieving convergence or reaching the maximum
iteration k4. Finally, based on the RUC solutions X™MF:*
and ZMP and using the three-phase OPF models proposed
in [[7], the controller calculates the final dispatch. In order to
avoid infeasibility of the OPF due to reactive power shortage,
the formulation considers additional sources of reactive power
that can provide unlimited reactive power support at a very
high cost; the total reactive power injection from all these
sources is denoted as Qemergency- In cases where the solution

IEEE SYSTEMS JOURNAL, ACCEPTED APRIL 2018

of the OPF yields a non-zero Qemergency, the RUC is required
to bring on-line more units than the previous solution of the
RUC [7].

A. Master Problem
The master-problem is defined as follows:

v k+1

u k+1 w k+1
MPMZZ Cugi'+ Covy '+ Cwp i1 4+0 - (8a)
S.t.

SS[cartt k- S <o
t

Sk, = F, Vk,s  (8¢c)
H, (xk+1)§0 vVt (8d)

where 0 separates the objective function (I into the terms
affected by uncertainty and the ones that are not, i.e., upper-
and lower-level problems respectively. The RUC solution
algorithm introduces a finite set of constraints primal to the
first stage (i.e., (Bb)-(8c) and (Be)) at each iteration from
the solution of the sub-problem. The vector functions Hs
represents these system constraints, which are introduced as
cuts at each iteration k. and the vector function H; corresponds
to the constraints relevant only to the master-problem and not
included in the cuts. Constraint forces Sf’tzg as first-stage
variables by fixing them for each iteration to the variable F;
this activates all the cuts relevant to S, ;—» at each iteration.

B. Sub-problem

The sub-problem is used to generate the least favorable
AP, **1 given the solution XMP* and SF, from the
master-problem at each iteration, until convergence is attained.
This mathematical problem can be defined as follows:

. kel k‘-‘rl P pk+1

Agli)kgrlp?}lk&l [C Py +Cel, +ZC Py }(921)

ot 7

st. Hb (XMP”",SfZQ,St’kJrl,Pg’fjl,APff) <0Vt (9b)
skl eu vt (9c)

Note that the sub-problem does not optimize variable S ;—o,
corresponding to equations and for t = 2. Thus, S’
and H), are subsets of S and Ho, corresponding to S and Hy
without S, ;—o and its constraints. The resulting sub-problem
has a max-min structure, which can be transformed into a max-
max formulation by using the dual of the dispatch variables,
this dualization introduces bi-linear terms as reported in the
RUC literature (e.g., [28]); however, these terms can be
eliminated transforming the problem using the KKT condi-
tions [33]. The resulting model is an MILP problem, obtained
using disjunctive constraints [34]]. Also, since H} does not
include variables S ;—2, the missing dual variables needed to
solve the sub-problem are obtained from the master-problem,
as shown in (10f), where the dual variables are equated to
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the master-problem duals from the previous iteration. The
resulting MILP model is as follows:

)\k-gllli)lg+1 Z [Af“ {ZI: P = Z P‘j’t}

, -

€k+1’ak+1’
k+1
Brt,

AP, 1

+ [AP, ™ (028! + a3i )] + TadkH
+ [MISFP?”'LUS,t — W2y Py g
g

+ BIEEH(RUP + ub  PToT) (10a)
+ B2 R 4 v )
30 [k Pl - 2l P
+ g2kt gmar — g3ktigmin
_ 55];;;1P:Law + €6§;1P;na$:|
S.t.
k+1 k+1 k+1
MU g 2
+p1E - pLEt Vt,g  (10b)
—B253t + B2t < COF
/\erl + Mlthrl _ MQthrl
+/1LT = g1kt Vt,s  (10c)
—p2btt 4+ g2kt ettt <o
M < oy vt (10d)
ML < C, vt (10e)
[e20hy e80T ediih] = v Vs (10f)
e2b it —e3iit — el 4 eal Tt <0 vt,s  (10g)
1
—elbtt pedt ' —— AL <0 Vt,s  (10h)
’ *ong
el Tt —ediiininAt <0 Vt,s (100
alf™ =AY vt (10))
APE = APE T - APy vt (10k)
0 < a2Ft <M(1 —b1fth) vt (101)
0< —APF Y AR, 0 < M1 V¢ (10m)
0 < a3Ftt <M(1 - b2 th) vt (10n)
0< —-AP; Ty AR, T < Mb2FtH! YVt (100)
0< AP, <M1 - b3t vt (10p)
k41 k+1 aghtt k41
0 S alt +a3t +W S Mb?)t Vt (10q)
w,
0<APFMT < M(1 - balth) Vvt (10r)
k+1
0< —alf“—i—o&f“—i—w < Mb4FTL vt (10s)
w,t
0 < a4t < M(1 — b5*H) (10t)
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Fig. 5. Cumulative characteristics of the data error from [6].

apt Tty apy M
AP t"nal‘
w,

4+ < Mb5F1 (10u)

C. Uncertainty policy

max

The parameters AP, ; and I' define the uncertainty
policy, and reflect the decision-maker’s preferences on the
level of hedging. It is proposed here that I' be obtained by an
analysis of the forecasting errors based on the error duration
curve. For the example depicted in Fig. 5] using the forecasting
data from [6], the curve shows that as AP, ,"*** increases,
the number of periods I' decreases, thus, the selection must
be coherent with this behavior. Also, since the duration curve
represents the average error characteristics, the value of the
parameters should be on the right-hand side of the curve in
order to be more conservative than average, as shown by the
+ symbols in Fig. [5] for this particular set of data. Another
relevant information that must be selected by the decision-
maker is AP, ;""" depending on the forecast look-ahead
time ¢. These bounds can be obtained from an appropriate
forecasting system or by previous performance analysis.

The models are coded in the high-level optimization mod-
eling language GAMS [35]. The simulations were executed
using the graphical user interface of GAMS, where the RUC
(MILP) and the three-phase OPF (Nonlinear Programming
(NLP)) were solved using CPLEX 12.1 [36] and COIN-
IPOPT 3.7 solvers [37], respectively. All the simulations were
performed in a computer featuring an Intel Xeon CPU L7555
at 1.86 GHz (4 processors), and 64 GB of RAM. The EMS
is assumed to have full control and information of every DER
in the microgrid.

V. RESULTS

The designed robust EMS is tested on a modified version
of the medium-voltage grid-connected microgrid in [38]], re-
placing what was originally a connection to the main grid
with two main diesel generation units [20]. This configuration
is typical of isolated microgrids, where diesel generators are
connected to the medium-voltage network through a step-up
transformer [23]]. The system has been used and extensively
documented for EMS testing in [7] and [20]. The details
regarding system parameters and configuration are provided
in the Appendix of [7]. The system features 2 diesel units



with capacities of 1750 kW and 800 kW, and a smaller
diesel of 310 kW as a distributed resource. The system’s
total installed capacity is 6,400 kW, including ESS units,
controllable and intermittent DERs. The microgrid’s load is
unbalanced, with a peak of 4,340 kW. The proposed EMS is
tested using eight combinations of uncertainty policy, defined
by the pair (I’,APLTE“) (see Fig. and compared with a
deterministic formulation that does not consider uncertainty in
the forecast. This test was carried out substituting the proposed
RUC formulation with a deterministic UC, and maintaining the
same RHC structure.

A. Experimental set-up

In order to test the performance of the EMS, two different
simulation experiments were carried out. Experiment 1 uses an
actual 24-hour wind power realization with 5-min resolution
obtained from an isolated microgrid in Huatacondo, Chile [6],
where for each uncertainty policy, 24 hours of operation were
simulated to characterize the performance of the EMS in
terms of cost, reserves, and SoC. Specifically, at each hour
of operation, the UC is calculated by the RUC module of the
EMS, and then the dispatch is calculated every 5 minutes by
the OPF module as described in Section II.

Experiment 2 consists of several 24-hour simulations per-
formed using a set of synthetic scenarios to test the robustness
of the proposed approach for several possible realizations
of wind power. Twenty profiles were generated using the
technique described in [39], and the results of the simulations
were compared based on two performance metrics: total cost,
and daily average spinning reserve. The actual realization,
a 24-hour forecast and the twenty generated scenarios are
depicted in Fig. [6]

The implementation of the process is shown in Fig. [/}
where three loops are shown. The outer loop corresponds to
the execution of the EMS 24-hour cycle for each scenario
indexed by S,.. For each scenario, two inner loops are used to
simulate the EMS operation replicating the process described
in Fig. 3] The first inner loop corresponds to the RUC that runs
every hour, indexed by ¢,.. The second inner loop corresponds
to the 15 OPF calculation steps with variable lengths, using
the solution from the RUC, and indexed using kt,. All the
simulations are based on the same 24-hour forecast for the
RUC, in order to study the impact of deviations with a higher
time resolution.

1) Experiment 1: The simulations shows that given the
low cost of the microturbine, and the size of G3 (1,750 kW
diesel unit), these provide the base load. The scheduling of
diesel units G1 (800 kW) and G2 (310 kW), is shown in
Table |Il These diesel units are of particular interest in the
analysis, since they provide reserves for the operation of the
microgrid; hence, their scheduling adapts to the uncertainty
considerations.

The system’s average reserve levels for different uncertainty
policies, corresponding to the available power from thermal
units, are between 75% and 100% higher. The levels of reserve
increase as the level of conservatism of the UCs increases,
ie., (I, APR'®), yielding more secure system conditions
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TABLE I

UC RESULTS

Case Hour

g J1J2)3J4a)5)6]7)8)9|10J11J12)13J14J15J16]17]18]19J20)21

peterministic | & 10l0lololofol1l1]111l1lololofolololofolololololo
62 Jololololofafalsfslifadads)al4)s]ofololo]olofolo
=63, |& JoJolofofofoft1f1)1])1]t]1|1]1)1]olofo]ofoolo]o
AP=37%) |62 |olo]ofofof1|1]1]|1]ololofoolofofthif1)t]e]ef1|4
r=s, |&1 |ololololofoltl1l1l1l1lololt1l1l1lololololololo]o
ap=21%) Je2 folo]ofofof1 |1 ]s |t a1 )1 fs|1]ofoefaf1|s]e]1]1]o
r=s, |&' |oJolofolofoltl1]1l1|t1]ojo]t1lt)1lolo]ololalolo]o
5 |AP=S7%)|c2 Jofofolofof1|1]t|1|ojolofofolojoft]t]t]1]1]1]1]o
&| =10, et lololololofoltl1l1f1lrloloftl1l1lolololololololo
o [2P=21%) a2 |o)ofofojos]1]1]1]ojo]olo]ofofof1f1)s]efif1]1]s
T =13, |o1 |ofolololooft1f1|tl1]1]ol1]1}olofolo]ololo]ofolo
AP=10%) | a2 foofofofof 1|t 1 e dafsfsfalsfelabafa)e]e]ef1]o
=16, |o1 [ofofofofofof1 [+ T1 1T lofo 1|11t ofofofolofo]o]0
ap=21%) |2 foo]ofofof1 |1 |1 |1 la [t [ |1 lolol 1|1 | 1] ]l
=16, |51 JoJo]ofofofo1]1]t]1]1]ofofo]olo]ofofo]o]o]ofo]o
AP=6.3%) a2 |ofofofofof {11t ft b dt]o

against variations on the availability of RE resources. The most
relevant difference is between hours 12-24, where the RUC
formulation commits more capacity than the deterministic
case, as shown in Table m

Considering that the average level of reserve is not the only
measure of interest, the instantaneous level of reserve and the
SoC of the ESS during the 24-hour simulation are shown in
Figs. [8] and [9] respectively. Note that the RUC provides more
reserves to the system as compared with the deterministic case
for all the variants of the uncertainty policy.

TABLE 11
COST COMPARISON BETWEEN UNCERTAINTY POLICY.

Case Fuel Interruptible Load Total

Cost Cost Cost

[10008$] [1000$] [1000$]

Deterministic 12.69 1.20 15.70
(I'=6.3,AP"#*=31%) 12.66 0.88 14.85
(I'=8,AP#*=21%) 12.72 0.50 13.98
(I=8.AP*=37%) 12.47 0.92 14.76
(I'=10,AP"#*=21%) 12.56 0.47 13.74
(I'=10,AP7#%=16.72%) 12.67 0.92 14.96
T=13,AP'#*=10%) 12.69 0.60 14.18
(F:16,AP[,':’?5”:21%) 12.46 0.35 13.33
(I'=16,AP["#%=6.33%) 12.81 0.57 14.22

There is a significant reduction of total cost of interruptible
load depending on the selected uncertainty policy without a
significant increase in fuel costs (see Table[M), yielding lower
total costs of operation. The reduction ranges between 28%
and 70%, with the best results being obtained for the policy
(16, 21%), as shown in Fig. [

2) Experiment 2: The frequency plots for the simulation of
the RO-based EMS results of the 20 synthetic wind profiles
are depicted in Figs. [IOfI2] In addition to a comparison of
the uncertainty policies with the deterministic approach, the
RUC is also compared here with respect to a state-of-the-art
SO-based EMS proposed in [20]. Figure [T0] shows fuel cost
reductions in most cases for the RO-based approach for various
uncertainty policies when compared with the deterministic
and stochastic methods. This is due to the fact that proposed
EMS dispatches more power from the ESSs during peak
hours to compensate for potential variations of wind power,
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Fig. 6. RUC results for uncertainty policy (16,21%) and wind realization scenarios and forecast at ¢1.
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Fig. 7. Experimental set-up of the scenario simulations.

as illustrated in Fig. [0] Figure shows the effectiveness
of the proposed EMS technique to reduce the total cost of
operation, including fuel and interruptible loads in a resource
constrained system. Note the higher fuel cost incurred by the
SUC approach, which yields slightly lower total costs due to
less use of interruptible loads. Nevertheless, the total costs
obtained by the RO-based dispatch are quite stable for different
calibrations of the uncertainty set. This is an advantage of
the proposed approach with respect to the SO-based dispatch,
whose performance strongly depends on the quality of the
generated scenarios [20].

From the reserves perspective, the combined results of Figs.
[§ and [T2] show that, in general, the use of RUC is able to
allocate more reserves at times of higher RE penetration than
the deterministic approach, in order to keep the system secure;
furthermore, the RO-based EMS commits more reserve on
average for all the tested uncertainty policies. On the other
hand, the SO-based approach shows the highest levels of
reserves for all methods which, and also yields higher total
costs.

B. Computational Performance

Table [III] presents computational performance of the differ-
ent study cases based on the number of iterations of the bi-
level RUC formulation. It can be observed that, in most cases,
the number of iterations ranges from 1 to 4; however, in cases
of overly conservative policies (e.g., I' = 16, AP = 37%),

TABLE III
ITERATION COUNT OF THE RUC ALGORITHM FOR DIFFERENT
UNCERTAINTY POLICIES.

r  Appg® Min Max
iteration iteration
6.37 37.5 1 4
8 37.5 1 3
10 16.72 1 3
16 6.335 1 3
8 21 1 4
13 10 1 3
16 21 1 3
10 21 1 4
10 37 | No convergence after 10 iterations
16 30 | No convergence after 10 iterations
16 37 | No convergence after 10 iterations

the algorithm does not converge within 10 iterations. This
is due to the fact that, as the levels of conservatism in-
crease, some uncertainty policies produce solutions of the sub-
problem that have the same cost function value with different
AP, ; results in the RUC sub-problem, thus slowing down
the convergence speed. It has been observed that after 10
iterations the test cases would not converge at all even for large
iteration limit. This is due to the over-conservativeness of the
uncertainty policies, which translates into too many possible
worst-case scenarios for the cutting-plane algorithm, thus
making over-conservative uncertainty policies impractical. It is
important to note that, unless the conditions change drastically
from one hour to the next, the algorithm will not be required
to perform many iterations to obtain a new set of results.

The number of iterations required for the RUC to converge
is also affected by the optimality criterion of the MILP solver
and the convergence criterion of the primal cutting-plane. In
this case, CPLEX defines the relative tolerance of the branch-
and-bound solving algorithm for the gap between the best
integer objective and the objective of the best remaining node
[36]. If this tolerance is too high, such as the default of 10%,
the primal cutting-plane algorithm is unable to converge in less
than 10 iterations. For this reason, the gap criteria must be set
very tight (e.g., OPTION OPTCR=0.01). On the other hand,
the convergence tolerance for the cutting-plane algorithm is
set at 0.1%, with the aim of testing the proposed model with
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% the solution times and implementation scheme are adequate

for online applications. The EMS was tested on a fairly large
isolated microgrid with a wide variety of DERs with results

12 12.5 13 13.5 14 14.5 15

Total costs [1000$] obtained in much less than the 5-minute window for the OPF
and 1-hour window for the RUC.

Fig. 11. Experiment 2 total costs comparison.

C. Discussion

strict convergence criteria. Computational times averaged 6 s The results show that through a proper selection of the
per OPF (NLP) calculation, and 60 s for the RUC; the larger uncertainty policy (I', AP['#*), both a better economic per-
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formance and more secure operation can be obtained with
respect to the deterministic approach. The results in Table
show different economic performance of the EMS for different
values of AP["*® and I'. These results reflect the importance
of a proper selection of the uncertainty policy according to
the specific characteristics of the forecasting system and the
microgrid. In terms of the SoC levels, there are noticeable
differences between the deterministic and robust case studies,
since the robust formulation leads to a higher utilization of the
ESS, and a flatter profile of SoC levels.

The results of the UC for different uncertainty policies show
how the conservatism level changes depending on the value
of (I, APJ'#"); the reserves get higher and the SoC of the
storage get reduced (see Figs. [§] and [9). In every case, the
RUC consistently committed more units than the deterministic
variant between hours 16-24, as a result of the high risk of
mismatch in those hours, thus forcing the EMS to yield more
reserves. Another relevant result can be observed at hours
11 to 13, where the RUC policies with large levels of I or
APJ'#* commit an extra unit in order to charge the ESS; this
difference is due to the interaction of the UC decisions with
the management of the ESS SoC in the optimization algorithm.

The SoC levels reflect how much diesel spinning reserves
the algorithm allocates to compensate for possible deviations
in the RE. There are noticeable differences between the
uncertainty policies since the robust formulation leads to a
higher utilization of the ESS, as well as a flatter profile of
SoC levels, as shown in Fig. E} This is consistent with a
more conservative management of the diesel resources. The
results are consistent with the hours where the data shows high
penetration of wind power, confirming the capability of the
proposed approach to provide the system with extra resources
during these critical hours.

Figure [6] shows the result of the worst-case scenario for
a forecast issued for t1 (as depicted in Fig. [3)), using the
uncertainty policy that shows the best performance, i.e., for
I' = 16 and AP'#* = 21% and the respective uncertainty
boundaries. The proposed algorithm determines that the worst
mismatch is for the lower bound corresponding to the high
penetration hours. This figure also depicts the realization of the
wind power in a 5-minute timescale, showing the limitations
of forecasting for isolated microgrids.

1) Effectiveness of the RUC approach: The simulations of
the different net load scenarios in Experiment 2 show that
the RO-based approach in the EMS is capable of producing
satisfactory dispatch signals to hedge the system against fore-
casting errors. Moreover, in terms of total costs, it consistently
outperforms the deterministic approach.

In terms of reserve levels, the RO-based approach allocates
0.6 MW of reserve on average, compared to the 0.22 MW
of the deterministic case. Hence, the reserves levels were
13.84% percent of the peak load on average. The results
from the simulations for the different uncertainty policies and
wind power profiles demonstrate that an improved economic
performance and a more secure operation can be obtained with
the proposed RO-based EMS.

2) Comparison with SUC: The results of the top-
performing uncertainty policy, i.e., I' = 16, AP'#* = 21%,

when compared with respect to the scenario-based SO-based
approach described in [20] for the 24-hour net load realization
of Experiment 1, show that the SO-based approach resulted
in a lower use of interruptible load as compared with the
proposed RO-based approach, i.e., 44 kWh versus 175 kWh.
Therefore, in general, the SO-based approach performs slightly
better than the RO-based approach in terms of total costs, as
shown in Experiment 2.

VI. CONCLUSIONS

This paper has presented a novel EMS algorithm for isolated
microgrids with intermittent energy sources, combining the
use of RHC formulations and recourse models based on a RO
framework, in order to produce an economical and reliable
microgrid dispatch without requiring probabilistic information
from the forecast. The simulations results have demonstrated
that through a proper selection of the uncertainty policy,
improved performance and a more secure operation could be
attained. It has been shown that the economic performance
of the EMS for various uncertainty policies depends on the
selection of the uncertainty policy. Overall, even though the
fuel costs for the different RUC variants showed only marginal
reduction, it has been shown that important improvements to
the secure operation of the microgrid can be achieved by
means of additional reserves and better management of the
ESS. Furthermore, the RUC was able to produce hedged UC
results without considering any probabilistic information from
the forecasting system for on-line applications.

The main contributions of the research presented in this
paper are:

« A novel and comprehensive EMS architecture and math-
ematical model that combines RHC and robust opti-
mization in a two-stage recourse framework. The RUC
model yields hedged commitment decisions according to
an adjustable budget of uncertainty, whereas the final
dispatch is calculated using a highly detailed three-phase
OPF formulation. This proposed approach outperforms
the deterministic approach in terms of reducing total
operation costs, without requiring scenarios of forecast
errors as other methods.

« Master- and sub-problem models to solve the RUC using
a state-of-the-art primal cutting-planes algorithm which
uses the SoC of the ESS in the recourse actions (a target
value in the three-phase OPF) of the EMS to hedge
against forecast uncertainty.

o A practical framework for the sizing of the uncertainty
set based on the historical performance of the forecasting
system. The presented tests show that the application
of this approach provides the microgrid system operator
with a simple and coherent procedure for calibrating the
level of conservatism of the EMS.

« A thorough benchmarking analysis of the RO-based EMS
that demonstrates the advantages of the proposed ap-
proach, producing the hedged UC results without any
probabilistic assumptions about the forecasting system.
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