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Abstract|The paper presents applications of opti-
mization techniques to voltage collapse studies. First a
\MaximumDistance to Voltage Collapse" algorithm that
incorporates constraints on the current operating con-
ditions is presented. Second, an Optimal Power Flow
formulation that incorporates voltage-stability criteria is
proposed. The algorithms are tested on a 30-bus system
using a standard power 
ow model, where the e�ect of
limits on the maximum loading point is demonstrated.

Keywords: Voltage Collapse, Optimal Power Flow, Bifur-
cations.

I. Introduction

As open-access market principles are applied to power
systems, signi�cant changes in their operation and con-
trol are occurring. In the new marketplace, power sys-
tems may be operated under higher loading conditions
as market in
uences tend to demand greater attention to
operating cost versus stability margin, increasing the em-
phasis on the use of a variety of new optimal power 
ow
tools.
There have been several voltage collapse events

throughout the world in recent years, as system are be-
ing operated with less stability margins, e.g., [1, 2]. Thus,
the incorporation of voltage stability criteria in the op-
eration of power systems has become essential [3]. In
recent years, the application of optimization techniques
to voltage stability problems has been gaining interest.
It is possible to restate many voltage collapse prob-

lems as optimization problems. Although, bifurcation
methods are numerically well developed, the use of opti-
mization based techniques has many advantages, includ-
ing their ability to incorporate limits [4, 5]. This issue
becomes even more important when considering limit-
induced voltage collapse [6], which can not be easily de-
�ned using some of the traditional bifurcation-based com-
putational techniques.
New voltage stability analysis techniques are being in-

troduced using optimization methods that determine op-

timal control parameters to maximize load margins to a
voltage collapse. In [7], optimal shunt and series compen-
sation parameter settings are calculated to maximize the
distance to a saddle-node bifurcation, which can be asso-
ciated in some case with voltage collapse. In [8], a voltage-
collapse point computation problem is formulated as an
optimization problem, allowing the use of optimization
techniques and tools. In [9], the reactive power margin
from the point of view of voltage collapse is determined
using interior point methods; the authors used a barrier
function to incorporate limits. In [10], the authors de-
termine the closest bifurcation to the current operating
point on the hyperspace of bifurcation points. In [11],
the maximum loadability of a power system is examined
using interior point methods. In [4], an interior point
optimization technique is used to determine the optimal
PV generator settings to maximize the distance to volt-
age collapse. Furthermore, the algorithm presented in [4]
includes constraints on the present operating conditions.
Possible applications of optimization techniques to volt-
age collapse analysis are discussed in [5].
This paper presents an Optimal Power Flow (OPF) al-

gorithm that incorporates voltage stability margins. Two
main issues are considered: �rst, how limits a�ect max-
imum loading point computations; and second, how to
include voltage stability criteria in the original OPF ob-
jective function. The role of limits, and power 
ow depen-
dent and independent variables are demonstrated using a
Lagrangian analysis. An OPF algorithm is then reformu-
lated so as to increase the emphasis on voltage stability
requirements as an operating point moves closer to volt-
age collapse.
The paper is structured as follows. In Section II, the

basic background is reviewed for the Optimal Power Flow
problem and issues related to voltage collapse and bifur-
cation methods are discussed. In Section III, the gen-
eral proposed formulation to combine OPF and voltage
stability is given, including an analysis of the e�ect of
limits on the computations. Furthermore, a modi�cation
to the maximumdistance to bifurcation problem is given
which includes constraints and feasibility of the current
operating point is given in this section. In Section IV,
an OPF formulation with voltage stability constraints is
given; here, voltage stability criteria is directly incorpo-
rated into an OPF objective function. The results of test-
ing the algorithms on a 30-bus, 6 generator system are
given in Section V. Finally, in Section VI, conclusions
are given.



II. Background Review

A. Optimal Power Flow and Optimization Techniques

The optimal power 
ow problem was introduced in the
early 1960's by Carpentier and has grown into a powerful
tool for power system operation and planning. In general,
the optimal power 
ow problem is a non-linear program-
ming (NLP) problem that is used to determine the \op-
timal" control parameter settings to minimize a desired
objective function, subject to certain system constraints
[12, 13, 14]. OPF problems are generally formulated as
nonlinear programming problems (NLP) as follows:

min G(x) (1)

s.t. : F (x) = 0

H � H(x) � H

x � x � x

where the mapping G(x) : <n ! < is the function that
is being minimized and can include, for example, total
losses in the system or generator costs; F (x) : <n ! <m

generally represents the load 
ow equations; and H(x) :
<n ! <p is usually transmission line limits, with lower
and upper limits represented by H and H, respectively.
The vector of system variables, denoted by x 2 <n, typ-
ically includes voltage magnitudes and angles, generator
power levels and transformer tap settings; their lower and
upper limits are given by x and x, respectively.

B. Voltage Collapse and Bifurcation Theory

Nonlinear phenomena and related bifurcations have
been shown to be responsible for some stability problems
in power systems [15].
For stability analysis, di�erential-algebraic mathemat-

ical models of power systems are developed as

_z = fd(z; y; �) (2)

0 = fa(z; y; �)

where z 2 <n is a vector of the state variables, y 2 <m is
a vector of algebraic variables, and � 2 < is any parame-
ter in the system that changes slowly, moving the system
from one equilibrium point to another. When the Jaco-
bian Dyfa(�) of the algebraic constraints is non-singular
along system trajectories, the system model can be refor-
mulated, based on the Implicit Function Theorem [16],
as

y � s(z; �)

_z � fd(z; s(z; �); �)

_z = h(z; �)

If the Jacobian of the algebraic constraints becomes sin-
gular, then the model used to describe the system be-
comes invalid. In this case, the original model can be
modi�ed to consider dynamics ignored in the original
model, resulting in the transformation of some algebraic
constraints into di�erential equations [16, 17].
Equilibrium points are the values z0, y0, �0 where the

rate of change of each state variable is zero, i.e.,

0 = fd(z0; y0; �0)
0 = fa(z0; y0; �0)

�
) 0 = h(z0; �0) (3)

Of interest is where the system goes from being stable
to unstable; from being unstable to stable; or where the
number of equilibrium points changes with respect to a
bifurcation parameter. These bifurcations are mathemat-
ically characterized by one of the eigenvalues of the Jaco-
bian of h(z; �) with respect to z becoming zero (saddle-
node, transcritical and pitchfork bifurcation), or by a pair
of complex conjugate eigenvalues crossing the imaginary
axis (Hopf bifurcation).
System limits, especially generator reactive power lim-

its, have been shown to result in limit-induced bifurca-
tions [18]. In particular, when the reactive power of the
generator is reached, no local equilibria may exist for in-
creased loading, typically resulting in voltage collapse.
Voltage collapse has been shown to be strongly connected
to saddle-node and limit-induced bifurcations [18, 19].
Therefore, in this paper, voltage collapse is de�ned by
either a saddle-node bifurcation or a limit-induced bifur-
cations.

1. Saddle-Node Bifurcations

Saddle-node bifurcations are characterized by two equi-
librium points of (2), typically one stable (s.e.p.) and one
unstable (u.e.p.), merging at an equilibrium point for pa-
rameter value � = ��. This equilibrium point has a sim-
ple and unique zero eigenvalue ofDzhj0 [16, 20, 21]. If the
two merging equilibria co-exist for � < ��, the two equi-
librium points locally disappear for � > ��, or vice versa.
Saddle node bifurcations are local bifurcations, occurring
at the point where the equilibrium locally vanishes for
further values of the bifurcation parameter.

2. Limit-Induced Bifurcations

Although saddle-node bifurcations can be shown to be
generic in power systems, limits, especially generator re-
active power limits, may restrict the space of feasible so-
lutions. In this case, voltage collapse is not determined by
a saddle-node bifurcation [6, 19]; this has a major e�ect
on \measuring" the distance to voltage collapse.
Limit-induced bifurcations analyzed in [6], occur when

generator models are changed from constant voltage and
active power models, to constant active and reactive
power models on encountering reactive power limits. The
change in models represents a di�erent set of equations, in
some cases the new equations are unstable at the current
operating point. Both the original model and the limit-
induced model have the same equilibrium point when the
limit is encountered but have di�erent bifurcation dia-
grams.

III. Voltage Collapse and Optimal Power

Flow

For the remainder of the paper, a static model for the
power system of the form

0 = F (x; �; �) (4)



is used, where the vector x 2 <N represents the system's
dependent variables, normally non-generator bus voltage
magnitudes and angles, reactive power levels of genera-
tors when using PV generator models, and real and re-
active power levels of the slack bus generator. The vec-
tor � 2 <m represents the independent variables in the
system; in a simple model, this would include generator
active power settings and terminal voltage levels. The
parameter � 2 < represents the loading factor in the
system, generally referred to as the bifurcation param-
eter [15]. Typically, the loading factor is used to linearly
model the direction of load increase in the system.
For this system model, an OPF problem that incorpo-

rates voltage collapse criteria can be generically written
as

min G(xp; �; �p; ��) (5)

s.t. : F (xp; �; �p) = 0

F (x�; �; ��) = 0

Hp � H(xp) � Hp

H� � H(x�) � H�

� � � � �

where the subscripts p and � indicate the current and
critical operating points respectively. The dependent and
independent variables in the model are given as x and �
and � is the loading factor. G(xp; �; �p; ��) is the function
to be minimized, its OPF portion may be dependent on
(xp; �; �p), and the voltage stability portion is a function
of �� and possibly of �p. It is assumed that the inequality
constraints de�ned by the limits on H(xp) and H(xx),
can be separated into separate constraints on the current
and critical loading points and the control variables. The
vectors of lower and upper limits on the power system
independent variables � are given by � and � respectively.
Using a Logarithmic Barrier approach [14], the �rst or-

der KKT optimality conditions to problem (5) is given to
demonstrate when the maximum loading point is de�ned
by a limit-induced bifurcation or a saddle-node bifurca-
tion. Using slack variables problem (5) can be rewritten
as

min G(xp; �; �p; ��) (6)

s.t. : F (xp; �; �p) = 0

F (x�; �; ��) = 0

H(xp) �Hp � s1 = 0

Hp �H(xp)� s2 = 0

H(x�) �H� � s3 = 0

H� �H(x�)� s4 = 0

� � �� s5 = 0

� � �� s6 = 0

s1; s2; s3; s4; s5; s6 � 0

where s1; s2; s3; s4 2 <p and s5; s6 2 <m are the pri-
mal non-negative slack variables used to transform the
inequality constraints to equalities. The non-negativity
constraints are now incorporated into the objective func-

tion using a logarithmic barrier as follows:

min G(xp; �; �p; ��)� �

mX
i=1

(log s5[i] + log s6[i])

� �

pX
i=1

(log s1[i] + log s2[i] + log s3[i] + log s4[i])

s.t. : F (xp; �; �p) = 0

F (x�; �; ��) = 0

H(xp) �Hp � s1 = 0 (7)

Hp �H(xp)� s2 = 0

H(x�) �H� � s3 = 0

H� �H(x�)� s4 = 0

�� � � s5 = 0

�� � � s6 = 0

where � is the barrier parameter and s[i] represents the
ith element of the vector s. The Lagrangian function of
the modi�ed barrier problem (7) is then de�ned as

L = G(xp; �; �p; ��)� �

mX
i=1

(log s1[i] + log s2[i])

��

pX
i=1

(log s3[i] + log s4[i]) + log s5[i] + log s6[i])

�
T
1
(F (xp; �; �p)) � 
T

2
(F (x�; �; ��))

��T
1
(H(xp)�Hp � s1) � �T

2
(Hp �H(xp)� s2)

��T
3
(H(x�)�H� � s3) � �T

4
(H� �H(x�)� s4)

��T
1
(� � � � s5)� �T

2
(� � � � s6) (8)

where 
1; 
2 2 <n, �1; �2; �3; �4 2 <p and �1; �2 2
<m are the Lagrange multipliers. The vector y =
(x�; xp; ��; �; s1; s2; s3; s4; s5; s6; 
1; 
2; �1; �2; �3; �4; �1; �2) is
introduced to simplify the expression. The Karush-Kuhn-
Tucker (KKT) �rst-order necessary conditions are used to
de�ne the local minimum of equation (7),

ryL =

2
6666666666666666666666666664

rx�L
rxpL
r��L
r�L

��Ie + S1�1
��Ie + S2�2
��Ie + S3�3
��Ie + S4�4
��Ie + S5�1
��Ie + s6�2
F (xp; �; �p)
F (x�; �; ��)

H(xp) �Hp � s1

Hp �H(xp)� s2
H(x�) �H� � s3
H� �H(x�)� s4

� � �� s5
� � �� s6

3
7777777777777777777777777775

= 0 (9)



where S1 through S6 are diagonal matrices with elements
of the corresponding vector s1 through s6 on the diagonal,
I 2 <p�p is an identity matrix, e 2 <p is a vectors of ones,
and

rx�L = 
T
2
rx�F (x�; �; ��) � (�T

3
+ �T

4
)rx�H(x�)

rxpL = rxpG(xp; �; �p; ��) + 
T
1
rxpF (xp; �; �p)

�(�T
1
+ �T

2
)rxpH(xp)

r��L = r��G(xp; �; �p; ��) � 
T
2
r��F (x�; �; ��)

r�L = G(xp; �; �p; ��)� 
T
1
r�F (xp; �; �p)

�
T
2
r�F (x�; �; ��)� �1 + �2

The issue of collapse due to limit-induced bifurcation
versus saddle-node bifurcation can now be explained as
follows. The �rst condition in (9), rx�L, includes the
Jacobian of the system model at the maximum loading
point multiplied by 
2, which can be considered to be
equivalent to an eigenvector of the Jacobian. Therefore,
the �rst condition corresponds to a singular Jacobian if
(�T

3
+ �T

4
)rx�H(x�) = 0. This condition would imply

the dependent variables are not at their limits, since �3
and �4 are zero when their corresponding limits are not
active. If dependent variables of the critical point are
at their limits, then �4 and �3 become non-negative, i.e.,
the load 
ow Jacobian is non-singular. In this case, the
system has reached a limit-induced bifurcation point.
The above derivation demonstrates when the inequality

constraints can be separated based on the dependent and
independent variables of the load 
ow model, the max-
imum loading point may be a limit-induced point only
when constraints based on the dependent variables be-
come active. The independent variables, �, being at their
limits, do not directly a�ect the type of bifurcation.
A particular example of this optimization problem is

the \Maximum Distance to Collapse" with constraints
included on the current and critical loading point. This
problem can be written as

min �1

2
(�p � ��)

2 (10)

s.t. : F (xp; �; �p) = 0

F (x�; �; ��) = 0

Hp � H(xp) � Hp

H� � H(x�) � H�

� � � � �

This problem maximizes the distance to a saddle-node or
limit-induced bifurcation. Including the current loading
point into the constraints ensures that, when independent
variables are calculated to maximize the distance to volt-
age collapse, feasibility and inequality constraints at the
current loading point are met. For example, increasing
generator voltage magnitude settings generally increase
the distance to collapse but, under lighter loading con-
ditions, the increased levels may lead to over-voltages.
Incorporating the current operating point into the opti-
mization problem can eliminate this problem; however,
it also reduces the space of feasible solutions. This for-
mulation di�ers from existing formulations, for example

[7, 11], since constraints are placed in the critical loading
point and the current loading point. Furthermore, the
constraint in [7] forcing the maximum loading point be a
saddle-node bifurcation is removed in this case.

IV. Optimal Power Flow with Voltage

Stability Constraints

With the current loading point included into the opti-
mization problem, it is now possible to incorporate volt-
age stability constraints into an OPF formulation at the
current loading point. As the operating point moves
closer to a point of voltage collapse, more emphasis must
be placed on stability criterion versus operating cost min-
imization.
The algorithm indirectly scales the traditional optimal

power 
ow problem with the inverse of the di�erence be-
tween the current value of the loading parameter and its
value at the voltage collapse point. Therefore, as the sys-
tem moves closer to the bifurcation point, more weight is
given to the voltage stability versus generation cost. A
technique utilizing voltage stability indices is examined
in [4]; but, since voltage stability indices have very non-
linear characteristics due to limits, this technique is not
generally adequate. However, since the maximum load-
ing point of the system is a variable in the optimization
problem, it is possible to accurately use a measure of the
distance to collapse as a means of shifting the weighting
between cost minimization and voltage stability security.
The following formulation is proposed to remove the use
of voltage collapse indices:

min G(xp; �; �p)(�) (11)

s.t. : F (xp; �; �p) = 0

F (x�; �; ��) = 0

� (�� � �p)
2 = 1

Hp � H(xp) � Hp

H� � H(x�) � H�

� � � � �

where G(xp; �; �p) represents an optimal power 
ow ob-
jective function, whereas the function � is de�ned so that
it tends to in�nity as �p approaches ��. If the current
loading point �p is at the bifurcation point ��, then the
algorithm fails since the inverse of �p � �� is in�nity.
Although, it is unlikely that �p = ��, some numerical
problems may occur if they are \close". If the system
is e�ectively at ��, then a strict maximum distance to
collapse algorithm should be utilized.

V. Numerical Simulations

The maximum distance to collapse and OPF with
voltage stability constraints algorithms presented in Sec-
tions III and IV are tested on a 30-bus, 6 generator sys-
tem that is based on the IEEE 30-bus test system [22].
Transmission line limits are not included in the inequal-
ity constraints. In normal operating conditions, the bus



TABLE I
OPF with Voltage Stability Constraints using

Distance to Collapse Measure (No active � limits)

�p ��

0.9 3.2513
1.2 3.2800
1.3 3.2883

TABLE II
OPF with Voltage Stability Constraints using

Distance to Collapse Measure (Active Qgen limits)

�p ��

0.9 1.8342
1.1 1.9209
1.2 2.0290

voltages are to be within 1:0� 0:1 p.u. A number of sim-
ulations have been performed to analyze how the current
loading point in
uences the algorithm and how limits ef-
fect the maximumloading point. A nonlinear primal-dual
predictor-corrector interior point method [23] written in
Matlab is used to perform the numerical analysis.
Initially, the reactive power limits of the generators are

relaxed, such that their limits are not reached when the
problems are tested at several loading levels, as de�ned
by �p. The \Maximum Distance to Collapse" algorithm
calculates an optimum �� of 3.3762 p.u. The results for
the \OPF with Voltage Stability Constraints" algorithm
for di�erent current loading levels are given in Table I. In
general, for the voltage stability constrained algorithm, as
the current loading level increases, the algorithm places
less emphasis on cost optimization and more on voltage
stability security. For example, for �p = 0:9, the algo-
rithm places more emphasis on minimizing generator cost
versus stability margin, obtaining a � that yields a voltage
collapse point at �� = 3:2513; when the current loading
point is raised to �p = 1:3, more emphasis is placed on
voltage stability versus cost minimization, resulting in �
values for a voltage collapse point at �� = 3:2883. The
change in �� demonstrates that, as the current loading
point is increased, more emphasis is given to increasing
the value of �� at which the system bifurcates. For each
case, the maximumloading point corresponds to a saddle-
node bifurcation. In general, the problem tends to push
the generator voltage settings to their limits and genera-
tor active power settings vary depending on the current
operating point.
If the reactive power limits on the generators are re-

duced such that they become active, the problem calcu-
lates maximum loading points that correspond to limit-
induced bifurcations; the power 
ow Jacobian is non-
singular in this case. A summary of the results are given
in Table II. Due to the generator reactive power limits,
the maximum loading point is reduced, as the space of
feasible solutions is \smaller". For active and non-active
reactive power limits, a comparison of some generator
variables, at ��, when �p = 0:9 is given in Table III.
The reactive power of the generators Qgen are dependent

TABLE III
Results of Reactive Power Limits on Various System

Variables (At �� when �p = 0:9 )

Parameter Without Reactive With Reactive
Power Limits (p.u.) Power Limits (p.u.)

Qgen1
2:7950 1:0000�

Qgen2
2:8373 0:7000�

Qgen3
3:9500 0:5000�

Vgen1 1:1000� 1:0962
Vgen2 1:0700� 1:0700�

Vgen3 1:1000� 1:0200
� indicates the parameter is at its limit

TABLE IV
OPF with Voltage Stability Constraints using
Distance to Collapse Measure (Active � limits)

�p ��

0.9 1.7000
1.1 1.7300
1.2 1.7500

variables, x, in the power 
ow model, and the generator
voltage magnitudes Vgen are independent variables, �, in
the power 
ow model. In both cases the problems tended
to push the generator voltage magnitudes towards their
upper limits, until reactive power limits are reached.
Finally, if \operational limits" are placed on all bus

voltages, at both the critical and current loading condi-
tions, the algorithm calculates the control parameters �
that maximize the operating region. A summary of the
results are given in Table IV. Due to both reactive power
and bus voltage limits, the maximum loading point is de-
�ned by a limit-induced bifurcation. By including \oper-
ational limits" on all voltage magnitudes the problem be-
comes more \practical" from the system operation point
of view. If reactive power limits do not become active,
then the maximum loading point may still be a stable
point.

VI. Conclusions

This paper demonstrates that voltage stability and op-
timal power 
ow studies can be performed concurrently.
Furthermore, it is shown that incorporating constraints
on the current operating point in the maximum distance
to collapse problem reduces the space of feasible solu-
tions, resulting in di�erent optimal solutions. The con-
ditions for saddle-node bifurcation versus limit-induced
bifurcation are demonstrated. An optimal power 
ow
algorithm that incorporates voltage stability criteria is
proposed and implemented on a test system. The re-
sults indicate that the algorithm successfully shifts the
importance of generation cost minimization and voltage
stability security for di�erent loading levels.
The future direction of this research is to reformu-

late the system model to incorporate a distributed slack
bus. Furthermore, more numerical simulations will be
performed to study the e�ect of including \operational
limits" in a variety of test systems.
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