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Abstract: This paper describes an extension of the Point
of Collapse method developed for ac systems studies to
the determination of saddle-node bifurcations in power
systems including high voltage direct current (HVDC)
transmission. Bus voltage pro�les are illustrated for an
ac/dc test system, which signi�cantly di�er from the
pro�les of pure ac systems for typical system models. In
particular, voltage dependent current order limits (VD-
COLs) are shown to a�ect the voltage pro�les (\nose"
curves) and the loadability margin of the system. It is
also shown that Hopf bifurcations, which are not possi-
ble in purely ac lossless systems with second-order gen-
erator models, become plausible when the dynamics for
the HVDC system are included.

Keywords: Voltage collapse, HVDC, singularity, point
of collapse, saddle-node bifurcations, Hopf bifurcations.

INTRODUCTION

Voltage instability and collapse have been observed in
several electric power networks throughout the world,
and have been the subject of increasing study over
the past few years [1]. Furthermore, the relative wide
spread use of HVDC systems for the transmission of
large amounts of power [2, 3, 4, 5] has motivated several
researchers to study voltage stability issues in ac/dc sys-
tems by using voltage sensitivity factors (VSFs) [6, 7].
The VSF has been shown not to be a good measure of
proximity to collapse in ac systems [1], especially for
buses with large amounts of reactive support. This pa-
per analyzes the problem using bifurcation theory of
nonlinear systems to determine the distance in state
space to the point of collapse, so that better estimates
of the loadability margins of the ac/dc system can be
obtained.

Here some of the mathematical and computational
tools for voltage stability studies in ac systems are ex-

tended to incorporate HVDC models, and to gain new
insight into the nature of the voltage collapse prob-
lem in ac/dc systems. Moreover, the paper discusses
some of the di�culties encountered during the calcula-
tion of the unstable equilibrium points (i.e., additional
solutions of the power 
ow equations corresponding to
unstable eigenvalues of the linearized ac/dc system dy-
namic equations), which have proven useful in voltage
stability analysis of ac systems [8, 9].

This paper is organized as follows. The assump-
tions and models representing the ac/dc system tran-
sient behavior are �rst presented. Next, the mathemati-
cal background describing bifurcation (voltage collapse)
phenomena for the ac/dc system equations is discussed.
Numerical techniques used to locate the loading levels
that correspond to the bifurcation point are also de-
scribed. Finally, these techniques are applied to a re-
duced ac/dc sample system.

SYSTEM MODELS AND ASSUMPTIONS

The ac system is represented using transient stability
models that assume quasi-static evolution of bus volt-
age phasors on the time scale of interest [5].

Generators (nG)

Voltage Vg sources behind transient reactance X0
d

are used, and q-axis transient voltage dynamics are in-
cluded. Generator nG is the system reference (�nG = 0).

_�g = !g � !nG (1)

_!g =
1

Mg

(P 0
m � Pgt �Dg!g)

_Vg =
Xd �X0

d

T 0
do

�
Ef � Vg
Xd �X0

d

� Vg
X0
d

+
Vt
X0
d

cos(�t � �g)

�

Pgt =
VgVt
X0
d

sin(�g � �t)

Qgt = �V 2
t

X0
d

+
VgVt
X0
d

cos(�g � �t)

Here Pgt and Qgt are the powers injected by the gener-
ator at bus t. Ef represents the �eld voltage, and Xd

stands for the synchronous generator reactance. While
Ef is held constant in these equations, more detailed
exciter dynamics can be easily added.



Transmission System

A constant admittance model (G, B, Bs) is em-
ployed.

Psr = GV 2
s �GVsVr cos(�s � �r) (2)

+BVsVr sin(�s � �r)

Qsr = (Bs + B)V 2
s �GVsVr sin(�s � �r)

�BVsVr cos(�s � �r)

Here Psr and Qsr are the transmitted powers from bus
s to bus r.

Loads (nL)

Voltage and frequency dependent load models are
employed.

Pl = Pl1

�
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V 0
l

�2

+ Pl2

�
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l

�
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+Dl( _�l + !nG) + ��Pl
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Vl
V 0
l

�
+Ql3 + ��Ql

Here Pl and Ql are the powers absorbed by the load
at bus l, and � is a parameter used to simulate the
slow time scale load variation that drives the system to
collapse. Dl is the load frequency coe�cient (a time
constant in seconds).

HVDC (ndc)

A variation of typical control schemes is used to rep-
resent the HVDC converter behavior in quasi-static op-
eration (Fig. 1). This scheme can be realized using
the control circuit depicted in Fig. 2. Notice that the
VDCOL is modelled as a nonlinear function of the con-
verter ac bus voltage.
The HVDC link as represented here has basically two

di�erent control regimes. Under normal operating con-
ditions, the recti�er controller controls the current while
the inverter current controller remains saturated (and
therefore \out of the loop"). However, when the system
experiences a fault condition, the recti�er controller can
be driven into saturation while the inverter controller
\takes over" the current control. The HVDC system
can be modelled, under normal operating conditions
and assuming ideal harmonic �ltering, by [2, 3, 4, 5]:

_Id =
1

Ld
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Fig. 1: HVDC control criteria. Notice that the rec-
ti�er is allowed to go into inverter operation for faster
recovery after fault conditions.
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Fig. 2: PI recti�er current controller. The inverter
side has a similar control circuit.
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Here Vdr and Vdi are the per unit dc terminal voltages
at the recti�er and inverter ends, respectively. In (kA)
and Vn (kV) are the base quantities for the dc system,
and Sn is the base power in MVA for the ac side. Xcr

and Xci are the per unit commutation reactances, and
Rd and Ld are the per unit dc line parameters. The
products arVr and aiVi are the per unit ac bus voltages
at the secondary side of the transformers with respect
to the dc bus voltage base Vn. Sr and Si are the per
unit magnitudes of the HVDC complex powers at the
ac side, and Pr, Pi, Qr and Qi are the per unit active
and reactive powers absorbed by the dc system. When
the inverter takes over current control, the equations
for _xr, cos�r, and cos 
i are replaced by:

_xi = KI [Id � Ioi (Vi)] (5)

cos 
i = xi +KP [Id � Ioi (Vi)]

cos�r = cos�rmin

These equations are valid, within a roughly 4% er-



ror margin, for overlap angles �r and �i of up to 600,
i.e., there is a (three-valve) commutation every 600 in a
six-pulse bridge. They are not valid for four-valve com-
mutation, since under these operating conditions the dc
link must be represented by a di�erent set of equations
[5].
The controller model is such that inverter current

control and recti�er current control typically do not
overlap. For high recti�er voltages and/or low inverter
voltages the recti�er current controller is in operation
while the inverter controller is saturated at its minimum
value 
imin ; conversely, for low recti�er voltages and/or
high inverter voltages the roles of inverter and recti-
�er controllers are reversed. During recovery from fault
conditions it is typical to have both converters control-
ling the current for a brief period. Each one of these
cases is represented by \switching" to the appropriate
set of di�erential equations.
The following vectors are de�ned for recti�er current

control at each HVDC link (k = 1; 2; � � � ; ndc):
xdck = [xrk Idk ]

T

ydck = [cos�rk Vdrk Srk cos 
ik Vdik Sik ]
T

Vdck = [Vrk Vik ]
T

Pdck = [Prk Pik]
T

Qdck = [Qrk Qik ]
T

These vectors change when the inverter controls the dc
current. In either case equations (4) can be rewritten
as:

_xdck = hdck(Vdck ;xdck ;ydck) (6)

0 = wdck (Vdck ;xdck ;ydck)

Pdck = fk(Vdck ;xdck ;ydck)

Qdck = gk(Vdck ;xdck ;ydck)

Vector Equations

Equations (1) to (5) can be arranged into vector
di�erential equations (7) for an n bus ac/dc system
(n = nG + nL + 2ndc). The vectors f (�) and g(�) stand
for normalized ac active and reactive power 
ow mis-
match equations, respectively, and V = [VT

G VT
L V

T
dc]

T

and � = [�TG �
T
L �

T
dc]

T . To simplify the eigenvalue anal-
ysis, the reference generator nG is assumed to be an
in�nite bus. The analysis does not lose generality since
system equilibria require that !nG = 0.

_xdc = hdc(Vdc;xdc;ydc) (7)
_�G = !G

MG _!G = fG(�;V)�DG!G

Dx
_VG = gG(�;V)

DL
_�L = fL(�;V; �)

0 =

2
4 gL(�;V; �)
fdc(�;V;xdc;ydc)
gdc(�;V;xdc;ydc)

3
5

0 = wdc(Vdc;xdc;ydc)

MatricesMG,DG, Dx, andDL are all positive de�nite
diagonal constant matrices.

BIFURCATIONS AND EIGENVALUES

It will prove convenient to de�ne a composite vec-
tor that groups all state variables de�ned by the dif-
ferential equations, and a second vector that groups all
variables de�ned by the algebraic constraints. Let z =

[xTdc �
T
G !T

G VT
G �

T
L]

T , and u =
�
[VT

L �
T
dc V

T
dc] y

T
dc

�T
.

Similarly, de�ne a composite vector function, f̂(�), that
groups all the terms representing the right hand side of
di�erential equations, and a composite vector function,
ĝ(�), that groups all terms representing algebraic con-
straints. When the algebraic constraints ĝ(�) have an
invertible Jacobian Duĝ� along the system trajectories
of interest, the algebraic variables can be eliminated
(Implicit Function Theorem [10]), and (7) reduces to:

M _z = f̂�(z;u)
0 = ĝ�(z;u)

�
M _z = f̂�(z; ĥ�(z)) = s(z; �)

(8)
whereM is a positive de�nite diagonal constant matrix.
A bifurcation [11, 12], or structural instability, oc-

curs when the Jacobian Dzs(�) of (8) is singular at the
equilibrium (z0; �0). Several types of bifurcation are
possible in this situation, but of these only the saddle-
node bifurcation occurs generically so that it is expected
to be typical in practice [11, 13]. (More formally: a
general one parameter family of di�erential equations
such as (8) with singular Jacobian at an equilibrium
can be perturbed to produce saddle-node bifurcations,
and saddle-node bifurcations are robust to perturba-
tions in the model.) The saddle-node is characterized
by 2 equilibria coalescing and then disappearing as the
parameter (e.g., load power) increases. Moreover the
following conditions [11] generically apply at (z0; �0):

1. Dzs(z0; �0) has a simple and unique zero eigen-
value, with right eigenvector v and left eigenvector
w, i.e., Dzs(z0; �0)v = 0 and wT Dzs(z0; �0) = 0.

2. wT @s
@�

���
(z0;�0)

6= 0. (9)

3. wT
�
D2
zs(z0; �0) v

�
v 6= 0. (10)

In equation (10) the square bracketed product of the
3-tensor D2

zs
��
0
and the eigenvector v yields a matrix.

Conditions 1 through 3 guarantee generic quadratic
behavior (i.e., two solutions joining into one) near
the bifurcation point, and also prevent singularities of
the composite Jacobian in the Newton-Raphson based
method for �nding saddle-nodes described below. Ex-
amples of such saddle-nodes occurring in ac/dc systems
are illustrated in the sample system to follow.
An important computational issue in bifurcation

studies for power systems is the relationship between
eigenvalues of the power 
ow Jacobian JPF and those



of the system dynamics linearized at the equilibrium
point, denoted by JTS = M�1Dzs(z0; �0). This sub-
ject has been examined for simpler system models in
[14, 15, 16]. The following discussion demonstrates that
singularity (zero eigenvalue) of the power 
ow Jacobian
implies a zero eigenvalue for the linearized system dy-
namics. Linearizing f̂(�) and ĝ(�) at the equilibrium
yields a block Jacobian of the form:

D(f̂ ; ĝ)j0 =
�
Dz f̂�j0 Duf̂�j0
Dzĝ�j0 Duĝ�j0

�

Eliminating the algebraic variables yields the Jaco-
bian for the reduced dynamic system, i.e.,

MJTS = Dz f̂�j0 �Duf̂�j0Duĝ�j0�1Dzĝ�j0

which can be shown to have the following structure:

xdc �G !G VG �L

MJTS =

_xdc P1 P2 0 P3 P4
_
�G 0 0 InG�1 0 0

MG
_!G P5 P6 �DG P7 P8

Dx
_VG P9 P10 0 P11 P12

DL

_
�L P13 P14 0 P15 P16

Then, using standard block determinant formulas, the
determinant of JTS can be calculated:

detJTS = (�1)k detM�1 det

��������

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

��������
= (�1)k detP

detM
(11)

where k is a positive integer.

On the other hand, the power 
ow Jacobian can be
obtained from (7) with !G = 0, and it can be shown
that:

detJPF = detP detDuĝ�j0 (12)

Hence, from (11) and (12):

detJTS = (�1)k detJPF
detM detDuĝ�j0 (13)

Thus, it su�ces to look for zero eigenvalues of JPF
in order to identify singularities of the full linearized
dynamics.

THE POINT OF COLLAPSE METHOD

This technique augments the equations for equilibria
with constraints ensuring a zero eigenvalue at the point
of interest. This approach is described by Seydel [12],
and was applied to voltage stability analysis of ac sys-
tems in [17]. The equations for z, v, and � take the
following form:

s(z; �) = 0 (14)

Dzs(z; �) v = 0

v 6= 0

Solving (14) is equivalent to solving equations (15)
below for ~z = [xTdc �

T
G VT

G �
T
L]

T , u, v̂, and �, since
under the assumption of Duĝ�j0 invertible, singularity
of the \power 
ow" Jacobian is necessary and su�cient
for singularity of Dzs. �

~f�(~z;u)
ĝ�(~z;u)

�
= 0 (15)

�
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~f� Du
~f�

D~z ĝ� Duĝ�

� �
v̂~z
v̂u

�
= 0

�
v̂~z
v̂u

�
6= 0

Here we have that ~f�(�) = [hTdc(�) fTG(�) gTG(�) fTL (�)]T .
From the matrix structure of JTS and JPF , it can be

shown that the right eigenvectors v in (14) and v̂~z in
(15) are the same up to a zero component, i.e.,

v̂~z =

2
664
v̂xdc
v̂�G
v̂VG
v̂�L

3
775 ) v =

2
66664

vxdc
v�G
v!G
vVG
v�L

3
77775 =

2
66664

v̂xdc
v̂�G
0
v̂VG
v̂�L

3
77775

The nonzero condition for the eigenvector can be
guaranteed by requiring a particular component of v̂~z
to be equal to one (v̂i = 1). (Replacing v 6= 0 by v̂i = 1
fails in the unlikely event of equations (15) yielding a
nonzero eigenvector such that v̂i = 0.)
This technique also yields the eigenvector at the bi-

furcation point, o�ering insight into the local dynamic



behavior of the system close to bifurcation, as described
in [13].

An alternative method for �nding the bifurcation
point is to impose conditions 1 and 2 of a saddle-node

to the composite function
�
~fT� (~z;u) ĝ

T
� (~z;u)

�T
. This

is equivalent to the approach proposed by Van Cut-
sem for an ac system in [18], where a Lagrangian of
the reactive power 
ow is used to �nd the bifurcation.
Equation (16) below de�nes the constraints used in this
approach. Note that equations (16) are essentially the
same as (15) except that the left zero eigenvector ŵ is
used to ensure singularity.

�
~f�(~z;u)
ĝ�(~z;u)

�
= 0 (16a)

�
ŵT
~z ŵT

u

� � D~z
~f� Du

~f�
D~zĝ� Duĝ�

�
= 0 (16b)

�
ŵT

~z ŵT
u

� � @~f�=@�
@ĝ�=@�

�
= K (16c)

K is an arbitrary nonzero scalar (such as K = �1), and

@ ~f�i
@�

=

�
�Pl if ~f�i = fLl
0 otherwise

@ĝ�i
@�

=

�
�Ql if ĝ�i = gLl
0 otherwise

Equation (16c) is equivalent to (9) for the re-
duced system di�erential equations (8), assuming
Duĝ�0(~z0;u0) is nonsingular and exploiting the matrix
structure of JTS and JPF . See the Appendix for a for-
mal proof of this statement.

The constraint equations de�ned above may have sev-
eral solutions, indicating that the system model could
have di�erent parameter values yielding several bifurca-
tion points. However, since a Newton-Raphson method
is employed for �nding the bifurcations, a good start-
ing guess for the eigenvectors typically puts the initial
condition within the region of attraction of the desired
solution. A technique to obtain this initial guess and
the computational issues involved in applying the Point
of Collapse method are discussed later.

Because the system model represents limits (and
hence has discontinuous derivatives), it is necessary to
check whether a controller limit has been exceeded at
the bifurcation point solution. HVDC converter trans-
former tap changers can also be included in the analysis,
although several studies carried out by the authors have
shown that these elements do not have a signi�cant ef-
fect in the bifurcation point due to its limited voltage
control range (see example in the next section). Never-
theless, the equation structure can be changed in these
cases to re
ect switches in current controllers and trans-
former taps, so that further analyses of the stability of
the new equilibrium can be carried out.
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Fig. 3: Sample ac/dc system

VOLTAGE PROFILES AT BIFURCATION
FOR A SAMPLE SYSTEM

Figure 3 depicts the reduced ac/dc system examined
in this section. This system is a steady-state equiva-
lent at the three buses of interest of the interconnected
power systems in the western part of the United States.
Generator G2 supports the voltage at the intermediate
load bus, and bus 1 has relatively strong voltage sup-
port from generator G1. The e�ective short circuit ratio
(ESCR) at bus 1 is 6.2, while the ESCR at the inverter
side is 4.0. The dc line is designed to supply about two
thirds of the power needed at bus 3, and the initial load
at bus 2 is P 0

L = 475 MW and Q0
L = 156:1 MVAR. Ta-

bles 1 and 2 depict all the ac/dc test system data, with
generators simulated as constant voltage sources.

For variations in the load at bus 2, a computer as-
sisted symbolic algebra package [19, 20] was used to ob-
tain pro�les for the three bus voltage magnitudes shown
in Figs. 4 through 7. Figures 4 and 5 show the \nose"
curves (bifurcation diagrams) for changes in the power
demand at bus 2, when VDCOLs are not considered.
Full dynamic analysis shows that the equilibria with
voltage magnitudes higher than those at the point of
collapse (saddle-node bifurcation) are stable, whereas
equilibria with voltages below this point are unstable.
Figure 4 shows three additional bifurcation points in
the unstable region, and also sharp turning points due
to changes in the control modes of the HVDC link. This
behavior is di�erent from the behavior of an ac only sys-
tem (at least for the type of ac model employed here),
since in such systems the expected shape of the \nose"
curves is approximately globally quadratic as shown in
[21] (similar to the pro�les depicted in Figs. 5 and 7).
The unique character of the combined ac and HVDC
system is more evident when VDCOLs are included as
shown in Figs. 6 and 7. Here the ac/dc system has a
completely di�erent set of unstable equilibria, suggest-
ing that signi�cant changes in the stability region of the
ac/dc system have taken place; also, the points of col-



Element G B �Bs

Line 1{2 3.68 54.13 4.68
Line 2{3 3.68 54.13 4.68
Transf. G1 166.67
Transf. G2 100.00
Transf. 1 100.00
Capac. 1 13.00
Capac. 3 13.68

Table 1: AC transmission system data. All quantities
are in p.u. for a 550 kV and 100 MVA base.

Variable Recti�er Inverter

a 1.7634 1.7678
Xc 0.1345 0.1257
�min 50 � 1200y

�max 1200 � 1420y


min � 400y 180


max � 1550y 400

Io 1.0 0.9
Iomin

z 0.1 0.0

Vacmax
z 0.95 0.95

Vacmin
z 0.5 0.5

Rd 0.0624 |
yAssuming � � 200 zVDCOL

Table 2: DC system data. All quantities are in p.u.
for a 550 kV and 2.5 kA base.

lapse have changed, i.e., the loadability margin of the
system is altered by the inclusion of VDCOLs.
All these �gures, especially 4 and 6, show that the

stable equilibrium region of bus voltage V1 remains ap-
proximately constant throughout the system loading,
due to the relatively strong voltage support from gen-
erator G1 and the HVDC �ltering system. Hence, the
VSF (dV=dQ) criteria is not a good measure of proxim-
ity to voltage collapse in this case since its value remains
almost unchanged during most of the study.
Table 3 shows the values of system variables at the

point of collapse, obtained by solving equations (15)
for active and reactive power at the system load. For
the case where VDCOLs are not included, the voltage
magnitudes at bifurcation are higher when collapse is
reached via active load increase as compared to reactive
increase, which is reasonable due to the high reactive
demands in the latter case. Although the points of col-
lapse do not change signi�cantly when VDCOLs are in-
cluded, �nding the unstable equilibrium point becomes
more di�cult since the controller current order changes
with the ac voltage. Nevertheless, �nding the bifurca-
tion points with the PoC method is straight forward.
This makes the method very appealing when compared
to other methods that need to calculate the unstable
equilibrium points (e.g., [8]), since the degree of dif-
�culty has not changed in the PoC method with the
mode of operation of the HVDC system.
Based on the bifurcation values for active power load,

the system has a large \maximum loadability" due in
part to the in�nite bus and the transmission line design.
The active load changes are supplied mainly by the in-

Var. �PL �QL �PL �QL

No VDCOL No VDCOL VDCOL VDCOL

� 44.66 21.96 46.84 20.05
�1 �43:60 84:70 �44:50 84:20

�2 �66:10 58:70 �75:00 58:70

�3 �6:00 29:10 �8:10 29:10

�g1 �28:20 100:0 �28:90 99:70

�g2 �62:80 62:30 �71:40 61:10

V1 0.904 0.882 0.889 0.902
V2 0.812 0.749 0.766 0.778
V3 0.802 0.782 0.773 0.812
Id 1.000 1.000 0.878 0.904
Vdr 1.763 1.717 1.705 1.792
Vdi 1.701 1.655 1.650 1.735
�r 28:50 28:50 30:90 27:40


i 18:00 18:00 18:00 18:00

Table 3: Points of collapse for Vg1 = Vg2 = Vg3 = 1.
Voltages and currents are in p.u., with Vn = 550 kV,
In = 2:5 kA, and Sn = 100 MVA.

�nite bus, whereas the reactive increase is supported by
the generators at buses 1 and 2; this in part explains
the smaller reactive bifurcation values. Note that al-
though the loadability margin changes when VDCOLs
are included, one cannot draw a de�nite conclusion re-
garding the advantages or disadvantages of this mode
of operation from the point of view of saddle-node bi-
furcations.
High level control modes for the HVDC system (e.g.,

power modulation) and transformer tap changers can
easily be included in the PoC method. The idea is to
�nd the initial bifurcation point without enforcing lim-
its, check whether any limits have been violated, and
then reapply the method to �nd the new saddle-node.
The e�ect of taps in the converter transformers was
simulated assuming a �10% regulating range for the
system in Fig. 3, obtaining a 1% variation in the bifur-
cation point.
Another interesting characteristic of the sample

ac/dc system relates to the behavior of the eigenval-
ues before bifurcation. As shown in Fig. 8, a complex
conjugate pair crosses the imaginary axis as the system
load increases (at 4682 MW of additional load), this
happens even before the system becomes unstable due
to voltage collapse. This phenomenon is known as Hopf
bifurcation and is described with more detail in a later
section.

COMPUTATIONAL ISSUES

One of the main concerns when applying the Point
of Collapse method is the singularity of the power 
ow
Jacobian at the bifurcation point, which might lead one
to believe that equations (16) or (15) are ill-conditioned
with respect to a Newton-Raphson solution algorithm.
Let F(�) = [~fT (�) ĝT (�)]T and y = [~zT uT ]T , then
equations (16) become:

DyF
T (y; �)ŵy = 0 (17)
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Fig. 6: AC voltage pro�les for active power changes at
load bus 2 (�P2 = 1, �Q2 = 0). VDCOL included.
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Fig. 7: AC voltage pro�les for reactive power changes
at load bus 2 (�P2 = 0, �Q2 = 1). VDCOL included.

F(y; �) = 0

@F

@�

T

ŵy = K

Now, since F(y; �) is linear with respect to �, the
Jacobian JPoC of equations (17) is:

JPoC =

2
64

D2
yF

T
ŵy DyF

T 0

DyF 0 @F
@�

0 @F
@�

T
0

3
75 (18)

Although the individual block DyF(y0; �0) is singular,
conditions (9) and (10) imply that JPoC is nonsingular
[22].
The Jacobian JPoC is symmetric for an ac lossless

system [18], and topology-symmetric for a general ac
system. However, the equations for the HVDC links
cause the power 
ow Jacobian to be rather unsymmet-
ric. Furthermore, for an ac system this Jacobian has
an special structure that can be exploited using block-
ing techniques to reduce the computational burden [18],
but once the dc system is included in the analysis this
structure is partially lost. Nevertheless, one can still
use matrix blocking techniques to improve the compu-
tational characteristics of the proposed method.
An important issue in solving the Point of Collapse

equations by Newton's method is the choice of initial
guess for eigenvectors v̂y or ŵy. The approach used
here is to apply several iterations of the Inverse Power
Method [23] to the power 
ow Jacobian. This typically
yields a vector close to the span of the real and imag-
inary parts of the eigenvector(s) corresponding to the
eigenvalue(s) with the smallest magnitude. Although
this is not absolutely guaranteed to be the eigenvalue
that eventually goes to zero at bifurcation, it is quite
likely. The method has proven e�ective in a number
of sample ac and ac/dc systems, and often produces a
good initial guess in just one iteration.
With a proper initial guess, the computational costs

of solving (15), or (16) are somewhat higher than those
for the original power 
ow equations. The number of
equations has doubled, but the Jacobian JPoC retains
its sparsity. Furthermore, close to the bifurcation point
the power 
ow Jacobian JPF becomes ill-conditioned,
causing slow convergence for power 
ow methods and
continuation methods [21], whereas the Jacobian for the
proposed Newton solution is far from singularity.
Research currently under way on computation of

points of collapse using the proposed technique in sys-
tems with over 100 buses, suggests solution times in
the order of 10 to 20 ordinary power 
ows. However,
more work has to be done on this area before reaching
de�nite conclusions.

HOPF BIFURCATIONS

Hopf bifurcation is another mechanism of transition
to instability in dynamical systems. This phenomenon
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equilibria for active power changes at bus 2. VDCOL
included.

is characterized by complex eigenvalues of the linearized
system dynamics crossing the imaginary axis as the sys-
tem parameters change [11, 12]. This type of bifurca-
tion has been proven not to exist for simple ac lossless
system models [24]. However, it has been observed in
more detailed ac system models that consider transfer
conductances and exciter dynamics [25].
These bifurcations were observed for the ac/dc sys-

tem examined here, as shown in the eigenvalue-locus
of Fig. 8 obtained when the active power at bus 2 is
increased and VDCOLs are included. Here complex
conjugate eigenvalues of a stable equilibrium crosses the
imaginary axis from left to right, slightly before the sys-
tem reaches a saddle-node. This makes the system un-
stable by a di�erent mechanism than voltage collapse.
The interested reader is referred to [26] for a description
of computational techniques for �nding these bifurca-
tions in nonlinear power system models.

CONCLUSIONS

A thorough analysis of bifurcation phenomena in a
particular model of ac/dc systems is presented. The
Point of Collapse method is shown to be computational
feasible as a means to determine acceptable load in-
crease before encountering voltage collapse in ac/dc
systems. Moreover, it appears particularly promising
when HVDC lines with controller limits and VDCOLs
are considered.
The results presented here justify further studies in

larger systems of the proposed method. The authors
are currently working in implementing the PoC method
for arbitrary ac/dc system dimensions in a UNIX work-
station environment using C code.
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APPENDIX: EQUIVALENCE OF SADDLE-NODE
CONDITIONS

This appendix shows that (9) is equivalent to equa-
tion (16c). Let Duĝ(�) be nonsingular at the equilib-
rium point (z0;u0; �0) for equations (8). There exists
a local function h(�) around the equilibrium such that
u = h(z; �). Then,

ĝ(z;u; �) = ĝ(z;h(z; �); �) = 0

) @u

@�

����
0

= �Duĝj�10
@ĝ

@�

����
0

On the other hand, since s(z;u; �) = f̂(z;h(z; �); �):

@s

@�

����
0

=
@f̂

@�

�����
0

+Duf̂ j0 @u

@�

����
0

=
@f̂

@�

�����
0

�Duf̂ j0Duĝj�10
@ĝ

@�

����
0

(A.1)

Now, from the ac/dc reduced di�erential equations
(8) and condition 1 of a saddle-node it follows that

ŵT
u = �ŵT

z Duf̂ j0Duĝj�10 (A.2)

0 = ŵT
z

�
Dz f̂ j0 �Duf̂ j0Duĝj�10 Dz ĝj0

�
| {z }

Dzsj0

) w = ŵz (A.3)

Thus, from equations (A.1), (A.2), and (A.3) it can
be seen that equations (9) and (16c) are equivalent, i.e.,

wT @s

@�

����
0

= ŵT
z
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@�

�����
0

+ ŵT
u

@ĝ

@�

����
0

= ŵT
~z

@~f

@�

�����
0

+ ŵT
u

@ĝ

@�

����
0

= ŵT
y

@F

@�
= K 6= 0 (A.4)

Similar arguments can be used to prove the equiv-
alence of equation (10) and the corresponding saddle-
node condition for the power 
ow equations, i.e.,

wT
�
D2
zsj0v

�
v = ŵT

y

�
D2
yF v̂y

�
v̂y 6= 0 (A.5)

Based on (A.4) and (A.5), one can readily prove that
the Point of Collapse Jacobian is nonsingular.
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