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Abstract: This paper examines dynamic behavior in
system models that re
ect reasonably detailed (third
order) HVDC dynamics along with ac system models
that include reactive 
ows, and frequency and voltage
dependent load models. A vector Lyapunov function
approach is employed to de�ne a system wide energy
function that can be used for general security analysis.
The paper describes the derivation of individual compo-
nent Lyapunov functions for simpli�edmodels of HVDC
links connected to \in�nitely strong" ac systems, along
with a standard ac only system Lyapunov function. A
novel method of obtaining weighting coe�cients to sum
these components for the overall system energy function
is proposed. Use of the new energy function for tran-
sient stability and security analysis is illustrated in a
test system.

Keywords: HVDC, Lyapunov functions, transient en-
ergy functions, transient stability, dynamic security as-
sessment.

BACKGROUND AND MOTIVATION

Use of energy function methods for ac only systems
has seen a long history of development in the power
systems literature. With several re�nements in its ap-
plication over the last decade, \transient energy func-
tion" (TEF) methods are gaining acceptance as a very
useful supplement to time domain simulation of indi-
vidual fault scenarios. To extend the usefulness of such
methods further, it is important that the underlying
system models be capable of accommodating reason-
ably detailed representations of important power sys-
tem components. Clearly, the ability to represent dy-
namic e�ects of HVDC links on both transient stability
and voltage stability is a useful extension.

Existing literature has provided a foundation for in-
corporating HVDC models into energy method stabil-

ity analysis. In [1], the authors describe a scheme for a
�rst order HVDC controller model, representing a sin-
gle constant current controller. The coupling of these
dynamics to a classical model for ac generators is con-
sidered. Several system energy functions are examined
with the goal of minimizing conservatism in clearing
time estimates for fault studies. While the explicit rep-
resentation of HVDC dynamics is an important step,
the model is limited. First, the �rst order linear model
cannot represent switching between control modes in-
herent in ac/dc converters. Moreover, the ac system
model used assumed constant bus voltage magnitudes
throughout, so that reactive power 
ows and voltage de-
pendent loads could not be represented. This limits the
usefulness in examining HVDC ties to weak ac systems,
a topic of considerable interest in stability studies. A
second approach to considering HVDC links is found in
[2]. In this work, the dynamics of the HVDC system are
essentially treated as in�nitely fast relative to ac system
variables, so that the dc line behavior can be treated by
a set of purely algebraic equations. This approach im-
plicitly assumes strong voltage support from the ac sys-
tem, as a �xed ac converter voltage is used in solving the
dc algebraic equations at each time step. While this ap-
proach proved successful in examining transient stabil-
ity problems when the strong voltage support assump-
tion was satis�ed, it could prove inaccurate in treating
operating conditions where reactive 
ows and voltage
variations are signi�cant [3, 4, 5, 6].

The work presented here builds on the results of [1]
and [2] by using a true dynamic model for the HVDC
system. Unfortunately, by including such detailed dy-
namics, standard approaches to constructing a rigor-
ous Lyapunov function1 for the full system dynamics
becomes analytically intractable. In particular, con-
�rming that a candidate Lyapunov function is non-
increasing along any trajectory does not appear feasible
for the models examined. Instead, the approach taken
here constructs functions which are Lyapunov functions
only for de-coupled models of the ac system alone and
the dc link alone. One then has an energy function
component for the ac system, and one energy function

1The term Lyapunov function will be used for a scalar function
of state that is proven locally positive de�nite about the stable equi-
librium, and non-increasing along any system trajectory. The term
\energy function" will be used when the function in question can not
be formally proven non-increasing along all possible trajectories.



component for each HVDC link. The approach is suited
to dealing with systems having multiple dc lines. The
overall system wide energy function is constructed as a
weighted sum of these components, motivated by vec-
tor Lyapunov function concepts as explained in [7]. The
weighting coe�cients, denoted by the vector �, are cho-
sen so that the energy function is locally positive def-
inite at the stable equilibrium point (s.e.p.) and ap-
proximately non-increasing along trajectories. We will
describe a methodical approach to selecting � by en-
forcing these conditions.

HVDC MODEL

The HVDC controllers are simulated based on the
simple control scheme shown in Fig. 1, and its prin-
cipal characteristics can be reproduced by the control
circuit depicted in Fig. 2 [5]. Although these circuits
are just a �rst approximation to the more complicated
HVDC control structures, they recreate several of the
main properties of actual systems. Voltage-Dependent
Current Order Limits (VDCOL) can be readily intro-
duced into this model by representing the controller cur-
rent order as a nonlinear function of either the dc or ac
voltages [3, 4].

Equations (1) below are to simulate the HVDC sys-
tem under these control criteria [3, 4, 5, 6]. Here Vdr
and Vdi are the per unit dc terminal voltages at the rec-
ti�er and inverter ends, respectively. In (kA) and Vn
(kV) are the base quantities for the dc system, and Sn is
the base power in MVA for the ac side. Xcr andXci are
the per unit commutation reactances, and Rd and Ld
are the per unit dc line parameters. The products arVr
and aiVi are the per unit ac bus voltages at the sec-
ondary side of the transformers with respect to the dc
bus voltage base Vn. Sr and Si are the per unit magni-
tudes of the HVDC complex powers at the ac side, and
Pr , Pi, Qr and Qi are the per unit active and reactive
powers absorbed by the dc system.
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Fig. 1: HVDC control criteria. The recti�er is allowed
to go into inverter operation for faster recovery after
faults.
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Fig. 2: PI recti�er current controller. The inverter
side has a similar control circuit.
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The controllers are designed to avoid current control
overlap. For high recti�er voltages and/or low inverter
voltages the recti�er current controller is in operation
while the inverter controller is saturated at its mini-
mum value 
imin

; conversely, for low recti�er voltages
and/or high inverter voltages the roles of inverter and
recti�er controllers are reversed. During recovery from
fault conditions it is typical to have both converters
controlling the current for a brief period. This con-
troller \switching" is simulated here by the limit func-
tions l1(�; �) and l2(�), which are de�ned as follows:

l1(x; y) =

�
x if ymin < y < ymax

0 otherwise

l2(x) =

8<:
xmin if x � xmin

x if xmin < x < xmax

xmax if x � xmax

Assuming ideal harmonic �ltering in the HVDC link,
equations (1) are valid to within roughly a 4% error
margin, provided there is a three-valve commutation
every 600 (six-pulse bridge). They are not valid for four-
valve commutation, since under these operating condi-
tions the dc link must be represented by a di�erent set
of equations [6].



ENERGY FUNCTION FOR DC ONLY

For �xed ac voltages Vr and Vi in recti�er or inverter
control mode, the dynamics of the current controller are
linear. Hence, for each control mode we may construct
a state equation and a Lyapunov equation [8] of the
form:

_xc = Acxc + bc

V c
dc(x

c) =
1

2
(xc � xcs)TPc(xc � xcs)

PcAc +AcTPc = �I2�2 () _V c
dc(x

c) < 0) (2)

Here xc = [xr Id]T = xr for recti�er current control, or
xc = [Id xi]T = xi for inverter current control, and xcs
is the corresponding stable equilibrium value. I2�2 is
the 2� 2 identity matrix.
The complete behavior of the two controllers is de-

termined by the limit function which causes a switch
between the control modes. The composite state vector
in this switching model is x = [xr Id xi]T . To de�ne a
candidate Lyapunov function with P 2 R3�3, we com-
bine components of matrices Pr and Pi as shown in
(3), where � = Pr

22=Pi
11 and �x = x � xs.
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The time derivative of Vdc(x) along trajectories of (1)
is examined as two separate cases, i.e.,

� For recti�er control the inverter is saturated at its
minimum �ring angle 
imin

, which is its normal
operating condition. Here �xi = 0, and thus
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� For inverter control the recti�er is now saturated
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where �xr is a positive constant. Then it follows
that
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Fig. 3: HVDC state variables for a fault at the ac
recti�er side with clearing time of 0.02 sec.
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Fig. 4: DC energy function for state variables in Fig.
3.

The structure of the inverter and recti�er equa-
tions is such that in general � > 0, and Pr

12 < 0.
Furthermore, it can be shown from equations (1)
that _Id > 0, based on the assumption that the ac
voltages remain constant. Hence, _Vdc(x) � 0 for
all system trajectories.

To test how this function behaves when the ac volt-
ages are allowed to change, the ac systems at both rec-
ti�er and inverter sides were modelled as �xed volt-
age sources behind constant reactances. The capacitive
voltage support at the ac converter buses was also taken
into account. In this case the system equations are
nonlinear, and function (3) serves as a candidate local
Lyapunov function for the ac/dc system modelled. The
positive de�niteness of Vdc(x) is obvious; its behavior
along system trajectories must be examined. Several
ac balanced faults were simulated on this system by in-
stantaneously changing the Short Circuit Ratio (SCR)
at either side of the dc link, and the dc energy function
was tracked for di�erent ac system strengths.

Figures 3 and 4 depict the HVDC state variables and
the corresponding dc energy function, when an ac fault
is simulated by reducing the SCR from 8 to 3 on the rec-
ti�er side while the inverter remains at a SCR of 8. Here
one can observe that the \energy", Vdc(x), smoothly
increases as the system state moves away from the sta-



ble equilibrium during the fault conditions, and after
clearing the fault, when the system recovers its origi-
nal state, Vdc(x) monotonically decreases towards zero;
this is the kind of behavior expected from the system
energy. The same energy behavior was observed for sev-
eral simulations with di�erent recti�er and inverter ac
system strengths and faults. In all these cases the over-
lap angles �r and �i were traced to detect any changes
in converter operation mode, which would indicate the
onset of conditions outside the validity of dc model used
in this paper.
We also observed that the system equations in this

case possess several physically unfeasible equilibria.
These were also obtained when solving the power 
ow
equations for the ac/dc system shown in Fig. 6.

ENERGY FUNCTION FOR AC ONLY

During the last decade, many researches have thor-
oughly analyzed the use of energy functions for the di-
rect stability assessment of ac networks. Particularly,
the TEF for structure preserving ac system models has
been widely studied [9, 10, 11, 13], and it has been
shown to be de�ned by
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where M is the diagonal generator inertia matrix, and
f (�;V) and g(�;V) are normalized active and reactive
power bus mismatch equations, respectively. For sys-
tems with losses, an added constant correction term can
account for the transfer conductance losses at the s.e.p.,
forcing the ac energy function to have a local minimum
at this point, as explained in [14]. The ac TEF for an
n bus system can be expressed in closed form as:
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Here Gkj + jBkj is the kj term of the bus admittance
matrix, Pk and Qk(Vk) are the active and reactive pow-
ers injected at bus k, and Vk 6 �k is the bus voltage pha-
sor. Here ! is de�ned relative to a synchronous refer-
ence frame, and the Pk's are corrected to account for
the post-fault system equilibrium, as explained in [12].

ENERGY FOR COUPLED AC AND DC

The next step is to analyze the independent behavior
of the dc and ac energy functions de�ned above, in an
ac/dc system including generator dynamics. Towards
that objective, both energy functions were traced for
an ac/dc test system during the recovery period from
several ac balanced faults and also from sets of arbitrary
initial conditions.
The dc active and reactive powers were treated as

special loads of the ac system, similar to the approach
used in [2] where the energy function accounts for the
active power demands of the dc line. Equation (5)
shows the terms that have been added to (4) to ac-
count for the active and reactive powers of the HVDC
link.
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The integral expressions in (5) can be found from equa-
tions (1), where for the recti�er one has
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The reactive power at the inverter side can be repre-
sented by a similar expression.
The total TEF for the ac/dc system is de�ned then

as

V
4
= V ac

ac + V dc
ac| {z }

Vac
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where the weighting coe�cient � is restricted to an in-
terval such that the ac/dc energy function is locally pos-
itive de�nite at the s.e.p. The term V ac

ac , de�ned in (4),
represents the energy in the ac only system, whereas
V dc
ac , de�ned in (5), is the coupling energy at the ac/dc

converter buses.
Assuming that the ac only system is stable when the

HVDC link is replaced by the equivalent active and
reactive ac converter power injections at the s.e.p., one
can de�ne a \decoupled" ac energy function bVac that is
locally positive de�nite at the corresponding s.e.p. [15],
where its Hessian has the following structure:
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a necessary condition for V to be locally positive de�-
nite is the positive de�niteness of the six by six block
shown in (7).
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35 (7)

Assuming that the inverter current controller remains
saturated for system trajectories around the s.e.p., ma-
trices A, B, C, and D are given by:
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and Pr is the positive de�nite matrix that comes from
the solution of matrix equation (2) for recti�er current
control.
Using basic properties of the Euclidean norm, one can

readily prove that if A and B are symmetric positive
de�nite, then
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de�nite only if the following inequalities hold:
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These inequalities represent a necessary but not su�-
cient condition for local positive de�niteness of V ; how-
ever, due to the highly diagonal dominant structure of
matrix H1 in (6), one can reasonably expect the min-
imum eigenvalues of H1 and H to dominate the max-
imum singular value of matrix H2. For the sake of
completeness, an additional numerical test of positive
de�niteness of r2V j0 is performed after the candidate
value of � has been chosen using the technique described
below. Notice also that (8) and (9) primarily depend
on the dc power levels at the s.e.p. and the design
parameters of the dc line. This will prove helpful in de-
termining energy pro�les for voltage instability studies
for the sample system, as shown in the next section.
The inequalities above yield a minimum value for the

coe�cient � so that one requirement for the ac/dc TEF
can be ful�lled. However, a second property desired
of the system energy function is that it be decreasing
along trajectories. In standard vector Lyapunov func-
tion analysis this problem is resolved by using com-
parison functions [7]. Unfortunately, the analytic com-
plexity of the time derivative for the proposed energy
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Fig. 5: Total TEF and ac and dc energy functions
along the trajectory between the closest, and unique, un-
stable equilibrium point (u.e.p.) and the s.e.p. for the
sample system.

function makes the comparison function approach in-
tractable. Instead a new computational approach is
developed. Figure 5 clearly shows that the ac and dc
TEF's present opposite behavior, suggesting as an in-
terchange of \energy" between the ac and the dc sys-
tems. The same behavior was observed during the post-
fault period for a wide range of ac faults and various
system strengths. The choice of � can be further con-
strained by imposing the restriction of nonincreasing
behavior along trajectories at a sequence of sampling
times, i.e.,

V (tj) � V (tj+1)

) �j � Vac(tj+1) � Vac(tj)

Vdc(tj)� Vdc(tj+1)
(10)

The average value produced by (10), subject to (8)
and (9), is selected and tested to see whether the Hes-
sian of the ac/dc TEF at the s.e.p. is positive de�nite.
Initial experience indicates the constraints on � will be
more easily satis�ed in larger systems, where a smaller
percentage of ac buses are tightly coupled to the dc
system. In constructing the set of � values to be aver-
aged, a maximum threshold is set and all values greater
than this limit are discarded. This is necessary because
the dc energy function applied to the total system can
pass near zero at some sample points, causing roundo�
errors in evaluating the denominator of (10). The re-
sulting ac/dc energy function V is shown in Fig. 5 for
the u.e.p.{s.e.p. trajectory in the test system. Notice
that it decreases towards zero as the system trajectory
approaches the s.e.p.; however, there are brief time in-
tervals where the energy function actually experiences
a relatively small increase. Similar behavior was ob-
served for several ac balanced faults and recti�er system
strengths, especially when the system trajectory origi-
nates far from the stable equilibrium. The next section
shows possible applications of this energy function as a
means of assessing the stability of the ac/dc network.
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Fig. 6: Sample ac/dc system

APPLICATION TO SAMPLE SYSTEM

Figure 6 shows the sample ac/dc system used to sim-
ulate several ac balanced faults and voltage collapse sce-
narios throughout this paper. This system is intended
to roughly approximate some of the characteristics of
power systems in the western part of the United States.
Generator G2 supports the voltage at the intermediate
load bus, and bus 1 has relatively strong voltage sup-
port from generator G1. Two di�erent e�ective short
circuit ratios (ESCR) at bus 1, 21.4 (practically an in-
�nite bus) and 6.2, are used to simulate di�erent sys-
tem strengths, whereas the ESCR at the inverter side
is kept constant at about 4. The dc line is designed to
supply approximately two thirds of the power needed
at bus 3, and its recti�er and inverter controllers lim-
its are: �rmin

= 50, �rmax
= 1200, 
imin

= 180, and

imax

= 400 (�imax
� 1200). The active power for the

load at bus 2 is assumed frequency dependent, whereas
the reactive power is modelled as a constant reactance
(voltage dependent). The generators are simulated as
voltage sources behind transient reactance, while the
mechanical system is represented using the classical sec-
ond order swing equations.

Two types of studies were done on the sample net-
work to assess the usefulness of the proposed ac/dc
TEF. First, three di�erent faults were applied to this
system to compare the critical clearing times obtained
by time simulation to those obtained using the ac/dc
energy function. AC faults at the recti�er and inverter
were represented by reducing the ESCR of the ac con-
verter side, whereas at bus 2 a balanced three-phase
fault was directly applied. Second, the energy function
was used to determine system proximity to voltage col-
lapse, as suggested in [14, 16], when either active power
or reactive power is increased at the load bus.

For a recti�er ESCR of 21.4, inequalities (8) and (9),
and condition (10) applied to the closest u.e.p.-s.e.p.
system trajectory, yielded a weighting coe�cient of � =
1:3� 104, for both power load levels shown in table 1.



ESCR PL Fault Time Controll. PEBS
rectif. MW BUS Simul. u.e.p.

1
0:028y

0:030z
0.0092 |

475 2
0:028
0:030

0.0067 0.029

3
0:022
0:023x

0.0181 |

21.4 1
0:035
0:038

0.0262 0.05

2975 2
0:0040
0:0045

0.0024 0.0043

3 > 0:1y > 0:1 0.03

1
0:024
0:026

0.0072 |

6.2 475 2
0:028
0:030

0.0072 0.029

3
0:0158
0:0159x

0.0127 |

yStable. zUnstable. xConverter mode change.

Table 1: Critical clearing times (in seconds) from TEF
and time simulations for the test system.

For the ESCR of 6.2, the coe�cient value produced by
the proposed method was � = 3:15� 104. Notice that
the di�erent load levels did not alter the value of �,
since the HVDC variables are not signi�cantly a�ected
by changes at the load bus.

Table 1 depicts the clearing times for di�erent bal-
anced ac faults simulated in the test system. Two
distinct techniques were used to determine the critical
clearing times by means of the ac/dc TEF, namely, the
controlling u.e.p. and the Potential Energy Boundary
Surfaces (PEBS). (Refer to [17] for a succinct expla-
nation of these methods.) Since the modelling of the
system yields algebraic constraints that change during
the simulation due to system modi�cations, i.e., ap-
plying and clearing faults, the fault trajectories have
to be \projected" back to the post-fault system struc-
ture. This process simply takes the system state at each
point along the fault-on trajectory and computes the
corresponding values for implicit variables that would
result if the fault were cleared at that instant. The
energy value is calculated based on this choice of im-
plicit variable values. The controlling u.e.p. method
underestimates the values of the clearing times, some-
times by an order of magnitude. This is also a prob-
lem in tightly interconnected ac only systems with just
one u.e.p. neighboring the s.e.p., where di�erences of a
factor of 10 between the simulated clearing times and
those predicted by the controlling u.e.p. method are
also possible (e.g., for a 5 bus ac system from [18] with
2 generators and 2 loads, the simulated critical clearing
time for a solid bus fault is tsim:

cc = 0:0495sec., whereas
the predicted value using the controlling u.e.p. method
yields tu:e:p:cc = 0:002sec.). The PEBS technique some-
times yields better estimates for ac faults away from
the dc converters; however, it fails in some cases for the
ac/dc system. Note that in two cases the energy meth-
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Fig. 7: TEF at various unstable equilibria for active
power changes at the load bus. The recti�er ESCR is
21.4.
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Fig. 8: TEF at various unstable equilibria for reactive
power changes at the load bus. The recti�er ESCR is
21.4.
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Fig. 9: TEF at various unstable equilibria for active
power changes at the load bus. The recti�er ESCR is
6.2.
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Fig. 10: TEF at various unstable equilibria for reactive
power changes at the load bus. The recti�er ESCR is
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ods predict a fault at bus 2 to be more severe than a
corresponding fault at bus 3, which seems inconsistant
with the clearing times obtained by simulation. How-
ever, the \clearing time" for bus 3 in table 1 does not
correspond to a true unstable mode, but represents the
instant when the dc inverter enters into four-valve com-
mutation rendering the dc dynamic equations presented
in this paper inaccurate [6]. More simulations in larger
systems are necessary before drawing de�nite conclu-
sions, since the authors believe that the PEBS method
applied to the proposed ac/dc TEF will produce good
clearing time estimates for faults at least one or two
buses away from the HVDC link (results in [2] support
this idea).
In general, the results above suggest that the value

of the proposed TEF at the closest u.e.p. gives a rela-
tively good notion of the dynamic stability of the ac/dc
system. This idea can be used to evaluate the vulner-
ability of the system to voltage collapse, as proposed
in [14] and [16] for ac only systems. Figures 7 through
10 show the value of the ac/dc energy function V for
all possible system u.e.p.'s; the arrows in the graphs in-
dicate how the equilibria bifurcate as the load power
increases. Figures 8 and 10 present a linear behav-
ior similar to that presented in [16, 14], which appar-
ently is related to the \quadratic" shape of the \nose"
curves (voltage pro�les or bifurcation diagrams) that
are shown in [19]. However, Figs. 7 and 9 exhibit
a much more complicated structure. Here the energy
function for a speci�c unstable equilibrium has been
scaled; this u.e.p. is associated to a second stable equi-
librium corresponding to inverter current control that
bifurcates twice with the u.e.p. Eventually the system
model loses all power 
ow solutions when the TEF be-
comes zero (in the literature this is known as the point
of voltage collapse). The reader is referred to [19] for
an examination of saddle-node bifurcation phenomena
in dynamic models of ac/dc systems.

CONCLUSIONS

This paper has introduced a new method of deter-
mining vector energy functions for power systemmodels
with HVDC links. The proposed technique for choosing
the weighting factor that couples the ac and dc energy
functions is thoroughly studied, and the analytic limi-
tations imposed by the complexity of the mathematical
models used to represent the HVDC links are explored.
The resulting ac/dc TEF, together with the projection
of the fault trajectories into the manifold formed by the
post-fault algebraic constraints, is utilized in a sample
system for transient stability assessments. Initial re-
sults appear promising, although additional testing in
larger systems is needed.

A possible computational shortcoming is the need for
running a complete time simulation of the ac/dc system
in order to determine the weighting coe�cient. How-

ever, the results presented in this paper suggest that
unless the stable operating conditions of the HVDC
system are signi�cantly changed, the factor � will not
change for di�erent system structures of the ac network,
reducing the need for repeated simulations to determine
the closest u.e.p.-s.e.p. system trajectory.
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