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Abstract The present work addresses the question how sam-
pling algorithms for commonly applied copula models can be
adapted to account for quasi-random numbers. Besides sam-
pling methods such as the conditional distribution method
(based on a one-to-one transformation), it is also shown that
typically faster sampling methods (based on stochastic rep-
resentations) can be used to improve upon classical Monte
Carlo methods when pseudo-random number generators are
replaced by quasi-random number generators. This opens
the door to quasi-random numbers for models well beyond
independent margins or the multivariate normal distribution.
Detailed examples (in the context of finance and insurance),
illustrations and simulations are given and software has been
developed and provided in the R packages copula and qrng.
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1 Introduction

In many applications, in particular in finance and insurance,
the quantities of interest can be written as E[Ψ0(XXX)], where
XXX = (X1, . . . ,Xd) : Ω → Rd is a random vector with dis-
tribution function H on a probability space (Ω ,F ,P) and
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Ψ0 : Rd →R is a measurable function. The components of XXX
are typically dependent. To account for this dependence, the
distribution of XXX can be modeled by

H(xxx) =C(F1(x1), . . . ,Fd(xd)), xxx ∈ Rd , (1)

where Fj(x) = P(X j ≤ x), j ∈ {1, . . . ,d}, are the marginal
distribution functions of H and C : [0,1]d→ [0,1] is a copula,
i.e., a distribution function with standard uniform univariate
margins; for an introduction to copulas, see (McNeil et al
2005, Chapter 5), Nelsen (2006) or Joe (2014). A copula
model such as (1) allows one to separate the dependence
structure from the marginal distributions. This is especially
useful in the context of model building and sampling in the
case where E[Ψ0(XXX)] mainly depends on the dependence
between the components of XXX , so on C; for examples of this
type, see Section 5.

In terms of copula model (1), we may then write

E[Ψ0(XXX)] = E[Ψ(UUU)]

where UUU = (U1, . . . ,Ud) : Ω → Rd is a random vector with
distribution function C, Ψ : [0,1]d → R is defined as

Ψ(u1, . . . ,ud) =Ψ0(F−1 (u1), . . . ,F−d (ud)),

and F−j (p) = inf{x ∈ R : Fj(x)≥ p}, j ∈ {1, . . . ,d}, are the
marginal quantile functions. If C and the margins Fj, j ∈
{1, . . . ,d}, are known, we can use Monte Carlo simulation
to estimate E[Ψ(UUU)]. For a (pseudo-)random sample {UUU i :
i = 1, . . . ,n} from C, the (classical) Monte Carlo estimator
of E[Ψ(UUU)] is given by

1
n

n

∑
i=1

Ψ(UUU i)≈ E[Ψ(UUU)].

The main challenge of a Monte Carlo simulation is thus the
sampling of the copula. This challenge also holds for quasi-
Monte Carlo (QMC) methods, and is actually amplified by
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the fact that these methods are more sensitive to certain prop-
erties of the function Ψ . Thus the choice of the construction
method of a stochastic representation for C can have complex
effects on the performance of QMC methods, a feature that
does not show up when using Monte Carlo methods. The
present work includes a careful analysis of these effects, as
they must be thoroughly understood in order to successfully
replace pseudorandom numbers by quasi-random numbers
into different copula sampling algorithms.

Let us briefly summarize the idea behind QMC methods
and how they can be used for copula models; more precise
definitions on some of the concepts used here will be given
later. The idea is to start with a so-called low-discrepancy
point set Pn = {vvv1, . . . ,vvvn} ⊆ [0,1)k, with k≥ d, which is de-
signed so that its empirical distribution over [0,1)k is closer
(in a sense to be defined later) to the uniform distribution
U[0,1)k than a set of independent and identically (i.i.d.) ran-
dom points is. Assuming that for UUU ′ ∼ U[0,1]k we have a
transformation φC such that φC(UUU ′) ∼C, we can then con-
struct the approximation

1
n

n

∑
i=1

Ψ(φC(vvvi))≈ E[Ψ(UUU)]. (2)

Figure 1 shows the points φC(vvvi) obtained using either pseudo-
random or quasi-random numbers, for a transformation φC
designed for the Clayton copula.

QMC methods are typically used to approximate integrals
of functions over the unit cube via

Qn =
1
n

n

∑
i=1

f (vvvi)≈
∫
[0,1)k

f (vvv)dvvv = I( f ). (3)

A widely used upper bound for the integration error |I( f )−
Qn| is the Koksma–Hlawka inequality (see, e.g., Niederre-
iter (1992)), which is of the form V ( f )D∗(Pn), where V ( f )
measures the variation of f in the sense of Hardy and Krause,
while D∗(Pn) measures the discrepancy of Pn, i.e., how far Pn
is from U[0,1)k.

To analyze the properties of the QMC approximation (2)
for E[Ψ(UUU)], there are two possible approaches. The first
one is to define f =Ψ ◦φC and work within the traditional
framework given by (3), the Koksma–Hlawka inequality with
this composed function and the low-discrepancy point set Pn.
The second one is to think of (2) as approximating

E[Ψ(UUU)] =
∫
[0,1)d

Ψ(uuu)dC(uuu)

and work with generalizations of the Koskma–Hlawka in-
equality that apply to measures other than the Lebesgue mea-
sure; see Hlawka and Mück (1972) or Aistleitner and Dick
(2015). In the latter case, we work with the function Ψ and
view the transformation φC as one that is applied to the low-
discrepancy point set Pn rather than to Ψ . That is, here we
work with the transformed point set P̃n = {φC(vvv1), . . . ,φC(vvvn)}
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Figure 1 1000 realizations of a bivariate Clayton copula with θ =
2 (Kendall’s tau equals 0.5), generated by a pseudo-random number
generator (top) and by a quasi-random number generator (bottom).

and analyze its quality via measures of discrepancy that quan-
tify its distance to C rather than comparing Pn to U[0,1)k.

QMC methods have been used in a variety of applica-
tions, but so far most of the problems considered have been
such that the stochastic models used can be formulated using
independent random variables (e.g., a vector of dependent
normal variates can be written as a linear transformation of
independent normal variates). In such cases, the transfor-
mation of the uniform vector vvv into observations from the
desired stochastic model can be easily obtained by trans-
forming each component v j of vvv using the inverse transform
method, which is deemed to work well with QMC in part
because of its monotonicity, and also because it corresponds
to an overall one-to-one transformation from [0,1)d to Rd .
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In the more general copula setting considered in this pa-
per, at first sight the so-called conditional distribution method
(CDM) (which is the inverse of the copula-based version of
the Rosenblatt transform) appears to be a good choice to use
with quasi-random numbers, as it is the direct multivariate
extension of the inverse transform mentioned in the previous
paragraph. Namely, it is a one-to-one transformation that
maps [0,1)d to [0,1)d and it is monotone in each variable. A
transformation with k = d is certainly desirable (and prefer-
able to a many-to-one transformation with k > d) when used
in conjunction with QMC methods, since these methods do
better on problems of lower dimension. Also, intuitively the
monotonicity should be helpful to preserve the smoothness
of Ψ (for the first approach) and the low-discrepancy of Pn
(for the second approach). An additional advantage of the
CDM is that it is applicable to any copula C (and the only
known algorithm such general). However, the involved (in-
verses of the) conditional copulas are often challenging to
evaluate which has led to other sampling algorithms being
more frequently used. An example is the Marshall–Olkin
algorithm for sampling Archimedean copulas, which we also
address in this work.

The paper is organized as follows. Section 2 provides a
short introduction to quasi-random numbers. Section 3 shows
how quasi-random samples from various copulas (and thus
multivariate models with these dependence structures) can be
obtained using different sampling algorithms. Detailed exam-
ples are given. In Section 4 we discuss the theoretical back-
ground supporting each of the two approaches mentioned
earlier to analyze the use of low-discrepancy sequences for
copula sampling. Numerical results are provided in Section
5. Finally, Section 6 includes concluding remarks and a dis-
cussion of future work. Note that most results and figures
presented in this paper (as well as additional experiments
conducted) can be found in the R packages copula (see the
vignette qrng) and qrng (see demo(basket_options) and
demo(test_functions)).

2 Quasi-random numbers

Here we assume that a random sample {UUU i : i = 1, . . . ,n}
from a copula C can be generated by transforming a random
sample {UUU ′i : i = 1, . . . ,n} from U[0,1]k with k ≥ d; several
algorithms for copula models fall under this setup. Due to the
independence of the vectors UUU ′i, realizations of the sample
{UUU ′i : i = 1, . . . ,n} (obtained by so-called pseudo-random
number generators (PRNGs)) will inevitably show regions
of [0,1]k which are lacking points and other areas of [0,1]k

which contain more samples than expected by the uniform
distribution. To reduce this problem of an inhomogeneous
concentration of samples, quasi-random number generators
(QRNGs) do not aim at mimicking i.i.d. samples but instead
at producing a homogeneous coverage of [0,1]k.

The homogeneity of a sequence of points over the unit
hypercube can be measured by its discrepancy, which relates
to the error incurred by representing the (Lebesgue-)measure
of subsets of the unit hypercube by the fraction of points
in these subsets. Quasi-random sequences aim at achieving
smaller discrepancy than pseudo-random number sequences
and are thus also called low-discrepancy sequences. The
rest of this section reviews concepts related to QRNG that
are used in this paper. The reader is referred to Niederreiter
(1992), Morokoff (1998), (Glasserman 2004, Chapter 5), and
Dick and Pillichshammer (2010) for more details.

2.1 Discrepancy

The notion of discrepancy applies to sequences of points
X = {vvv1,vvv2, . . .} in the unit hypercube [0,1)k. Denote by
Pn = {vvv1, . . . ,vvvn} ⊆ [0,1)k the first n points of the sequence.
Let J ∗ be the set of intervals of [0,1)k of the form [000,zzz) =
∏

k
j=1[0,z j), where 0 < z j ≤ 1, j = 1, . . . ,k. Then the discrep-

ancy function of Pn on an interval [000,zzz) is the difference

E([000,zzz);Pn) =
A([000,zzz);Pn)

n
−λ ([000,zzz)),

where A([000,zzz);Pn)= #{i; 1≤ i≤ n,vvvi ∈ [000,zzz)} is the number
of points from Pn that fall in [000,zzz) and λ ([000,zzz)) = ∏

k
j=1 z j is

the Lebesgue measure of [000,zzz).
The star discrepancy D∗ of Pn is defined by

D∗(Pn) = sup
[000,zzz)∈J ∗

|E([000,zzz);Pn)|.

An infinite sequence X satisfying D∗(Pn) ∈ O(n−1 logk n) is
said to be a low-discrepancy sequence.

For a function Ψ : [0,1)k→ R, we have the well-known
Koksma–Hlawka error bound given by∣∣∣∣1n n

∑
i=1

Ψ(vvvi)−E[Ψ(UUU ′)]
∣∣∣∣≤V (Ψ)D∗(Pn), (4)

where UUU ′ ∼ U[0,1]k and V (Ψ) denotes the variation of the
function Ψ in the sense of Hardy and Krause. See Owen
(2005) for a detailed account of the notion of variation and its
applicability in practice. We also refer the interested reader to
Hartinger et al (2004) and Sobol’ (1973) for results handling
unbounded functions (and thus of unbounded variation).

2.2 Low-discrepancy sequences

There are two main approaches for constructing low-discre-
pancy sequences: integration lattices and digital sequences.
Only the latter are used in this paper, so our discussion will
focus on those.

Digital sequences contain the well-known constructions
of Sobol’ (1967), Faure (1982), and Niederreiter (1987), and
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are also closely related to the sequence proposed in Halton
(1960). The basic building block for this construction is the
van der Corput sequence in base b≥ 2, defined as

Sb(i) =
∞

∑
r=0

ar(i)b−r−1, i ∈ N, (5)

where ar(i) is the rth digit of the b-adic expansion of i−1 =

∑
∞
r=0 ar(i) br. To construct a sequence of points in [0,1)k

from this one-dimensional sequence, one approach is the one
proposed by Halton (1960), which consists of choosing k
pairwise relatively prime integers b1, . . . ,bk and defining the
ith point of the sequence as

vvvi = (Sb1(i), . . . ,Sbk(i)), i ∈ N.

Another possibility is to fix the base b, and choose k linear
transformations that are then applied to the digits ar(i) from
the expansion of i− 1 before being used in (5) to define a
real number between 0 and 1. More precisely, let M1, . . . ,Mk
be (unbounded) “∞×∞” matrices with entries in Zb and let

S
M j
b (i) =

∞

∑
r=0

∞

∑
l=0

mr+1,l+1al(i)b−r−1, (6)

where mr,l is the element in the rth row and lth column of
M j. Here we assume for simplicity that b is prime and all
operations in (6) are performed in the finite field Fb. One can
then define a sequence of points in [0,1)k by taking

vvvi = (SM1
b (i), . . . ,SMk

b (i)) (7)

as its ith point. Sobol’ was the first to propose such a construc-
tion, working in base 2 and defining the matrices M1, . . . ,Mk
so that he was able to prove that the obtained sequence has
D∗(Pn) ∈ O(n−1 logk n); see Sobol’ (1967).

We also point out that Halton sequences can be general-
ized using the same idea as in (7). That is, one can choose
matrices M1, . . . ,Mk with the elements of M j in Zb j , and
“scramble” the digits of the expansion of i−1 before revert-
ing them via (5) to produce a number between 0 and 1. A
very simple way to achieve this is via diagonal matrices M j,
each containing a well-chosen element (or factor) of Zb j . In
our numerical experiments, we use such an approach, with
the factors provided in Faure and Lemieux (2009); see the R
package qrng for an implementation.

2.3 Randomized quasi-Monte Carlo

In contrast to the error rate O(n−1/2) for Monte Carlo meth-
ods based on PRNGs, approximations based on QRNGs have
the advantage of having an error in O(n−1 logk n) when the
function of interest Ψ is of bounded variation. However, in
practice it is also important to be able to estimate the corre-
sponding error. While bounds such as the Koksma–Hlawka

inequality are useful to understand the behaviour of approxi-
mations based on quasi-random sequences, they do not pro-
vide a practical way to estimate the error. To circumvent this
problem, an approach that is often used is to randomize a
low-discrepancy point set in such a way that its high uni-
formity (or low discrepancy) is preserved, but at the same
time unbiased estimators can be constructed (and sampled)
from it. Another advantage of this approach is that variance
expressions can be derived and compared with Monte Carlo
sampling for wider classes of functions, i.e., not necessarily
of bounded variation (see Owen (1997a), Lemieux (2009)
and the references therein). This approach gives rise to ran-
domized quasi-Monte Carlo (RQMC) methods.

To apply this approach, we need a randomization function
r : [0,1)s× [0,1)k→ [0,1)k with s≥ k such that for any fixed
vvv ∈ [0,1)k, we have that if UUU ′ ∼ U[0,1]s, then r(UUU ′,vvv) ∼
U[0,1]k. Hence the individual RQMC samples have the same
properties as those from a random sample; the difference lies
in the fact that the RQMC samples are dependent.

An early randomization scheme originally proposed by
Cranley and Patterson (1976) is to take

r(UUU ′,vvv) = (vvv+UUU ′) mod 1. (8)

A randomized point set is then obtained by generating a
uniform vector UUU ′ and letting P̃n(UUU ′) = {ṽvv1, . . . , ṽvvn}, where
ṽvvi = r(UUU ′,vvvi), i∈ {1, . . . ,n}. Hence the same shift UUU ′ is ap-
plied to all points in Pn. If we let UUU ′1, . . . ,UUU

′
B be independent

U[0,1]s vectors, we can construct B i.i.d. unbiased estimators

µ̂
l
n =

1
n ∑

ṽvvi∈P̃n(UUU ′l)

Ψ(φC(ṽvvi)), l ∈ {1, . . . ,B}

for E[Ψ(UUU)], whose variances can be estimated via the sam-
ple variance of µ̂1

n , . . . , µ̂
B
n .

In addition to the simple random shift described in (8),
several other randomization schemes have been proposed and
studied. A popular randomization method for digital nets is to
“scramble” them, an idea originally proposed by Owen (1995)
and subsequently studied by Owen (1997a), Owen (1997b),
Owen (2003), Matousěk (1998) and Hong and Hickernell
(2003), among others.

A simpler randomization for digital nets is to use the dig-
ital counterpart of (8), where instead of adding two real num-
bers modulo 1, we add (in Zb) the digits of their base b ex-
pansion. That is, for u = ∑

∞
r=0 urb−r−1 and v = ∑

∞
r=0 vrb−r−1,

we let

u⊕b v =
∞

∑
r=0

((ur + vr) mod b)b−r−1

and define r(uuu,vvv) = uuu⊕b vvv, where the⊕b operation is applied
component-wise to the k coordinates of uuu and vvv. The same
idea can be applied to randomize Halton sequences (as shown,
e.g., in Lemieux (2009)), but where a different base b is used
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in each of the k coordinates. Digital shifts for the Sobol’ and
generalized Halton sequences are available in our R package
qrng.

3 Quasi-random copula samples

Sampling procedures for a d-dimensional copula C can be
viewed as transformations φC : [0,1]k→ [0,1]d for some k ≥
d, such that, for UUU ′ ∼ U[0,1]k, UUU := φC(UUU ′) ∼ C; that is,
φC transforms independent U[0,1] random variables to d
dependent random variables with distribution function C.

The case k = d is mostly known and applied as condi-
tional distribution method (CDM) and involves the inver-
sion method for sampling univariate conditional copulas (al-
though, for example, for Archimedean copulas another trans-
formations φC with k = d is known; see Wu et al (2006)).
This approach thus naturally uses d independent U[0,1] ran-
dom variables as input. The case k ≥ d (often: k > d) is
typically known as stochastic representation and is usually
based on sampling k univariate random variables from ele-
mentary probability distributions, as we will see in Section
3.2.

In what follows we consider the above two approaches
and show how they can be adapted to quasi-random number
generation.

3.1 Conditional distribution method and other one-to-one
transformations (k = d)

3.1.1 Theoretical background

The only known general sampling approach which works for
any copula is the CDM. For j ∈ {2, . . . ,d}, let

C j|1... j−1 =C(u j |u1, . . . ,u j−1)

= P(U j ≤ u j |U1 = u1, . . . ,U j−1 = u j−1)

denote the conditional copula of U j at u j given U1 = u1, . . . ,
U j−1 = u j−1. If

C−j|1... j−1 =C−(u j |u1, . . . ,u j−1)

denotes the corresponding quantile function, the CDM is
given as follows; see Embrechts et al (2003) or (Hofert 2010,
p. 45).

Theorem 1 (Conditional distribution method) Let C be a
d-dimensional copula, UUU ′ ∼ U[0,1]d , and φ CDM

C be given by

U1 =U ′1,

U2 =C−2|1(U
′
2 |U1),

...

Ud =C−d|1...d−1(U
′
d |U1, . . . ,Ud−1).

Then UUU = (U1, . . . ,Ud) = φ CDM
C (UUU ′)∼C.

To find the conditional copulas C j|1... j−1, for j ∈ {2, . . . ,d},
for a specific copula C, the following result (which holds un-
der mild assumptions) is often applied. A rigorous proof can
be found in (Schmitz 2003, p. 20), an implementation is pro-
vided by the function cCopula() in the R package copula.
The corollary that follows is an immediate consequence of
Sklar’s theorem, for example.

Theorem 2 (Computing conditional copulas) Let C be a
d-dimensional copula, which, for d ≥ 3, admits continuous
partial derivatives with respect to the first d−1 arguments.
For j ∈ {2, . . . ,d} and ul ∈ [0,1], l ∈ {1, . . . , j},

C j|1... j−1 =
D j−1...1 C1... j

D j−1...1 C1... j−1

=
D j−1...1 C1... j

c1... j−1
, (9)

where D j−1...1 denotes the derivative with respect to the first
j− 1 arguments, C1... j denotes the marginal copula corre-
sponding to the first j components and c1... j−1 denotes the
density of C1... j−1. If C admits a density, then (9) equals

C j|1... j−1 =

∫ u j
0 c1... j(u1, . . . ,u j−1,z j)dz j

c1... j−1
. (10)

Corollary 1 (Conditional copulas for general multivari-
ate distributions) Let H be a d-dimensional absolutely con-
tinuous distribution function with density h, margins F1, . . . ,Fd
and copula C. For j∈{2, . . . ,d} and ul ∈ [0,1], l ∈{1, . . . , j},

C j|1... j−1

= H j|1..., j−1(F
−
j (u j) |F−1 (u1), . . . ,F−j−1(u j−1)) (11)

=

∫ F−j (u j)

−∞ h1... j(F−1 (u1), . . . ,F−j−1(u j−1),z j)dz j

h1... j−1(F−1 (u1), . . . ,F−j−1(u j−1))
. (12)

3.1.2 Examples

We now present several copula families and show how the
corresponding conditional copulas and their inverses can be
computed.

Elliptical copulas

An elliptical copula describes the dependence structure of
an elliptical distribution; for the latter, see Cambanis et al
(1981), Embrechts et al (2002), Embrechts et al (2003), or
(McNeil et al 2005, Sections 3.3, 5). The most prominent
two families in the class of elliptical copulas are the Gauss
and the t copulas.
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Gauss copulas. Gauss copulas are given by

CGa
P (uuu) = ΦP(Φ

−1(u1), . . . ,Φ
−1(ud)),

where ΦP denotes the d-variate normal distribution func-
tion with location vector 000 and scale matrix P (a correla-
tion matrix) and Φ−1 is the standard normal quantile func-
tion. Consider the dimension to be j and let XXX ∼ ΦP with
XXX = (XXX1:( j−1),X j). Furthermore, assume

P =
(P1:( j−1),1:( j−1) P1:( j−1), j

Pj,1:( j−1) Pj, j

)
to be positive definite. It follows from (Fang et al 1990, p. 45
and 78) that

X j |XXX1:( j−1) = xxx1:( j−1) ∼N (µ j|1:( j−1)(xxx1:( j−1)),Pj|1:( j−1)),

where

µ j|1:( j−1)(xxx1:( j−1)) = Pj,1:( j−1)
(
P1:( j−1),1:( j−1)

)−1xxx1:( j−1),

Pj|1:( j−1) = Pj, j−Pj,1:( j−1)
(
P1:( j−1),1:( j−1)

)−1P1:( j−1), j;
(13)

so H j|1... j−1 is again normal. With Φ−1(uuu1:( j−1))= (Φ−1(u1),

. . . ,Φ−1(u j−1)), it follows from (11) that

C j|1... j−1 = H j|1... j−1(Φ
−1(u j) |Φ−1(uuu1:( j−1)))

= Φµ j|1:( j−1)(Φ
−1(uuu1:( j−1))),Pj|1:( j−1)

(Φ−1(u j))

= Φ

(
Φ−1(u j)−µ j|1:( j−1)(Φ

−1(uuu1:( j−1)))√
Pj|1:( j−1)

)
and thus that

C−j|1... j−1

= Φ
(
Φ
−1
µ j|1:( j−1)(Φ

−1(uuu1:( j−1))),Pj|1:( j−1)
(u j)

)
= Φ

(
µ j|1:( j−1)(Φ

−1(uuu1:( j−1)))+
√

Pj|1:( j−1)Φ
−1(u j)

)
.

An implementation of this inverse is provided via cCopula(,
inverse=TRUE) in the R package copula.

t copulas. t copulas are given by

Ct
ν ,P(uuu) = tν ,P(t−1

ν (u1), . . . , t−1
ν (ud)),

where tν ,P denotes the d-variate tν distribution function with
location vector 000 and scale matrix P (a correlation matrix)
and t−1

ν is the standard tν quantile function. The following
proposition provides formulas for the conditional copulas
and their inverses; see (Fang et al 1990, Section 2.5) and (Joe
2014, Section 2.7) for more details.

Proposition 1 (Conditional t copulas and inverses) With
the notation as in the Gauss case and

P−1 =
(P−1

1:( j−1),1:( j−1) P−1
1:( j−1), j

P−1
j,1:( j−1) P−1

j, j

)
,

the conditional t copula at u j, given u1, . . . ,u j−1, and its
inverse are given by

C j|1... j−1 = tν+ j−1

(
s1

(√
P−1

j, j t−1
ν (u j)+ s2

))
,

C−j|1... j−1 = tν

( t−1
ν+ j−1(u j)/s1− s2√

P−1
j, j

)
,

where s1 = s1(xxx1:( j−1)) and s2 = s2(xxx1:( j−1)) for xxx1:( j−1) =

(t−1
ν (u1), . . . , t−1

ν (u j−1)) and

s1(xxx1:( j−1)) =

√√√√ ν + j−1

ν + xxx>1:( j−1)

(
P1:( j−1),1:( j−1)

)−1xxx1:( j−1)

,

s2(xxx1:( j−1)) = xxx>1:( j−1)P
−1
1:( j−1), j/

√
P−1

j, j .

Figure 2 displays 1000 samples from a t copula with
three degrees of freedom and correlation parameter ρ =

P1,2 = 1/
√

2 (Kendall’s tau equals 0.5), once drawn with
a PRNG (top) and once with a QRNG (bottom). We can
visually confirm in this case that the low discrepancy of the
latter is preserved. How this seemingly good feature trans-
lates into better estimators of the form (2) will be studied
further through the theoretical results of Section 4 and the
numerical experiments of Section 5.

Archimedean copulas

An (Archimedean) generator is a continuous, decreasing
function ψ : [0,∞]→ [0,1] which satisfies ψ(0) = 1, ψ(∞) =

limt→∞ ψ(t)= 0, and which is strictly decreasing on [0, inf{t :
ψ(t) = 0}]. A d-dimensional copula C is called Archimedean
if it permits the representation

C(uuu) = ψ(ψ−1(u1)+ · · ·+ψ
−1(ud)),

where uuu = (u1, . . . ,ud) ∈ [0,1]d , and for some generator ψ

with inverse ψ−1 : [0,1]→ [0,∞], where ψ−1(0) = inf{t :
ψ(t) = 0}. For applications and the importance of Archime-
dean copulas in the realm of finance and insurance, see, e.g.,
Hofert et al (2013).

McNeil and Nešlehová (2009) show that a generator de-
fines an Archimedean copula if and only if ψ is d-monotone,
meaning that ψ is continuous on [0,∞], admits derivatives
ψ(l) up to the order l = d− 2 satisfying (−1)lψ(l)(t) ≥ 0
for all l ∈ {0, . . . ,d− 2}, t ∈ (0,∞), and (−1)d−2ψ(d−2)(t)
is decreasing and convex on (0,∞).
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Figure 2 1000 realizations of a t copula with three degrees of free-
dom and correlation parameter ρ = 1/

√
2 (Kendall’s tau equals 0.5),

generated by a PRNG (top) and by a QRNG (bottom).

Assuming ψ to be sufficiently often differentiable, condi-
tional Archimedean copulas follow from Theorem 2 and are
given by

C j|1... j−1 =
ψ( j−1)

(
∑

j
l=1 ψ−1(ul)

)
ψ( j−1)

(
∑

j−1
l=1 ψ−1(ul)

) , (14)

where ul ∈ [0,1], l ∈ {1, . . . , j}, and thus

C−j|1... j−1

= ψ

(
ψ

( j−1)−1
(

u jψ
( j−1)

( j−1

∑
l=1

ψ
−1(ul)

))
−

j−1

∑
l=1

ψ
−1(ul)

)
.

(15)

The generator derivatives ψ( j−1) and their inverses ψ( j−1)−1

can be challenging to compute. The former are known explic-
itly for several Archimedean families and certain generator
transformations; see Hofert et al (2012) for more details. To
compute the inverses, one can use numerical root-finding on
[0,1]; see cCopula(..., inverse=TRUE) in the R pack-
age copula. This can be applied, e.g., in the case of Gumbel
copulas.

The following example shows the case of a Clayton cop-
ula family, for which (15) can be given explicitly and thus
where the CDM is tractable; this explicit formula is also
utilized by cCopula(, inverse=TRUE).

Example 1 (Clayton copulas) If ψ(t) = (1+ t)−1/θ , t ≥ 0,
θ > 0, denotes a generator of the Archimedean Clayton
copula, then ψ( j)(t) = (−1) j(1+ t)−( j+1/θ)

∏
j−1
l=0 (l +1/θ).

Therefore, (14) equals

C j|1... j−1 =

(
1− j+∑

j
l=1 u−θ

l

2− j+∑
j−1
l=1 u−θ

l

) j−1/θ

and (15) equals

C−j|1... j−1 =(
1+
(

1− ( j−1)+
j−1

∑
l=1

u−θ

l

)(
u j
− 1

j−1+1/θ −1
))− 1

θ

.

Figure 1 displays 1000 samples from a Clayton copula with
θ = 2 (Kendall’s tau equals 0.5), once drawn with a PRNG
(top) and once with a QRNG (bottom).

Marshall–Olkin copulas

A class of bivariate copulas for which C−2|1 is explicit is the

class of Marshall–Olkin copulas C(u1,u2) = min{u1−α1
1 u2,

u1u1−α2
2 }, α1,α2 ∈ (0,1), where one can show that

C−2|1 =


u

α1
1

1−α1
u2, if u2 ∈

[
0,(1−α1)u

α1(
1

α2
−1)

1

]
,

uα1/α2
1 , if u2 ∈

(
(1−α1)u

α1(
1

α2
−1)

1 , u
α1(

1
α2
−1)

1

)
,

u
1

1−α2
2 , if u2 ∈

[
u

α1(
1

α2
−1)

1 ,1
]
.

Figure 3 shows 1000 samples, once drawn from a PRNG
(top) and once from a QRNG (bottom). Here again we can
visually confirm the low discrepancy.

Another class of copulas not discussed in this section
which is naturally sampled with the CDM and thus can easily
be adapted to construct corresponding quasi-random numbers
is the class of pair copula constructions; see, e.g., Kurowicka
and Cooke (2007). For this purpose, we modified the function
RVineSim() in the R package VineCopula (version ≥ 1.3).
It now allows to pass a matrix of quasi-random numbers to be
transformed to the corresponding samples from a pair copula
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Figure 3 1000 realizations of a Marshall–Olkin copula with α1 = 0.25
and α2 = 0.75 (Kendall’s tau equals roughly 0.23), generated by a
PRNG (top) and by a QRNG (bottom).

construction; see the vignette qrng in the R package copula
for examples. Note that if sampling of the R-vine involves
numerical root-finding (required for certain copula families),
the corresponding numerical inaccuracy may have an effect
on the low discrepancy of the generated samples.

3.2 Stochastic representations (k ≥ d, typically k > d)

3.2.1 Theoretical background

As mentioned above, pair-copula constructions are one of the
rare copula classes for which the CDM is applied in practice.
For most other copula classes and families, faster sampling
algorithms derived from stochastic representations of UUU ∼C

are known, especially for d� 2. They are mostly class- and
family-specific, as can be seen in the examples below.

3.2.2 Examples

Elliptical copulas

Gauss and t copulas are typically sampled via their stochastic
representations.

Gauss copulas. A random vector XXX ∼ΦP admits the stochas-
tic representation XXX = AZZZ where A denotes the lower trian-
gular matrix from the Cholesky decomposition P = AA>

and ZZZ is a vector of d independent standard normal random
variables. A random vector UUU ∼CGa

P thus admits the stochas-
tic representation Φ(XXX) = Φ(AZZZ) for ZZZ = (Φ−1(U ′1), . . . ,
Φ−1(U ′d)) and UUU ′ ∼ U[0,1]d ; here Φ is assumed to act on
AZZZ component-wise. Note that for Gauss copulas, this sam-
pling approach is equivalent to the CDM.

t copulas. A random vector XXX ∼ tν ,P admits the stochastic
representation XXX =

√
WAZZZ where A and ZZZ are as above and

W = 1/Γ for Γ following a Gamma distribution with shape
and rate equal to ν/2. A random vector UUU ∼Ct

ν ,P thus admits
the stochastic representation tν(XXX) = tν(

√
WAZZZ); as before,

tν is assumed to act on
√

WAZZZ component-wise. Note that
for t copulas with finite ν , this sampling approach is different
from the CDM.

Archimedean copulas

The conditional independence approach behind the Marshall–
Olkin algorithm for sampling Archimedean copulas is one
example for transformations φC for k > d; see Marshall and
Olkin (1988). For this algorithm, k = d + 1 and one uses
the fact that for an Archimedean copula C with completely
monotone generator ψ ,

UUU = (ψ(E1/V ), . . . ,ψ(Ed/V ))∼C, (16)

where V ∼ F = L S −1[ψ], independent of E1, . . . ,Ed ∼
Exp(1); here, F = L S −1[ψ] denotes the distribution func-
tion corresponding to ψ by Bernstein’s Theorem (L S −1[·]
denotes the inverse Laplace–Stieltjes transform). To give an
explicit expression for the transformation φC = φ MO

C in this
case, we assume that v1 is used to generate V via the inversion
method, and v j+1 is used to generate E j, for j ∈ {1, . . . ,d}.
Then we have that φ MO

C = (φ MO
C,1 , . . . ,φ MO

C,d ), where

φ
MO
C, j = φ

MO
C, j (v1,v j+1) = ψ

(
− logv j+1

F−(v1)

)
, j ∈ {1, . . . ,d}.

(17)

We can use a low-discrepancy sequence in k = d +1 di-
mensions to produce a sample based on this method. Having
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k = d +1 instead of k = d is a slight disadvantage, since it is
well known that the performance of QMC methods tends to
deteriorate with increasing dimensions.

To explore the effect of the transformation φC on Pn, we
generated 1000 realizations of a three-dimensional Halton
sequence; see the top of Figure 4 where we used different
markers for points falling in two non-overlapping regions in
[0,1)2. The first two of the three dimensions are then mapped
via φ CDM

C (see the bottom of Figure 4) to a Clayton copula
with parameter θ = 2 (such that Kendall’s tau equals 0.5). As
we can see, the non-overlapping marked regions remain non-
overlapping after the one-to-one transformations have been
applied. To study the effect of the Marshall-Olkin algorithm,
we look at when the first dimension of the Halton sequence
is mapped to a Gamma Γ (1/θ ,1) distribution by inversion
of v1(the distribution of V in (16) for a Clayton copula) and
the last two to unit exponential distributions (by inversion of
1−v j for j = 2,3, so that the obtained u j is increasing in each
of v1 and v j+1 for j = 1,2). The top of Figure 5 shows the sec-
ond and third coordinates of the Halton sequence, and marks
the points belonging to two different three-dimensional inter-
vals (this is why not all two-dimensional points are marked
in the two-dimensional projected regions). We see on the
bottom of Figure 5 that here again, the marked regions re-
main non-overlapping. However, it should also be clear that
two points in a given interval defined over the second and
third dimension could end up in very different locations after
this transform, if the corresponding first coordinates are far
apart. Hence, the fact that the Marshall-Olkin transform uses
k = d+1 uniforms (and thus is not one-to-one) makes it more
challenging to understand its effect when used with quasi-
random numbers. On the other hand, because it is designed so
that the first uniform v1 is very important, it may work quite
well with QMC since these methods are known to perform
better when a small number of variables are important (i.e.,
see Dick and Pillichshammer (2010); Lemieux (2009)). This
combination (QRNG with the Marshall–Olkin approach) is
studied further in Section 4, with numerical results provided
in Section 5.

Marshall–Olkin copulas

Bivariate (d = 2) Marshall–Olkin copulas C also allow for a
stochastic representation in our framework φC for k > d. For
example, it is easy to check that for (U ′1,U

′
2,U

′
3)∼ U[0,1]3,

(max{U
′ 1

1−α1
1 , U

′ 1
α1

3 }, max{U
′ 1

1−α2
2 , U

′ 1
α2

3 })∼C.

This construction can be generalized to d > 2 (but we omit
further details about Marshall–Olkin copulas in the remaining
part of this paper).
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Figure 4 1000 realizations of the first two components of a three-
dimensional Halton sequence with marked points (4 and +) in the
respective regions [0,

√
1/8]2 and [1−

√
1/8,1]2 (top): corresponding

φ CDM
C -transformed points (bottom) to a Clayton copula with θ = 2

(Kendall’s tau equals 0.5).

3.3 Words of caution

The plots showing copula samples obtained from QRNGs
that we have seen so far have been promising, in that the ad-
ditional uniformity (or low discrepancy) compared to pseudo-
sampling was visible. Here we want to add a word of cau-
tion to the effect that it is crucial to work with high quality
quasi-random numbers, as defects that exist with respect
to their uniformity on the unit cube will translate into poor
copula samples. Figure 6 illustrates this by showing two-
dimensional copula samples obtained from quasi-random
numbers of poor quality, corresponding to the projection on
coordinates (20,21) of the first 1000 points of the Halton
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Figure 5 1000 realizations of the second and third components of
a three-dimensional Halton sequence with marked points (4 and +)
corresponding to the respective regions [0,0.5]3 and [0.5,1]3 (top): cor-
responding φ MO

C -transformed points (bottom) to a Clayton copula with
θ = 2 (Kendall’s tau equals 0.5).

sequence (top) and a similar sample obtained from a gen-
eralized Halton sequence (bottom), which was designed to
address defects of this type in the Halton sequence. More
precisely, here the problem is that this particular projection
is based on the twin prime numbers 71 and 73 for the base.
Defects of this type are discussed further, e.g., in Morokoff
and Caflisch (1994).
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Figure 6 Samples obtained from Clayton copula with θ = 2 with the
CDM method based on coordinates 20 and 21 of the Halton sequence
(top) and the generalized Halton sequence (bottom).

4 Analyzing the performance of copula sampling with
quasi-random numbers

In this section, we discuss the two approaches outlined in the
introduction to analyze the validity of sampling algorithms
for copulas that are based on low-discrepancy sequences.

4.1 Composing the sampling method with the function of
interest Ψ

Our goal here is to assess the quality of a quasi-random
sampling method for copula models by viewing the transfor-
mation φC as being composed with the function Ψ of interest,
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so that we can work in the usual Koksma–Hlawka setting
based on uniform discrepancy measures.

Given that a copula transform φC = (φC,1, . . . ,φC,d) is
regular enough, denote its Jacobian by

JφC =
∂
(
φC,1, . . . ,φC,d

)
∂ (u1, . . . ,ud)

,

and write

E [Ψ(UUU)] =
∫
[0,1]d

Ψ(uuu)c(uuu)duuu

=
∫
[0,1]d

Ψ(φC(vvv))c(φC(vvv))|JφC(φC(vvv))|dvvv.

In the case of φC = φ CDM
C , one can easily show that

|JφC(φC(vvv))|= c(φC(vvv))−1, and thus

E [Ψ(UUU)] =
∫
[0,1]d

Ψ(φC(vvv))dvvv. (18)

While the properties of the CDM approach allow one to
directly show (18) in its integral form as done above, this
equality holds more generally for any transformation φC :
[0,1]k→ [0,1]d such that φC(UUU)∼C whenever UUU ∼U[0,1]k;
see also Caflisch (1998); Pillards and Cools (2006).

In the case where (18) holds, one can apply the Koksma–
Hlawka error bound (4) to transformed samples.

Proposition 2 (Koksma–Hlawka bound for a change of
variables) Let UUU ∼ C, φC such that (18) holds, and uuui =

φC(vvvi) for Pn = {vvvi, i = 1, . . . ,n} in [0,1]d . Then∣∣∣∣1n n

∑
i=1

Ψ(uuui)−E[Ψ(UUU)]

∣∣∣∣≤ D∗(Pn)V (Ψ ◦φC).

Note that V (Ψ) < ∞ does not imply V (Ψ ◦ φC) < ∞ in
general. To get further insight into the conditions required to
have a finite bound on the integration error, we work with a
slight variation of the above bound that is given in (Nieder-
reiter 1992, pp. 19–20) (see also (Hlawka and Mück 1972,
(4’)) and (Hlawka 1961, (4))), where the term V (Ψ ◦φC) is
replaced by an expression given in terms of the partial deriva-
tives of Ψ ◦φC assuming the latter exist and are continuous.
It is given by∣∣∣∣1n n

∑
i=1

Ψ(uuui)−E[Ψ(UUU)]

∣∣∣∣≤ D∗(Pn)‖Ψ ◦φC‖d,1,

where

‖Ψ ◦φC‖d,1 =

s

∑
l=1

∑
ααα

∫
[0,1)l

∣∣∣∣∂ lΨ ◦φC(vα1 , . . . ,vαl ,111)
∂vα1 · · ·∂vαl

∣∣∣∣dvα1 . . .dvαl

and the second sum is taken over all nonempty subsets
ααα = {α1, . . . ,αl} ⊆ {1, . . . ,d}. Furthermore, the notation 111
in Ψ ◦ φC(vα1 , . . . ,vαl ,111) means that each variable v j with

j /∈ {α1, . . . ,αl} is set to 1.

The following proposition provides sufficient conditions
on the functional Ψ and on the copula C to ensure that ‖Ψ ◦
φC‖d,1 < ∞ when φC = φ CDM

C .

Proposition 3 (Conditions to have bounded variation with
variable change in the CDM) Assume that Ψ has continu-
ous mixed partial derivatives up to total order d and there
exist m,M,K > 0 such that for all uuu ∈ (0,1)d , c(uuu)≥ m > 0,
Ci|1...i−1 =C(ui |u1, . . . ,ui−1) and∣∣∣∣∣ ∂ kCi|1...i−1

∂uα1 · · ·∂uαk

∣∣∣∣∣≤M, α1, . . . ,αk ∈ {1, . . . , i}, (19)

for each 1 ≤ k ≤ i ≤ d. Furthermore, assume that for all
1≤ k ≤ l ≤ d and {α1, . . . , αl} ⊆ {1, . . . ,d}, we have∣∣∣∣∂ kΨ(u1, . . . ,ud)

∂uβ1 · · ·∂uβk

∣∣∣∣≤ K, β j ∈ {α1, . . . ,αl}, 1≤ j ≤ k.

(20)

Then there exists a constant C(d) (independent of n but de-
pendent on Ψ ) such that for the choice φC = φ CDM

C , we have∣∣∣∣1n n

∑
i=1

Ψ(uuui)−E[Ψ(UUU)]

∣∣∣∣≤ D∗(vvv1, . . . ,vvvn)KC(d)(Md/m)2d−1,

where uuui = φ CDM
C (vvvi), i = 1, . . . ,n.

Proof See (Hlawka and Mück 1972, (11) and the remark
thereafter).

Remark 1 1) As we will see in the discussion preceding the
next proposition, in general, to ensure that ‖Ψ ◦φC‖d,1 <

∞ holds, a possible approach is to bound the mixed par-
tial derivatives involving Ψ and then to verify that the
mixed partial derivatives involving φC are integrable. As
explained in Hlawka and Mück (1972), Condition (19)
ensures that the latter condition is verified in the case of
the CDM (or Rosenblatt) transform, and avoids having
to deal with the function φC and its partial derivatives.
Unfortunately (and while it may seem easier to work with
the conditional copulas C j|1... j−1 than with φC), in many
cases the copulas involved do not have bounded mixed
partial derivatives everywhere, with singularities appear-
ing near the boundaries when one or more arguments are
0 or 1. A non-trivial case where we were able to verify
(19) is for the Eyraud-Farlie-Gumbel-Morgenstern copula
(see Jaworski et al (2010)), assuming the parameters are
chosen so that the density c(uuu) and thus the denominator
of C j|1... j−1 is bounded away from 0 for all uuu ∈ [0,1)d .
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2) We note that the conditions given in (20) are not the same
as those required to prove that

‖Ψ‖d,1 =
d

∑
l=1

∑
ααα

∫
[0,1)l

∣∣∣∣∂ lΨ(uα1 , . . . ,uαl ,111)
∂uα1 · · ·∂uαl

∣∣∣∣duα1 . . .duαl

is bounded; in the latter case, we only need to consider
mixed partial derivatives of order at most one in each
variable (since the α j’s are distinct). However, in (20), the
β j’s are not necessarily distinct. In particular, this means
that we need to consider the partial derivative of Ψ of
order d with respect to each variable and make sure it is
bounded.

Let us now move away from the CDM method and con-
sider a general transformation φC. In order to study ‖Ψ ◦
φC‖d,1, we first need to decompose mixed partial derivatives
of the form

∂ l(Ψ ◦φC)(vα1 , . . . ,vαl ,111)
∂vα1 · · ·∂vαl

in terms of Ψ and φC separately. To do so, we follow Hlawka
and Mück (1972), as well as (Constantine and Savits 1996,
Theorem 2.1), and obtain an expression for the mixed partial
derivative of a composition of functions via the representation

∂ lΨ ◦φC(vα1 , . . . ,vαl ,111)
∂vα1 · · ·∂vαl

= ∑
1≤|βββ |≤l

∂ |βββ |Ψ

∂ β1u1 . . .∂ βd ud

l

∑
s=1

∑
γ,kkk

cγ

s

∏
j=1

∂ |γ j |φC,k j(vα1 , . . . ,vαl ,111)
∂

γ j,1vα1 . . .∂
γ j,l vαl

(21)

where βββ ∈ Nd
0 and |βββ | = ∑

d
j=1 β j. Here we do not specify

over which values of γ j and k j the inner sum in the above
expression is taken: details can be found in the proof of
Proposition 4. But let us point out that in the product over
j, each index α1, . . . ,αl appears exactly once. On the other
hand – and as noted in item 2) of Remark 1 above – in the
mixed partial derivative of Ψ , a given variable can appear
with order larger than 1.

From (21), we see that a sufficient condition to show that
‖Ψ ◦ΦC‖d,1 < ∞ is to establish that all products of the form

∂ |βββ |Ψ

∂ β1u1 . . .∂ βd ud

s

∏
j=1

∂ |γ j |φC,k j(vα1 , . . . ,vαl ,111)
∂

γ j,1vα1 . . .∂
γ j,l vαl

, s ∈ {1, . . . , l},

(22)

are in L1.
We note that for the MO algorithm (assuming as we did in

(17) that v1 is used to generate V and v j+1 is used to generate
E j), φC, j is a function of v1 and v j+1 only, for j ∈ {1, . . . ,d}.
Hence the only partial derivatives of φC, j that are nonzero are
those with respect to variables in {v1,v j+1}. This observation

is helpful to prove the following result, which shows that the
error bound obtained when using the MO algorithm has the
desired behavior induced by the low-discrepancy point set
used to generate the copula samples; note that it does not
show that Ψ ◦ΦC has bounded variation. Its proof can be
found in the appendix.

Proposition 4 (Error behaviour for MO for continuous
V ) Let φ MO

C be the transformation associated with the Mar-
shall–Olkin algorithm, as given in (17), and that V ∼ F is
continuously distributed. Let Pn = {vvvi, i = 1, . . . ,n} be the
point set in [0,1)d+1 used to produce copula samples via the
transformation φ MO

C and let uuui = φ MO
C (vvvi). If

1) the point set Pn excludes the origin and there exists some
p≥ 1 such that min1≤i≤n vi,1 ≥ 1/pn;

2) the function Ψ satisfies |Ψ(uuu)|< ∞ for all uuu ∈ [0,1)d+1

and

∂ |βββ |Ψ

∂ β1u1 . . .∂ βd ud
< ∞ for all βββ = (β1, . . . ,βd), (23)

with βl ∈ {0, . . . ,d} and |βββ | ≤ d;
3) and the generator ψ(·) of the Archimedean copula C is

such that

a) ψ ′(t)+ tψ ′′(t) has at most one zero t∗ in (0,∞) and
it satisfies −t∗ψ ′(t∗)< ∞; and

b) F−1(1−1/pn) is in O(na) for some constant a > 0;

then there exists a constant C(d) (independent of n but depen-
dent on Ψ and φ MO

C ) such that∣∣∣∣1n n

∑
i=1

Ψ(uuui)−E[Ψ(UUU)]

∣∣∣∣≤C(d)(logn)D∗(Pn).

Remark 2 We note that if E[V ]< ∞, as is the case for Clay-
ton’s copula family, Condition 3) b) can be easily checked
via Markov’s inequality. In the case of the Gumbel cop-
ula, V has an α-stable distribution and it can be shown that
P(V > x)≤ cx−α for x≥ x0 and for some constant c, where
c and x0 depend both on the parameters of the distribution;
see (Nolan 2014, Theorem 1.12). Therefore F−1(1−1/pn)
can be bounded by a constant time na in this case (namely by
max{x0,(cpn)1/α}). As for Condition 3) a), one can show
that t∗ = θ and t∗ = 1 are the only zeros for the Clayton and
Gumbel copulas, respectively.

When F is discrete, we can split the problem into sub-
problems based on the value taken by V . Then, in each case,
the bounded variation condition is much easier to verify,
because the transformation φC given V is essentially one-
dimensional as it is mapping each v j to an exponential E j−1
for j ∈ {2, . . . ,d+1}. Its proof can be found in the appendix.

Proposition 5 (Error behaviour for the Marshall–Olkin
algorithm for discrete V ) Let φ MO

C be the transformation as-
sociated with the Marshall–Olkin algorithm, as given in (17)
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and assume C is an Archimedean copula whose distribution
function F of V is discrete. Let Pn = {vvvi, i = 1, . . . ,n} be the
point set in [0,1)d+1 used to produce copula samples via the
transformation φ MO

C and let uuui = φ MO
C (vvvi). If (23) holds and

1) there exists some p≥ 1 such that the point set Pn satisfies
max1≤i≤n vi,1 ≤ 1−1/pn;

2) there exist constants c > 0 and q ∈ (0,1) such that 1−
F(l)≤ cql for l ≥ 1;

then there exists a constant C(d) (independent of n but depen-
dent on Ψ and φ MO

C ) such that

∣∣∣∣∣1n n

∑
i=1

Ψ(uuui)−E[Ψ(UUU)]

∣∣∣∣∣≤C(d)(logn)D∗(Pn).

Remark 3 We note that the Frank, Joe and Ali-Mikhail-Haq
copulas are such that F is discrete. The condition on the tail of
F stated in the proposition can be shown to hold for the Frank
and Ali-Mikhail-Haq copulas, but not for the Joe copula (the
distribution of V in this case has a Sibuya distribution, for
which no moments exists, i.e., it has a very fat tail).

Let us now move on to RQMC methods. We already
mentioned that an advantage they have over their determinis-
tic counterparts is that expressions for their variance can be
obtained under weaker conditions than what is required to
get error expressions and bounds for deterministic sampling
schemes. The following result shows that similar variance
expressions also hold after composing Ψ with φC.

Proposition 6 (Variance expression with a change of vari-
ables) If P̃n = {ṽvv1, . . . , ṽvvn} is a randomly digitally shifted net
with corresponding RQMC estimator µ̂n =

1
n ∑

n
i=1Ψ(φC(ṽvvi))

and if Var(Ψ(UUU))< ∞ with UUU ∼C, then we have that

Var(µ̂n) = ∑
0006=hhh∈L ∗d

|Ψ̂ ◦φC(hhh)|2, (24)

where L ∗
d is the dual net of the deterministic net that has

been shifted to get P̃n, and f̂ (hhh) is the Walsh coefficient of f
at hhh, while

(Ψ̂ ◦φC)(hhh) = ∑
kkk∈Zd

Ψ̂(kkk)P(hhh,kkk),

P(hhh,kkk) =
∫
[0,1)d

e2πi(kkk·φC(www)−hhh·www)dwww

= E
[
e2πi(kkk·φC(WWW )−hhh·WWW )

]
, WWW ∼ U[0,1]d .

Proof It is clear from Theorem 3 in the appendix and us-
ing Representation (18) that (24) holds and the condition
Var(Ψ(UUU))< ∞ with UUU ∼C ensures it is finite. So what re-
mains to be shown is the expression for the Walsh coefficient

of the composed function Ψ ◦φC. It is obtained as follows:

(Ψ̂ ◦φC)(hhh) =
∫
[0,1)d

Ψ(φC(www))e−2πi〈hhh,www〉bdwww

=
∫
[0,1)d

∑
kkk∈Zd

Ψ̂(kkk)e2πi〈kkk,φC(www〉b)e−2πi〈hhh,www〉bdwww

= ∑
kkk∈Zd

Ψ̂(kkk)
∫
[0,1)d

e2πi(〈kkk,φC(www)〉b−〈hhh,www〉b)dwww

= ∑
kkk∈Zd

Ψ̂(kkk)P(hhh,kkk),

where the third equality holds thanks to Fubini’s theorem.

By adding assumptions on the smoothness of Ψ and thus
on the behavior of its Walsh coefficients, one could obtain
improved convergence rates for the variance given in (24)
compared to the O(1/n) we get with MC, something we plan
to study in future work.

4.2 Transforming the low-discrepancy samples

As mentioned in the introduction, we can think of φC as
transforming the point set Pn instead of being composed
with Ψ . The integration error can then be analyzed via a
generalized version of the Koksma–Hlawka inequality such
as the one studied in Aistleitner and Dick (2015), which we
now explain.

Similarly to the Lebesgue case we define the copula-
discrepancy function with respect to a copula-induced mea-
sure PC on an interval B (i.e., PC(B) = P(UUU ∈ B) for UUU ∼C)
as

EC(B;Pn) =
A(B;Pn)

n
−PC(B).

Let J be the set of intervals of [0,1)d of the form [aaa,bbb) =
∏

d
j=1[a j,b j), where 0≤ a j ≤ b j ≤ 1. The copula-discrepancy

DC of Pn is then defined as

DC(Pn) = sup
B∈J
|EC(B;Pn)|, (25)

and similarly for D∗C(Pn), the star-copula-discrepancy func-
tion when the sup in (25) is taken over J ∗ instead.

The generalization of the Koksma–Hlawka inequality
studied in (Aistleitner and Dick 2015, Theorem 1) then pro-
vides∣∣∣∣1n n

∑
i=1

Ψ(uuui)−E[Ψ(UUU)]

∣∣∣∣≤V (Ψ)D∗C(uuu1, . . . ,uuun),

where we assume uuui = φC(vvvi), i ∈ {1, . . . ,n}. To get some
insight on this upper bound, we need to know how D∗C(uuu1, . . . ,

uuun) behaves as a function of n. Unfortunately, in general we
cannot prove that D∗(vvv1, . . . ,vvvn)∈O(n−1 logd n) implies that
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D∗C(uuu1, . . . ,uuun)∈O(n−1 logd n). Here are a few things we can
say, though.

First, an obvious case for which discrepancy is preserved
is when φC maps rectangles to rectangles, because then
φC(B) ∈J for all B ∈J , and thus

DC(P̃n)≤ D(Pn),

D∗C(P̃n)≤ D∗(Pn),

where P̃n = {uuu1, . . . ,uuun}. However, this only happens when
C is the independence copula, and in this case the equality
holds. This is not a very interesting case since our focus here
is on dependence modelling.

For the more realistic setting where φC does not map
rectangles to rectangles, the following result from Hlawka
and Mück (1972) holds and gives a much slower convergence
rate for D∗C(P̃n).

Proposition 7 Let C be such that the Rosenblatt transform
φ
−1
C is Lipschitz continuous on [0,1]d w.r.t. the sup-norm
‖ · ‖∞, and {uuui = φC(vvvi)} for some sequence of points {vvvi}
in [0,1]d . Then

DC({uuu1, . . . ,uuun})≤ c(d)D({vvv1, . . . ,vvvn})1/d ,

for some function c(d), constant in n.

Note that the above results fully depend on the properties
of φC. The aim would then be to choose φC such that a low-
discrepancy sequence {φC(vvvi)} w.r.t. the copula measure PC
results whenever applied to a low-(Lebesgue-)discrepancy
sequence {vvvi}. A more fundamental approach would be to
directly produce a low-discrepancy sequence {uuui} where the
discrepancy is measured w.r.t. the copula measure C. This is
something we intend to study in future work.

Now, computing DC or D∗C is usually not feasible in prac-
tice. If we replace the sup-norm by the L2-norm, we obtain
L2-discrepancies which are usually more practical to com-
pute. Let L2-discrepancies TC(uuu1, . . . ,uuun) and T ∗C (uuu1, . . . ,uuun)

be defined by

TC(uuu1, . . . ,uuun)

=

(∫
{(yyy,zzz)∈[0,1]2d ;yi<zi}

(
A([yyy,zzz);Pn)

n
−PC([yyy,zzz))

)2

dyyydzzz
)1/2

,

and

T ∗C (uuu1, . . . ,uuun) =

(∫
[0,1]d

(
A([000,zzz);Pn)

n
−C(zzz)

)2

dzzz
)1/2

,

respectively. Proceeding similarly to Morokoff and Caflisch
(1994), T ∗C can be computed as

T ∗C (uuu1, . . . ,uuun)

=
1
n2

n

∑
k=1

n

∑
l=1

d

∏
i=1

(1−max(uk,i,ul,i))+
∫
[0,1]d

C(zzz)2dzzz

− 2
n

n

∑
k=1

∫ 1

uk,1

· · ·
∫ 1

uk,d

C(zzz)dzzz.

If we consider a convex combination C(u1, . . . ,ud) =

λ ∏
d
i=1 ui +(1−λ )min(u1, . . . ,ud), λ ∈ (0,1), of the inde-

pendence copula and the upper Fréchet–Hoeffding bound,
then one can compute T ∗C explicitly via

T ∗C (uuu1, . . . ,uuun) =
1
n2

n

∑
k=1

n

∑
l=1

d

∏
i=1

(1−max(uk,i,ul,i))+
λ 2

3d

+
2(1−λ )2

(d +1)(d +2)
+

2λ (1−λ )d!

∏
d
i=1(2i+1)

− λ

n2d−1

n

∑
k=1

d

∏
i=1

(1−u2
k,i)

− 2(1−λ )

n

n

∑
k=1

(
d

∑
i1=1

∑
i2 6=i1

∑
id 6=i1,...,id−1

1−ud+1
k,id

(d +1)!

−
d−1

∑
l=1

d

∑
i1=1

. . . ∑
il 6=i1,...,il−1

ul+1
k,il

(1−uk,il+1)

(l +1)!

)
.

5 Numerical results

Through typical examples from the realm of finance and in-
surance and a few test functions, we now illustrate in this
section the efficiency of QRNG in comparison to standard
(P)RNG for copula sampling. More precisely, we compare
Monte Carlo sampling approaches with two types of QRNGs
based on randomized low-discrepancy sequences: The Sobol’
sequence and the generalized Halton sequence, both random-
ized with a digital shift. Variance/error estimates are obtained
by using B = 25 i.i.d. copies of the randomized sequence and
comparisons are made with MC sampling based on the same
total number of replications. Each plot includes lines show-
ing n−0.5,n−1 and/or n−1.5 convergence rates. In addition, on
top of each plot and for each QRNG method, we provide
the regression estimate of α such that the variance/error is in
O(n−α). For PRNG, we only show the results with the CDM
sampling algorithm, since the choice of method does not
affect the error or variance very much. On the other hand, for
QRNG we show the results both with CDM and MO (when
applicable), as this seems to sometimes make a difference.
Understanding better why it is so and under what circum-
stances a sampling algorithm perform better when used in
conjunction with QRNG will be a subject of further research.

While the examples given in the next section illustrates
the use of our proposed method in typical contexts where
they might be used, the test functions results in the section
that follows are meant to focus on assessing the performance
of QRNG compared to PRNG on the sole basis of gener-
ating copula samples UUU – without including the effect of
the marginal distributions – and also to see if the sampling
algorithm (CDM or MO) has an effect on the performance of
QRNG.

Finally, we note that QRNG based on Sobol’ point sets
is typically slightly faster than PRNG, while the generalized
Halton sequence runs slower than PRNG.
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5.1 Examples from the realm of finance and insurance

Consider a random vector XXX = (X1, . . . ,Xd) modeling d risks
in a portfolio of stocks or insurance losses. We assume
that the jth marginal distribution is either log-normal with
X j ∼ LN(log(100)+ µ −σ2/2,σ2), j ∈ {1, . . . ,d}, where
µ = 0.0001 and σ = 0.2, or Pareto distributed with the same
mean and variance as in the log-normal case. The copula
C of XXX throughout this numerical study is either a Clayton
or an exchangeable t copula with three degrees of freedom.
To allow a comparable degree of dependence, we will use
the same Kendall’s tau for both models. This easily trans-
lates to the parameter θ of a Clayton copula via the rela-
tionship θ = 2τ(1− τ)−1 and to the correlation parameter ρ

of an exchangeable t copula via ρ = sin(πτ/2). We denote
S = ∑

d
j=1 X j and consider the estimation of the following

functionals Ψ(XXX):

the Best-Of Call option payoff (maxXi−K)+;
the Basket Call option payoff (d−1S−K)+;
the Value-at-Risk at level 0.99 on the aggregated risks

VaR0.99 (S) = F−1
S (0.99) = inf{x ∈ R : FS(x)≥ 0.99} ,

the expected shortfall at level 0.99 on the aggregated risks

ES0.99 (S) =
1

1−0.99

∫ 1

0.99
F−1

S (u)du;

the contribution of a given margin (without loss of gen-
erality, the first margin was chosen) to ES0.99 of the sum
under the Euler principle, see Tasche (2008)

E[X1 |S > F−1
S (α)];

we refer to this functional as Allocation First.

Figures 7, 8, 9, and 10 (as well as Figures 13 and 14 in
the online supplement) display selected variance estimates
for Clayton and t copulas with Kendall’s tau parameter equal
to 0.2 and 0.5, using either lognormal or Pareto margins, in
dimensions d = 5,10,20 (displayed in different rows) and
sample sizes n ∈ {10000,15000, . . . ,200000}. In the Clay-
ton case, the experiment uses both the MO and CDM sam-
pling methods. For the t copulas, while there is a sampling
approach based on a stochastic representation (as seen in
Section 3.2.2), there is no version of the MO algorithm avail-
able, so we only use the CDM method. In addition, both
the Sobol’ and generalized Halton QRNGs are used. In all
cases, we see that the variances associated with the Sobol’
and generalized Halton quasi-random sequences are smaller
and converge faster than the Monte Carlo variance. It is not
clearly determined whether one sampling method is perform-
ing considerably better than the other. But we note that in
some cases, such as the estimate of the Basket Call with
τ = 0.2 in d = 20 dimensions (Figure 7, bottom) the MO
sampling seems to perform better than CDM.
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Figure 7 Variance estimates for the functional Basket Call with log-
normal margins based on B = 25 repetitions for a Clayton copula with
parameter such that Kendall’s tau equals 0.2 for d = 5 (top), d = 10
(middle) and d = 20 (bottom).
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Figure 8 Variance estimates for the functional Best-Of Call with Pareto
margins based on B = 25 repetitions for an exchangeable t copula with
three degrees of freedom such that Kendall’s tau equals 0.5 for d = 5
(top), d = 10 (middle) and d = 20 (bottom).
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Figure 9 Variance estimates for the functional VaR0.99 with lognormal
margins for an exchangeable t copula with three degrees of freedom
such that Kendall’s tau equals 0.2 based on B = 25 repetitions for d = 5
(top), d = 10 (middle) and d = 20 (bottom).
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Figure 10 Variance estimates for the functional ES0.99 with Pareto
margins for a Clayton copula with parameter such that Kendall’s tau
equals 0.5 based on B = 25 repetitions for d = 5 (top), d = 10 (middle)
and d = 20 (bottom).

5.2 Test functions

We now consider integration results on two different test
functions. The results are shown in Figures 11, 12, 15, and
16 (the latter is in the online supplement), which are based on
a Clayton (or t) copula with τ = 0.2 and τ = 0.5, respectively.
The first test function is given by

Ψ1(uuu) = 3(u2
1 + . . .+u2

d)/d,

where the vector uuu is obtained after transforming the uniform
points vvv using either the CDM transform or the MO algorithm.
Recall that the former requires d-dimensional points (using
either a PRNG or a QRNG), whereas the latter requires (d +

1)-dimensional points. Note that Ψ1 integrates exactly to
1 with respect to the copula-induced measure, since U j ∼
U[0,1], j ∈ {1, . . . ,d}. While we know the exact value of the
integral in this case, we still compare estimators based on B
i.i.d. copies of either MC or RQMC, but we plot the average
absolute error rather than the estimated variance.

The second test function is given by

Ψ2(uuu) = g1((φ
CDM)−1(uuu)),

where

g1(vvv) =
d

∏
j=1

|4v j−1|+α j

1+α j
, α j = j,

which is often used as a test function in the QMC litera-
ture; see, e.g., Faure and Lemieux (2009) and the references
therein. So here we first apply the inverse of the CDM trans-
form to the copula-transformed points obtained either using
the CDM approach or MO, and then apply the d-dimensional
function g1. While this has the effect of simply applying the
standard test function g1 to the original sample points vvvi in
the case of the CDM, in the case of the MO algorithm, we
are not falling back on the original points vvvi. The hope is
that if MO does not preserve so well the low discrepancy of
the original points, this function would be able to detect this
problem.

While the second test function is mostly interesting for
Archimedean copulas, the first one can be used more gener-
ally. This is why in the results reported in Figures 11 and 12,
we also consider an exchangeable t copula with three degrees
of freedom and Kendall’s τ equal to 0.2.

For both test functions, we see that the Sobol’ and gen-
eralized Halton sequences always clearly outperform Monte
Carlo, with an error often converging in O(n−1) rather than
the O(n−0.5) corresponding to Monte Carlo. For the first
function Ψ1, both the CDM and MO methods perform about
the same. We believe this might be due to the simplicity of
Ψ1—a sum of univariate powers of the u j’s—and the fact
that both methods perform equally well in the univariate case
when combined with RQMC. Looking at the results for Ψ2,
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we see that with RQMC the CDM method performs better
than MO, as there is no copula transformation performed in
the case of CDM. However, RQMC with MO is still better
than Monte Carlo, which suggests that the MO algorithm
manages to preserve the low discrepancy of the original point
set.

Overall, the numerical results presented in this section
suggest that replacing PRNG by QRNG within algorithms
that sample from copulas reduces the variance of the obtained
estimators and typically also improve the convergence rate
of the variance. The improvement was seen across the range
of dimensions from 5 to 20 that were tested, and the different
functions considered. In small dimensions, different copula
sampling algorithms (CDM and MO) tend to perform sim-
ilarly, but when the dimension increases we sometimes see
differences in their performance, with so far neither of the
two algorithms clearly dominating the other.

6 Conclusion and discussion

The main goal of this paper was to show how copula samples
can be generated using quasi-random numbers. This is of
interest when replacing PRNGs by QRNGs in applications
involving dependent samples, possibly in higher dimensions.
We have seen that different sampling approaches can be used,
with a focus on the CDM approach and, additionally for Ar-
chimedean copulas, on the Marshall–Olkin algorithm. We
have studied the error behaviour for both methods and have
seen that in order to prove that the composed function Ψ ◦φC
is smooth enough to satisfy the Koksma–Hlawka bound for
the error, sufficient conditions on the function Ψ are that it
must have smooth higher order mixed partial derivatives. For
the Marshall–Olkin algorithm, we have shown that for several
Archimedean copula families, the corresponding transforma-
tion φC is smooth enough to guarantee the good behaviour of
the error bound. The superiority of QRNG over PRNG for
copula sampling was illustrated on several examples, includ-
ing a simulation addressing an application in the realm of
finance and insurance. Most of the results in this paper are
reproducible using the R packages copula and qrng.

Some ideas for future work would be to follow-up on
Proposition 6 and to analyze the speed of decay of the Walsh
coefficients of the composed function Ψ ◦φC, based on as-
sumptions on the speed of decay of the Walsh coefficients of
Ψ and the properties of the sampling method φC.

Concerning the copula-induced discrepancy studied in
Section 4.2, a possible avenue for future research would be to
construct point sets that directly minimize this discrepancy,
without first transforming a (uniform-based) low-discrepancy
sample. In addition, proving error bounds based on the L2-
discrepancy would be useful, as this discrepancy measure is
easier to compute. Finally, numerically computing the copula-
induced discrepancy for samples transformed either using
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Figure 11 Average absolute errors for the test functions Ψ1(uuu) = 3(u2
1+

. . .+u2
d)/d (top) and Ψ2(uuu) = g1((φ

CDM)−1(uuu)) (bottom) for a Clayton
copula with parameter such that Kendall’s tau equals 0.2 based on
B = 25 repetitions for d = 5; the middle plot shows results for Ψ1(uuu)
and an exchangeable t copula with 3 degrees of freedom and Kendall’s
tau of 0.2.
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Figure 12 Average absolute errors for the test functions Ψ1(uuu) = 3(u2
1+

. . .+ u2
d)/d (top), Ψ2(uuu) = KC(C(uuu)) + 1/2 (middle), and Ψ3(uuu) =

g1((φ
CDM)−1(uuu)) (bottom) for a Clayton copula with parameter such

that Kendall’s tau equals 0.2 based on B = 25 repetitions for d = 15;
the middle plot shows results for Ψ1(uuu) and an exchangeable t copula
with 3 degrees of freedom and Kendall’s tau of 0.2.

the CDM or the MO algorithm would give us some insight
as to how conservative the bound given in Proposition 7 is.
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Appendix

For all the randomization schemes mentioned in Section 2, in addition
to having a simple method to estimate the variance of the corresponding
RQMC estimator, results giving exact expressions for this variance are
also known and typically rely on using a well-chosen series expansion
of the function Ψ of interest. The following result recalls this variance
expression in the case of randomly digitally shifted net; see Lemieux
(2009) for a detailed proof. This result is used in the proof of Proposition
6 in Section 4.1.

Theorem 3 (Variance for randomly digitally shifted nets) Let P̃n =
{ṽvv1, . . . , ṽvvn} be a randomly digitally shifted net in base b with corre-
sponding RQMC estimator µ̂n given by

µ̂n =
1
n

n

∑
i=1

Ψ(ṽvvi)

and assume Var(Ψ(UUU))< ∞ for UUU ∼U [0,1)d . Then we have that

Var(µ̂n) = ∑
0006=hhh∈L ∗d

|Ψ̂(hhh)|2,

where Ψ̂(hhh) is the Walsh coefficient of Ψ at hhh, given by

Ψ̂(hhh) =
∫
[0,1)d

f (uuu)e−2πi〈hhh,uuu〉b duuu

where 〈hhh,uuu〉b = 1
b ∑

d
j=1 ∑

∞
l=0 h j,lu j,l+1 with h j,l and u j,l obtained from

the base b expansion of h j and u j , respectively, and L ∗
d = {hhh ∈ Zd :

〈hhh,vvvi〉b ∈ Z,∀i = 1, . . . ,n} is the dual net of the deterministic net Pn =
{vvvi, i = 1, . . . ,n} that has been shifted to get P̃n.

Proofs

Proof (Proof of Proposition 4) We start by providing more details on
the expression (21), which is given by:

∂ lΨ ◦φC(vα1 , . . . ,vαl ,111)
∂vα1 · · ·∂vαl

=

∑
1≤|βββ |≤l

∂ |βββ |Ψ

∂ β1 u1 . . .∂ βd ud

l

∑
s=1

∑
(kkk,γγγ)∈ps(βββ ,ααα)

cγ

s

∏
j=1

∂ |γ j |φC,k j (vα1 , . . . ,vαl ,111)
∂

γ j,1 vα1 . . .∂
γ j,l vαl

where βββ ∈Nd
0 , |βββ |= ∑

d
j=1 β j , and the set ps(βββ ,ααα) includes pairs (kkk,γγγ)

such that kkk is an s-dimensional vector kkk = (k1, . . . ,ks) where each k j ∈
{1, . . . ,d}, and γγγ is an sl-dimensional vector γγγ = (γγγ1, . . . ,γγγs) where
each γγγ j is an l-dimensional vector whose entries are either 0 or 1, and
∑

s
j=1 γ j,i = 1 for i ∈ {1, . . . , l}. Finally, the cγγγ are constants, which are

defined in detail in Constantine and Savits (1996), along with further
information on the precise definition of ps(kkk,γγγ).

As mentioned in Section 4.1, a sufficient condition to show that
‖Ψ ◦ΦC‖d,1 < ∞ is to establish that all products of the form (22) are in
L1, which we recall is given by

∂ |βββ |Ψ

∂ β1 u1 . . .∂ βd ud

s

∏
j=1

∂ |γ j |φC,k j (vα1 , . . . ,vαl ,111)
∂

γ j,1 vα1 . . .∂
γ j,l vαl

,
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for s ∈ {1, . . . , l} and (kkk,γγγ) ∈ ps(βββ ,ααα).
Recall also that for the MO algorithm, φC,l is a function of v1 and

vl+1 only, for l = 1, . . . ,d. Hence the only partial derivatives of φC,l that
are nonzero are those with respect to variables in {v1,vl+1}.

Now, since we assume that (23) holds, then it means we just need
to show that the product found in (22) is in L1, under the conditions
stated in the proposition. In turn, we first show that this holds if the
following bounds hold for the mixed partial derivatives of φC:∫ 1

0

∣∣∣∣∂φC,l(v1 = 1,vl+1)

∂vl+1

∣∣∣∣dvl+1 < ∞, (26)

∫
[0,1)l

∣∣∣∣∣∂ 2φC,1(v1,v2)

∂v1∂v2

l−1

∏
j=2

∂φC, j(v1,v j+1)

∂v j+1

∣∣∣∣∣dv1dv2 . . .dvl < ∞, and

(27)∫
[0,1)l−1

∣∣∣∣∂φC,r(v1,vr+1 = 1)
∂v1

∣∣∣∣
(

l−1

∏
j=1, j 6=r

∣∣∣∣∂φC, j(v1,v j+1)

∂v j+1

∣∣∣∣dv j

)
dvl < ∞

(28)

for all l ≤ d +1,
We have three cases to consider.

Case 1: 1 /∈ I. Then the product in (22) is given by

l

∏
j=1

∣∣∣∣∂φC, j(v1 = 1,v j+1)

∂v j+1

∣∣∣∣ ,
where we assumed w.l.o.g. that I = {2, . . . , l +1}, s = l and k j = j+1
for j ∈ {1, . . . ,s}. Since each term in the product depends on a distinct
variable, the product is in L1 if (26) holds.
Case 2: 1 ∈ I and j such that γ j,1 = 1 has k j +1 /∈ I. This case can be
analyzed w.l.o.g. by assuming I is of the form I = {1, . . . ,r,r+2, . . . , l+
1} for some r ≥ 1. In that case, the products in (22) are of the form∣∣∣∣∣∂φC,r(v1,vr+1 = 1)

∂v1

l−1

∏
j=1, j 6=r

∂φC, j(v1,v j+1)

∂v j+1

∣∣∣∣∣
and is thus in L1 as long as (28) holds.
Case 3: 1 ∈ I and j such that γ j,1 = 1 has k j +1 ∈ I. In this case, we
can assume w.l.o.g. that I = {1, . . . , l} and therefore the products in (22)
are of the form∣∣∣∣∣∂ 2φC,r(v1,vr+1)

∂v1∂vr+1

l−1

∏
j=1, j 6=r

∂φC, j(v1,v j+1)

∂v j+1

∣∣∣∣∣
and is thus in L1 as long as (27) holds.

The last part of the proof is to show that (26), (27), and (28) hold.
First we study the partial derivatives involved in these expressions and
find they are given by:

∂φC,1(v1,v2)

∂v1
= ψ

′
(
− log(v2)

x1

)
logv2

x2
1

∂x1

∂v1
,

∂φC,1(v1,v2)

∂v2
=−ψ

′
(
− log(v2)

x1

)
1

x1v2
,

∂ 2φC,1(v1,v2)

∂v1∂v2
=

∂x1

∂v1

1
v2x2

1

[
ψ
′
(
− logv2

x1

)
− logv2

x1
ψ
′′
(
− logv2

x1

)]
,

where x1 = F−1(v1) and ∂x1
∂v1

= 1/ f (x1), where f is the pdf correspond-
ing to F , which exists since we assumed F was continuous. Now, the
partial derivatives with respect to either v1 or v2 are clearly non-negative
for all v1 and v2. Hence it is easy to see that (26) and (28) hold, because
we can remove the absolute value inside the integrals and therefore,
these integrals amount to take differences/sums of φC,r(·, ·) at differ-
ent values over its domain, which obviously yields a finite value since
φC,r(·, ·) always takes values in [0,1].

As for the mixed partial derivative with respect to v1 and v2, our
assumption on ψ ′(t)+ tψ ′′(t) implies we have at most one sign change
over the domain of the integral. If there is no sign change, the argument
used in the previous paragraph to handle (26) and (28) can be used to
show (27) is bounded. If there is one sign change, then we let t∗ be such
that

ψ
′(t)+ tψ ′′(t)≤ 0 for 0≤ t ≤ t∗ and ψ

′(t)+ tψ ′′(t)≥ 0 for t∗ ≥ t.

Then let q(v) be a function such that − logq(v)/F−1(v) = t∗. For in-
stance, one can verify that for the Clayton copula, q(v) = e−θF−1(v).
When integrating the absolute value of the mixed partial derivative
∂ 2φC,1(v1,v2)/∂v1∂v2, we get∫ 1

0

∂x1

∂v1

1
x2

1

[∫ q(v1)

0

1
v2

(
ψ
′
(
− logv2

x1

)
− logv2

x1
ψ
′′
(
− logv2

x1

))
dv2

+
∫ 1

q(v1)

1
v2

(
−ψ

′
(
− logv2

x1

)
+

logv2

x1
ψ
′′
(
− logv2

x1

))
dv2

]
dv1

=2
∫ 1

0

∂x1

∂v1

1
x2

1

[
ψ
′(− logq(v1)/x1) logq(v1)

]
dv1

=−2t∗ψ ′(t∗)
∫ 1

0

1
F−1(v1)

∂F−1(v1)
′

∂v1
dv1 =−2t∗ψ ′(t∗) logF−1(v1)

∣∣1
0.

(29)

Now, in most cases F−1(1) is not bounded, and thus we cannot prove
that Ψ ◦φC has bounded variation. However, from there we can still get
the upper bound on the error given in the result, by using a technique
initially developed by Sobol’ (1973) to handle improper integrals, and
later by Hartinger et al (2004) to deal with unbounded integration
problems taken w.r.t. to a measure that is not necessarily uniform (as
studied in Section 4.2). Note that to apply their approach more easily, we
need to make a small change and assume that rather than generating V as
F−1(v1), we use F−1(1−v1), so that in our study of the variation above
(via the integral of the absolute value of the mixed partial derivatives),
the boundedness condition fails at v1 = 0 instead of v1 = 1. Following
the approach in Hartinger et al (2004) (see their Equation (24)) and
taking ccc = (1/pn,0, . . . ,0), the integration error satisfies∣∣∣∣1n n

∑
i=1

Ψ(uuui)−E[Ψ(UUU)]

∣∣∣∣
≤ 1

pn
Ψ(1, . . . ,1)+D∗(Pn)V[ccc,111](Ψ ◦φC)+ Irest

where V[ccc,111](Ψ ◦φC) denotes the variation of Ψ ◦φC over [ccc,111] and

Irest =

∣∣∣∣∫ 111

000
Ψ ◦φC(vvv)dvvv−

∫ 111

ccc
Ψ ◦φC(vvv)dvvv

∣∣∣∣≤ M
pn

for some M > 0,

since we assumed |ψ(uuu)| was bounded. As for V[ccc,111](Ψ ◦φC), we can
infer from the steps that led to (29) that it is bounded by a constant
times logF−1(1− 1/pn) ≤ a logn+ logc by assumption. Therefore
there exists a constant K(d) such that V[ccc,111](Ψ ◦φC)≤ K(d) logn.

Proof (Proof of Proposition 5) Let pl be such that P(V = l) = pl , for
l≥ 1. Let Pl =∑

l
k=1 pk for l≥ 1 and P0 = 0. We also let φ l

C(v2, . . . ,vd+1)
= φC(Pl−1,v2, . . . ,vd+1) for l ≥ 1 (transformation φC when v1 generates
the value l for V ). Consider a given value of n and low-discrepancy point
set Pn. If we use inversion to generate V , then we have that the subset
Pl

n = {vvvi : Pl−1 < vi,1 ≤ Pl} will be used to produce copula samples with
V = l. Let ñl = |Pl

n| and nl = npl . It is clear that if l becomes too large,
then ñl will eventually be 0. Let L(n) be the largest value of l such that
ñl > 0, and let p̃l = ñl/n. Then we can write∣∣∣∣∫

[0,1)d+1
Ψ ◦φC(vvv)dvvv− 1

n

n

∑
i=1

Ψ ◦φC(vvvi)

∣∣∣∣
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≤
∣∣∣∣L(n)∑

l=1
pl

∫
[0,1)d

Ψ ◦φ
l
C(vvv)dv2 . . .dvd+1−

1
nl

∑
Pl

n

Ψ ◦φC(vvvi)

∣∣∣∣
+

∞

∑
l=L(n)+1

pl

∣∣∣∣∫
[0,1)d

Ψ ◦φ
l
C(vvv)dv2 . . .dvd+1

∣∣∣∣
≤

L(n)

∑
l=1

p̃l

∣∣∣∣∫
[0,1)d

Ψ ◦φ
l
C(vvv)dv2 . . .dvd+1−

1
ñl

∑
Pl

n

Ψ ◦φC(vvvi)

∣∣∣∣
+

∞

∑
l=L(n)+1

pl

∣∣∣∣∫
[0,1)d

Ψ ◦φ
l
C(vvv)dv2 . . .dvd+1

∣∣∣∣
+

L(n)

∑
l=1

∣∣∣∣(pl − p̃l)
∫
[0,1)d

Ψ ◦φ
l
C(vvv)dv2 . . .dvd+1

∣∣∣∣
≤

L(n)

∑
l=1

(p̃lA(n,d))+B(n,d)+C(n,d),

where A(n,d), B(n,d), and C(n,d) are bounds such that∣∣∣∣∫
[0,1)d

Ψ ◦φ
l
C(vvv)dv2 . . .dvd+1−

1
ñl

∑
Pl

n

Ψ ◦φC(vvvi)

∣∣∣∣≤ A(n,d)

∞

∑
l=L(n)+1

pl

∣∣∣∣∫
[0,1)d

Ψ ◦φ
l
C(vvv)dv2 . . .dvd+1

∣∣∣∣≤ B(n,d)

L(n)

∑
l=1

∣∣∣∣(pl − p̃l)
∫
[0,1)d

Ψ ◦φ
l
C(vvv)dv2 . . .dvd+1

∣∣∣∣≤C(n,d).

First, by definition of D∗(Pn) we have |ñl−nl | ≤ 2nD∗(Pn) and thus
|p̃l − pl | ≤ 2D∗(Pn). Hence we can take C(n,d) = 2E(|Ψ(UUU)|)D∗(Pn).
Similarly, we can show that ∑

∞

l=L(n)+1 pl ≤ D∗(Pn) and can therefore
take B(n,d) = E(|Ψ(UUU)|)D∗(Pn). The analysis of the expression to be
bounded by A(n,d) is more complicated. First, we note that under the
assumption we have on Ψ and its partial derivatives, we need to show
that the product in (22) is in L1, but where each φC,k j is replaced by
φ l

C,k j
for a given l. Since φ l

C,k j
is solely a function of vk j+1, then it means

that the only relevant products to consider are of the form

r

∏
j=1

∂φ l
C,k j

(vk j+1)

∂vk j+1
(30)

in which each term is of the form −ψ
′
(
− logvk j+1

l

)
1

lvk j+1
which is non-

negative for any vk j+1. Using a similar reasoning to the one used in the
proof of Proposition 4 (to conclude that (26) and (28) hold), it is easy
to see that (30) is in L1.

What remains to be done is to analyze the discrepancy of Pl
n. That is,

here we are looking for a bound on supzzz∈J ∗ |E(zzz;Pl
n)|, where we recall

that J ∗ is the set of intervals of [0,1)d of the form zzz = ∏
d
j=1[0,z j),

where 0 < z j ≤ 1. So consider a given zzz ∈ [0,1)d . Then E(zzz;Pl
n) =

A(zzz;Pl
n)/ñl −λ (zzz). Let zzz1 = (Pl ,zzz) and zzz2 = (Pl−1,zzz), which are both

in [0,1)d+1. Note that A(zzz1;Pn)−A(zzz2;Pn) = A(zzz;Pl
n). By definition of

D∗(Pn), it is not hard to see that∣∣∣∣ (A(zzz1;Pn)−A(zzz2;Pn))

n
− plλ (zzz)

∣∣∣∣≤ 2D∗(Pn)

and therefore∣∣∣∣A(zzz;Pl
n)

ñl
− nl

ñl
λ (zzz)

∣∣∣∣≤ 2D∗(Pn)
n
ñl
.

Using the fact that |ñl −nl | ≤ 2nD∗(Pn), after some further simplifica-
tions we get that∣∣∣∣A(zzz;Pl

n)

ñl
−λ (zzz)

∣∣∣∣≤ 4D∗(Pn)
n
ñl
.

Hence we can take A(n,d) = 4D∗(Pn)
n
ñl

and then get ∑
L(n)
l=1 p̃lA(n,d)≤

4L(n)D∗(Pn). To show that the overall bound for the integration error is
of the form (logn)D∗(Pn) times a constant, we simply need to show that
L(n) ∈ O(logn). But this follows from our assumptions on Pn and F ,
since by definition, L(n) is the largest integer such that 1−F(L(n))>
1/pn but we also have 1−F(L(n))≤ cqL(n), hence

1/pn < cqL(n)⇔ L(n) log(1/q)− logc < log p+ logn

and thus L(n)≤ (logn+ log p+ logc)/ log(1/q), as required.

Online supplement

Additional numerical results

Here we provide a few additional results for the experimental setup
described in Section 5, namely for the finance and insurance examples
(see Figures 13 and 14) and then for the test functions (see Figures 15
and 16).
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Figure 13 Variance estimates for the functional Allocation First for
lognormal margins and an exchangeable t copula with three degrees of
freedom such that Kendall’s tau equals 0.2 based on B = 25 repetitions
for d = 5 (top), d = 10 (middle) and d = 20 (bottom).
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Figure 14 Variance estimates for the functional Allocation First with
Pareto margins and for a Clayton copula with parameter such that
Kendall’s tau equals 0.5 based on B = 25 repetitions for d = 5 (top),
d = 10 (middle) and d = 20 (bottom).



24 Mathieu Cambou et al.

1e+04 2e+04 5e+04 1e+05 2e+05

5e
−

06
2e

−
05

5e
−

05
2e

−
04

5e
−

04
2e

−
03

5e
−

03

n

A
bs

ol
ut

e 
er

ro
r 

fo
r d

=
5,

 τ
=

0.
5

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●

Reg−coeff Sobol, GHalton & CDM: −0.98 , −0.99
Reg−coeff Sobol, GHalton & MO: −0.96 , −0.93

●

G. Halton; CDM
G. Halton; MO
Sobol; CDM
Sobol; MO
Monte Carlo; CDM
1/n^0.5
1/n

1e+04 2e+04 5e+04 1e+05 2e+05

1e
−

06
5e

−
06

5e
−

05
5e

−
04

n

A
bs

ol
ut

e 
er

ro
r 

fo
r d

=
5,

 τ
=

0.
5

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●

Reg−coeff Sobol, GHalton & CDM: −1.1 , −1.01

●

G. Halton; CDM
Sobol; CDM
Monte Carlo; CDM
1/n^0.5
1/n

1e+04 2e+04 5e+04 1e+05 2e+05

1e
−

06
5e

−
06

5e
−

05
5e

−
04

n

A
bs

ol
ut

e 
er

ro
r 

fo
r d

=
5,

 τ
=

0.
5

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●

Reg−coeff Sobol, GHalton & CDM: −1.1 , −1.01
Reg−coeff Sobol, GHalton & MO: −0.87 , −0.94

●

G. Halton; CDM
G. Halton; MO
Sobol; CDM
Sobol; MO
Monte Carlo; CDM
1/n^0.5
1/n

Figure 15 Average absolute errors for the test functions Ψ1(uuu) = 3(u2
1+

. . .+u2
d)/d (top) and Ψ2(uuu) = g1((φ

CDM)−1(uuu)) (bottom) for a Clayton
copula with parameter such that Kendall’s tau equals 0.5 based on
B= 25 repetitions for d = 5: the middle plot shows results for Ψ1(uuu) and
an exchangeable t copula with three degrees of freedom and Kendall’s
tau of 0.2.
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Figure 16 Average absolute errors for the test functions Ψ1(uuu) = 3(u2
1+

. . .+ u2
d)/d (top), Ψ2(uuu) = g1((φ

CDM)−1(uuu)) (bottom) for a Clayton
copula with parameter such that Kendall’s tau equals 0.5 based on B =
25 repetitions for d = 15: the middle plot shows results for Ψ1(uuu) and
an exchangeable t copula with three degrees of freedom and Kendall’s
tau of 0.2.
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