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ABSTRACT. In this note, we provide a complete proof of the results presented by
E. Atanassov in a 2004 paper about the discrepancy of the Halton sequence. Our proof
addresses an inaccuracy found in the original proof, and fills in some non-trivial gaps.

1. INTRODUCTION

The Halton sequence is the oldest multidimensional low-discrepancy
sequence [12]. Its star-discrepancy is in O(logs N/N) , and for about 40 years,
the best bounds that were proved for the implicit constant cs in this O notation
were growing superexponentially fast with the dimension s . However, a few
years ago, Atanassov published a paper [1] establishing that the constant cs

was actually going to 0 with s superexponentially. Furthermore, in this paper
he showed (in his Theorem 2.3) that the behavior of this constant could be
improved by using so-called “admissible integers” to permute the digits of the
Halton sequence, thereby obtaining a form of modified Halton sequence.

The purpose of this note is to provide a complete, more detailed proof of
Atanassov’s important contributions, based on [1]. In particular, we give details
for some non-trivial gaps that appear in the proofs given in [1], and make
several important remarks regarding the essence of these proofs. In addition,
we found there is a subtle inaccuracy in the proof of one of the intermediate
results (Proposition 4.1) used in [1]. This inaccuracy can be rectified in
different ways, and does not affect the end result, given in Theorem 2.3. The
simplest way to deal with it is to make use of asymptotic notation in the
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bound given in that proposition. However, if we still want a precise bound
and no asymptotic notation, then Proposition 4.1 needs to be modified, and
we propose two ways of doing so. In both cases, we show how to adapt the
proof of Theorem 2.3 so that the modification to Proposition 4.1 is correctly
handled.

This note is organized as follows. In Section 2, we recall the definitions
and main results proved in [1]. We discuss in Section 3 how the proofs of
these results are organized. Sections 4 and 5 contain our detailed and corrected
proofs of these results. We discuss two alternative approaches to cover the
inaccuracy in the proof of Proposition 4.1 in [1] in Section 6.

Foreword. The results in this note are not new, but the work presented
here has led to further generalizations of these results, showing the vitality of
methods initiated by Atanassov. Readers interested in this subsequent works
are referred to [8, 9, 10, 11, 18]. See also [6] for an updated survey to
appear in 2014 relating the various aspects of Atanassov’s methods and their
extensions.

This note was first released in 2008 as a technical report. It has been updated
first in September 2012 to overcome a small inaccuracy in the proof of Lemma
4.4 and then in November 2013 to overcome another small inaccuracy in the
proof of Theorem 2.1 (Claim 3) and to add the recent related references above.

2. DEFINITIONS AND RESULTS GIVEN IN ATANASSOV’S PAPER

In this section we state the results proved by Atanassov in [1] and give
the required definitions and notation. For convenience, we use the same
numbering as in [1] for definitions and results. The reader is referred to
[2, 4, 13, 14, 16, 17] for more information on the concept of discrepancy
and irregularities of distributions. A recent, comprehensive survey of low-
discrepancy sequences can be found in [3], and [7] gives up-to-date results
on generalized Halton sequences.
Definition 1.1. For every s -dimensional interval J =

∏s
i=1 [ci, di) ⊆ Es where

Es is the unit cube [0, 1)s , let AN(J) be the number of terms of the sequence
σ = {xj}∞j=0 among the first N such that xj ∈ J , and let µ(J) be the volume
of J . The discrepancy DN(σ) of the sequence σ is defined to be

sup
J⊆Es

∣∣∣∣AN(J)
N
− µ(J)

∣∣∣∣ .
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The star-discrepancy D∗N(σ) of the sequence σ is obtained when the supremum
is taken over intervals J ⊆ Es of the kind J =

∏s
i=1

[
0, d′i

)
. In what follows,

we will always be working with NDN(σ) and ND∗N(σ) . We will also reserve
s for the dimension.
Definition 1.2. Let p ≥ 2 be a fixed integer, and let τ = {τj}∞j=0 be a sequence
of permutations of the numbers {0, . . . , p−1} . The terms of the corresponding
generalized van der Corput sequence are obtained by representing nonnegative
integers n as n =

∑k
j=0 ajpj , aj ∈ {0, . . . , p− 1} , and putting

xn =

k∑
j=0

τj(aj)p−j−1.

The one-dimensional van der Corput sequence in base p is obtained by setting
τj(i) = i for i = 0, . . . , p− 1, j ≥ 0.
Definition 1.3. Let p1, . . . , ps be pairwise relatively prime integers with pi ≥ 2.
The Halton sequence

σ(p1, . . . , ps) =
{(

x(1)
n , . . . , x(s)

n

)}∞
n=0

is constructed by setting each sequence {x(i)
n }∞n=0 to be a van der Corput

sequence in base pi , for i = 1, . . . , s .
Before Atanassov’s result, the best known upper bound on the discrepancy

of the Halton sequence was as follows.
Theorem 1.1. Let p1, . . . , ps be pairwise relatively prime numbers. The
discrepancy of the Halton sequence σ(p1, . . . , ps) satisfies

NDN(σ) < cs lns N + O(lns−1 N), (2.1)

with

cs = 2s
s∏

i=1

pi − 1
ln pi

.

This was later improved to [5]

cs =

s∏
i=1

pi − 1
ln pi

.

The following theorem describes how Atanassov was able to further improve
this result.
Theorem 2.1. Let p1, . . . , ps be pairwise relatively prime numbers. The
discrepancy of the Halton sequence σ(p1, . . . , ps) satisfies

NDN(σ) ≤ 2s

s!

s∏
i=1

(
(pi − 1) ln N

2 ln pi
+ s
)

+2s
s−1∑
k=0

pk+1

k!

k∏
i=1

(⌊pi

2

⌋ ln N
ln pi

+ k
)

+2su,
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where u is 0 when all numbers pi are odd, and

u =
pr

2(s− 1)!

∏
1≤i≤s,i 6=r

(
(pi − 1) ln N

2 ln pi
+ s− 1

)
if pr is the only even number among them. Therefore the estimate (2.1) holds
with constant

cs =
1
s!

s∏
i=1

pi − 1
ln pi

.

By making the constant cs smaller by a factor s! , it is now going to 0
as s goes to infinity, whereas the bound previously known was such that cs

was tending to infinity super-exponentially with s .
Furthermore, Atanassov was able to make this constant even smaller in

two cases, both of which make use of the concept of admissible integers :
Definition 2.1. Let p1, . . . , ps be distinct primes. The integers k1, . . . , ks are
called admissible for them, if pi6 | ki and for each set of integers b1, . . . , bs ,
pi6 | bi , there exists a set of integers α1, . . . , αs , satisfying the congruences

kαi
i

∏
1≤j≤s,j 6=i

pαj
j ≡ bi (mod pi), i = 1, . . . , s. (2.2)

If a sequence of s ones is admissible for the prime numbers p1, . . . , ps , we
say that p1, . . . , ps satisfy Condition R .

A quantity that is used repeatedly when dealing with admissible integers
is the following :

Pi(ki; (α1, . . . , αs)) = kαi
i

∏
1≤j≤s,j 6=i

pαj
j mod pi ∈ {0, . . . , pi − 1}, i = 1, . . . , s.

(2.3)
We chose to introduce this here just so that the reader can see the relation
between this quantity and the definition of admissible integers.

The two cases where a smaller value for cs are proved are as follows : (1)
for a Halton sequence with prime integers p1, . . . , ps satisfying Condition R ;
(2) for a modified Halton sequence, which uses a generalized van der Corput
sequence {x(i)

n }∞n=0 for its i th coordinate, based on permutations of the form

τ (i)
j (a) = akj

i mod pi ∈ {0, . . . , pi − 1}, j = 0, . . . , k, i = 1, . . . , s, (2.4)

and where k1, . . . , ks are admissible integers for the prime numbers p1, . . . , ps .
The two corresponding results are as follows :

Theorem 2.2. If the prime numbers p1, . . . , ps fulfill Condition R , then the
discrepancy of the Halton sequence σ(p1, . . . , ps) satisfies (2.1) with constant
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cs(p1, . . . , ps) =
2s

s!

s∑
i=1

ln pi

s∏
i=1

pi(1 + ln pi)
(pi − 1) ln pi

.

Theorem 2.3. Let p1, . . . , ps be distinct primes and the integers k1, . . . , ks be
admissible for them. The modified Halton sequence σ(p1, . . . , ps; k1, . . . , ks)
satisfies (2.1) with the same constant as in Theorem 2.2, i.e., with

cs(p1, . . . , ps) =
2s

s!

s∑
i=1

ln pi

s∏
i=1

pi(1 + ln pi)
(pi − 1) ln pi

.

As pointed out by Atanassov, when Condition R is fulfilled, the corre-
sponding Halton sequence can be thought of as a special case of the modified
Halton sequence. Thus Theorem 2.2 follows from Theorem 2.3.

3. ORGANIZATION OF THE PROOF

The two results that need to be proved are Theorem 2.1, which improved
the best known upper bound cs on the Halton sequence, and Theorem 2.3,
which shows an even better bound for the modified Halton sequence.

To prove Theorem 2.1, Atanassov relies on five lemmas (Lemmas 3.1 to
3.5). Lemma 3.1 gives a bound on the difference |AN(J)−Nµ(J)| for intervals
J whose endpoints are given by multiples of some powers of the pi ’s. That
is, for J of the form

J =

s∏
i=1

[bip−αi
i , cip−αi

i ).

When ci − bi = 1, such intervals are typically referred to as “elementary
intervals”.

Lemmas 3.4 and 3.5 have to do with how one can rewrite an arbitrary
interval J of the form

J =

s∏
i=1

[0, zi)

(as used in the computation of the star-discrepancy) into something called a
“signed splitting”. In the proof of Theorem 2.1, the idea is then to break down
AN(J)− Nµ(J) into two parts Σ1 and Σ2 , with Σ1 dealing with the coarser
parts of the signed splitting for J , and Σ2 dealing with the finer parts. What
determines whether an interval is coarse or fine has to do with the value N ,
and Lemmas 3.2 and 3.3 provide results on this aspect.
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The proof of Theorem 2.1 found in [1] is correct. What we do below is
to reproduce these proofs but we correct a few notation problems found in
[1], and give more details.

As for Theorem 2.3, its proof relies on the following proposition :
Proposition 4.1. The star-discrepancy of the modified Halton sequence
σ = σ(p1, . . . , ps, k1, . . . , ks) satisfies 1 :

ND∗N(σ) ≤
∑

j∈T(N)

1 +
∑

l∈M(p)

‖
∑s

i=1(li/pi)Pi(ki; j)‖−1

2R(l)


+

s−1∑
k=0

pk+1

k!

k∏
i=1

(⌊pi

2

⌋ ln N
ln pi

+ k
)
,

where b·c denotes the floor function, ‖ · ‖ denotes the “distance to the
nearest integer” function, j = (j1, . . . , js) , with each ji a nonnegative integer,
p = (p1, . . . , ps) , and

T(N) = {j : pj1
1 · · · p

js
s ≤ N, j1, . . . , js ≥ 0},

M(p) = {j | 0 ≤ ji ≤ pi − 1, j1 + · · ·+ js > 0},

R(j) =

s∏
i=1

ri(ji),

with ri(m) = max(1,min(2m, 2(pi − m))),

(3.1)

and the quantity Pi(ki; j) is defined in (2.3). In addition, we introduce some
additional notation that will be useful in the proof of future results :

T∗(N) = {j : pj1
1 · · · p

js
s ≤ N, j1, . . . , js > 0} = {j ∈ T(N) : z(j) = 0},

Tz(N) = {j : pj1
1 · · · p

js
s ≤ N, some ji = 0} = {j ∈ T(N) : z(j) > 0}.

(3.2)

That is, T∗(N) = T(N) \ Tz(N) and z(j) is the number of zero entries in j.
To prove this proposition, Atanassov relies on three lemmas (Lemmas 4.1

to 4.3). Lemma 4.1 establishes the existence of admissible integers. Lemma
4.3 gives an upper bound on AN(J) − Nµ(J) for elementary intervals, and
relies on Lemma 4.2, which relates the distance AN(J) − Nµ(J) in a certain
setting with exponential sums. It should be noted that this Lemma 4.2 is a
special case of [15, Satz 2].

The proof of these lemmas found in [1] are also correct (again, modulo
some problems in the notation). However, we believe that the proof of

1 The term (li/pi) in the sum over l ∈ M(p) above is instead just li in [1], which is a typo.
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Proposition 4.1 given in [1] contains an inaccuracy. More precisely, here
Atanassov breaks down AN(J)− Nµ(J) into two parts Σ1 and Σ2 again, but
we think the bound he gets for Σ1 is incorrect. We find that Σ1 needs to be
splitted up into two parts, with one part that can be bounded as in [1], but
with the other part contributing an extra term in the bound, which behaves in
O(lns−1 N) . That is, we modify Proposition 4.1 as follows :
(Modified) Proposition 4.1. The star-discrepancy of the modified Halton
sequence σ = σ(p1, . . . , ps, k1, . . . , ks) satisfies :

ND∗N(σ) ≤
∑

j∈T∗(N)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)


+

s−1∑
k=0

pk+1

k!

k∏
i=1

(⌊pi

2

⌋ ln N
ln pi

+ k
)

+

s∑
i=1

1
(s− 1)!

s∏
k=1
k 6=i

(
pk

2
ln N
ln pk

+ s− 1
)
.

Our proof of this modified Proposition 4.1 contains a remark (Remark 5.1)
that explain precisely where this extra term comes from. The fact that the
new term is O(lns−1 N) will also be quickly proved in this note.

Alternatively, as we will show in Section 6, another version of Proposition
4.1 also holds. Namely, we have :
(Modified2 ) Proposition 4.1. The star-discrepancy of the modified Halton
sequence σ = σ(p1, . . . , ps, k1, . . . , ks) satisfies :

ND∗N(σ) ≤
∑

j∈T(N)

2z(j)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)


+

s−1∑
k=0

pk+1

k!

k∏
i=1

(⌊pi

2

⌋ ln N
ln pi

+ k
)
,

where z(j) = #{i = 1, . . . , s : ji = 0}.
In turn, in [1] Theorem 2.3 is proved using Proposition 4.1 and another

lemma (Lemma 4.4). Although, as we show, Proposition 4.1 does not hold
as in [1], we are able to also prove Theorem 2.3 using either our modified
Proposition 4.1 or a slightly weaker version of modified2 Proposition 4.1, and
an approach similar to the one used by Atanassov. We find however that the
proof of Theorem 2.3 in [1] omits some non-trivial steps, which we provide
below.
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Note that the bound in our modified Proposition 4.1 could presumably be
improved, but since in its current form we are still able to prove the main
result—given by Theorem 2.3—for now we have not attempted to perform
such improvements.

A last note : for the sake of completeness, we have included in our proof
a few very easy intermediate results, and have numbered them using hyphens
referring to the more important results to which they relate. For instance,
Lemma 3.2.-1 is a very easy lemma used as an intermediate result for Lemma
3.2.

4. PROOFS LEADING TO THEOREM 2.1

Lemma 3.1. Let σ(p1, . . . , ps) = {xn}∞n=0 be a Halton or modified Halton
sequence (based on any permutations τ (i)

j ) and let J be an interval of the
form

J =

s∏
i=1

[bip−αi
i , cip−αi

i ).

where bi, ci ≥ 0 are integers for all i . Then

|AN(J)− Nµ(J)| ≤
s∏

i=1

(ci − bi)

for every positive integer N and AN(J) ≤
∏s

i=1(ci − bi) for N ≤
∏s

i=1 pαi
i .

Proof. For each nonnegative integer n , write n =
∑∞

j=0 nijp
j
i in base pi .

Fix some l = (l1, . . . , ls) such that bi ≤ li < ci ≤ pαi
i . Fix some i = 1, . . . , s ,

write li =
∑∞

j=0 lijp
j
i in base pi . Recall that x(i)

n =
∑∞

j=0 τ
(i)
j (nij)p

−j−1
i . Thus,

we have

x(i)
n ∈ [lip−αi

i , (li + 1)p−αi
i )⇔

∞∑
j=0

τ (i)
j (nij)pαi−j−1

i ∈ [
αi−1∑
j=0

lijpj
i,

αi−1∑
j=0

lijpj
i + 1)

⇔ τ (i)
j (nij) = li,αi−j−1, for all j = 0, 1, . . . , αi − 1.

(4.1)

Since each τ (i)
j is a bijection, we see that for each li and each j , there is

a unique nij satisfying (4.1). That is, the first αi digits of n in base pi are
uniquely determined by (4.1). More precisely, there exists ai ∈ {1, . . . , pαi

i }
such that
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x(i)
n ∈ [lip−αi

i , (li + 1)p−αi
i )⇔ n ≡ ai (mod pαi

i ).

Since the pi ’s are coprime, by the Chinese Remainder Theorem, we see
that

(x(1)
n , . . . , x(s)

n ) ∈ J1 =

s∏
i=1

[lip−αi
i , (li + 1)p−αi

i )⇔ n ≡ b (mod pα1
1 · · · p

αs
s )

for some b with b ≡ ai (mod pαi
i ) , for i = 1, . . . , s . In other words, exactly

one term out of every pα1
1 · · · pαs

s consecutive terms falls into J1 .
Since each li can take ci − bi values, we have for any positive integer t ,

Atpα1
1 ···p

αs
s

(J) = t(c1 − b1) · · · (cs − bs). (4.2)

The last statement follows by taking t = 1 and the trivial fact that AN(J) is
increasing in N .

For an arbitrary N , find a t such that tpα1
1 · · · pαs

s ≤ N < (t +1)pα1
1 · · · pαs

s ,
we have

AN(J)− Nµ(J) ≤ A(t+1)pα1
1 ···p

αs
s

(J)− tpα1
1 · · · p

αs
s

s∏
i=1

(ci − bi)
pαi

i
=

s∏
i=1

(ci − bi).

Similarly, Nµ(J)− AN(J) ≤
∏s

i=1(ci − bi) . The result now follows.

The next lemma uses the following definition :
Definition 3.1. Let p1, . . . , ps be a possibly empty set of integers, pi ≥ 2 and
let N be any positive number. We denote by d(p1, . . . , pk; N) the number of
positive integer vectors j = (j1, . . . , jk) such that pj1

1 · · · p
jk
k ≤ N . If k = 0 then

we let d(N) = 1.
We will need to following result from Euclidean geometry to prove Lemma

3.2 :
Lemma 3.2.-1. The volume of the simplex {x1a1 + · · · + xkak ≤ b, xi ≥ 0}
with b, k ≥ 0, ai > 0 is 1

k! b
k/
∏k

i=1 ai .

Proof. An easy integration shows that Vol{x1 + · · ·+xk ≤ 1, xi ≥ 0} = 1
k! ,

where Vol(S) represents the volume of the set S . Now the case when b = 0
is trivial, so let us assume that b 6= 0.

Let T be the linear transformation with matrix representation

T =


a1/b 0 · · · 0

0 a2/b · · · 0
...

...
. . .

...
0 0 · · · ak/b

 .
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Then, we have

1
k!

= | det(T)|Vol{x1, . . . , xs : T(x1, . . . , xs) ∈ S}

=
1
bk

(
k∏

i=1

ai

)
Vol{x1a1 + · · · xkak ≤ b, xi ≥ 0}.

Rearranging gives the result.

Lemma 3.2. The number d(p1, . . . , pk; N) satisfies

d(p1, . . . , pk; N) ≤ 1
k!

k∏
i=1

ln N
ln pi

.

Proof. If positive integers j1, . . . , js satisfy
∏k

i=1 pji
i ≤ N , then by

taking natural logarithm, we see that
∑k

i=1 ji ln pi ≤ ln N . Then the cube∏k
i=1[ji− 1, ji) is contained in the simplex S = {

∑k
i=1 xi ln pi ≤ ln N, xi ≥ 0} .

Clearly, for distinct vectors (j1, . . . , js) , the corresponding cubes as defined
above, each having volume 1, do not intersect and

⋃̇
j1,...,jk>0 |pj1

1 ···p
jk
k ≤N

k∏
i=1

[ji − 1, ji) ⊆ S,

where ∪̇ represents a disjoint union. Therefore, we have

d(p1, . . . , pk; N) = Vol

 ⋃̇
j1,...,jk>0 |pj1

1 ···p
jk
k ≤N

k∏
i=1

[ji − 1, ji)


≤ Vol(S) =

1
k!

k∏
i=1

ln N
ln pi

,

where the last equality follows from Lemma 3.2.-1.

Lemma 3.3. Let N and p1, . . . , pk be integers, pi ≥ 2. Let some numbers
c(i)

j ≥ 0 be given, for j ≥ 0, i = 1 . . . , k , satisfying c(i)
0 ≤ 1 and c(i)

j ≤ fi(pi)
for j ≥ 1, where f1(p1), . . . , fk(pk) are some numbers (possibly depending on
the pi ’s). Then ∑

(j1,...,jk)|pj1
1 ...p

jk
k ≤N

k∏
i=1

c(i)
ji ≤

1
k!

k∏
i=1

(
fi(pi)

ln N
ln pi

+ k
)
. (4.3)
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For convenience, all the j′is are nonnegative unless otherwise stated.

Proof. First notice that each fi(pi) ≥ 0, and hence we could multiply
them on both side of any equation without changing the inequality sign. Now,
for each m = {0, 1, . . . , k} , fix a subset L = {i1, . . . , im} of {1, . . . , k}.
Consider the contributions of all the k -tuples j with jr > 0 for r ∈ L,
and jr = 0 for r /∈ L, with

∏k
i=1 pji

i =
∏

i∈L pji
i ≤ N. There are

d(pi1 , . . . , pim ; N) = 1
m!

∏
i∈L

ln N
ln pi

such k -tuples, by Lemma 3.2, each having a
contribution of

k∏
i=1

c(i)
ji =

∏
i∈L

c(i)
ji

∏
i/∈L

c(i)
ji ≤

∏
i∈L

fi(pi)
∏
i/∈L

1 =
∏
i∈L

fi(pi).

So by expanding the two sides of (4.3), we have,

Left hand side =
∑

m

∑
L

(number of such k-tuples) · (amount of each

contribution)

≤
k∑

m=0

∑
L⊆{1,...,k}
|L|=m

1
m!

∏
i∈L

ln N
ln pi

∏
i∈L

fi(pi)

Right hand side =
1
k!

∑
all subset L

of {1,...,k}

(∏
i∈L

fi(pi)
ln N
ln pi

·
∏
i/∈L

k

)

=
1
k!

k∑
m=0

∑
L⊆{1,...,k}
|L|=m

(∏
i∈L

fi(pi)
ln N
ln pi

· kk−m

)

The result now follows since 1
m! ≤

1
k! k

k−m as

(k−m) k’s︷ ︸︸ ︷
k · k · · · k ≥

k−m terms︷ ︸︸ ︷
k(k − 1) · · · (m + 1) .

The next two easy lemmas use the following definition :
Definition 3.2. Consider an interval J ⊆ Es . We call a signed splitting of J
any collection of intervals J1, . . . , Jn and respective signs ε1, . . . , εn equal to
±1, such that for any (finitely) additive function ν on the intervals in Es ,
we have
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ν(J) =

n∑
i=1

εiν(Ji).

Lemma 3.4. Let the interval J =
∏s

i=1[ai, bi) ⊆ Es be given. Fix a dimension
k and a number c ∈ (0, 1) . The intervals

I1 = [min(ak, c),max(ak, c))

and I2 = [min(c, bk),max(c, bk))

and the signs ε1 = sgn(c− ak) , ε2 = sgn(bk − c) define a signed splitting of
the interval [ak, bk) . Multiplying correspondingly, we obtain the collection of
intervals

J1 =

k−1∏
i=1

[ai, bi)× I1 ×
s∏

i=k+1

[ai, bi),

J2 =

k−1∏
i=1

[ai, bi)× I2 ×
s∏

i=k+1

[ai, bi),

which, together with the same signs ε1 , ε2 , provide a signed splitting of the
interval J .

Proof. This lemma is an easy case analysis. Notice that there are only
three cases : J1∪̇J2 = J; J1∪̇J = J2; J2∪̇J = J1 . The signs tell us which case
are we dealing with.

Lemma 3.5. Let J =
∏s

i=1[0, z(i)) be an s -dimensional interval, and let for
each i some numbers (z(i)

j )ni
j=1 ⊆ [0, 1] be given, where ni ≥ 1. Denote z(i)

0 = 0
and z(i)

ni+1 = z(i) . A signed splitting of J , induced by the numbers (z(i)
j ) , is

given by the collection of intervals
s∏

i=1

[min(z(i)
ji , z

(i)
ji+1),max(z(i)

ji , z
(i)
ji+1)), 0 ≤ ji ≤ ni,

and signs ε(j1, . . . , js) =
∏s

i=1 sgn(z(i)
ji+1 − z(i)

ji ) .

Proof. Apply Lemma 3.4 inductively.
Notice that the above lemma also holds for intervals of the form J =∏s

i=1[y(i), z(i)) by requiring z(i)
0 = y(i) ≤ z(i).

Proof of Theorem 2.1.
Pick any z = (z(1), . . . , z(s)) ∈ Es = [0, 1)s . Expand each z(i) as

∑∞
j=0 a(i)

j p−j
i .
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Claim 1 : If pi is odd, we can choose a(i)
j so that | a(i)

j | ≤
pi−1

2 , for all
j ≤ M where M is an arbitrary positive integer.

Proof. We can first write z(i) =
∑∞

j=0 b(i)
j p−j

i with b0 = 0, b(i)
j ∈

{0, 1, . . . , pi − 1} for j > 0. Consider z(i)
M =

∑M
j=0 b(i)

j p−j
i , let us start

from b(i)
M and proceed backwards inductively so that if b(i)

j > pi/2 for
j > 0, i.e. b(i)

j ≥ (pi +1)/2, replace b(i)
j by b(i)

j −pi, and b(i)
j−1 by b(i)

j−1 +1.
It is easy to see that the resulting expression satisfies the condition given
in Claim 1. The claim now follows by defining a(i)

j := b(i)
j (see Remark

4.1 on page 18). Notice that after the above operations, a(i)
0 = b(i)

0 which
remains 0 if b(i)

1 ≤ bpi/2c , and was incremented to 1 otherwise.

Since p1, . . . , ps are coprime, at most one of them, say pr , could be even. In
that case, we appeal to the following claim :

Claim 2 : If pr is even, we can choose a(r)
j so that | a(r)

j | ≤
pr
2 , and

| a(r)
j | + | a

(r)
j+1| ≤ pr − 1, for all j ≤ M where M is an arbitrary positive

integer.
Proof : We can use the same trick as above, except that we start with
z(r)

M+1 and when b(r)
j = pr/2 : we do nothing if b(r)

j−1 6= pr/2 ; we replace
b(r)

j by −pr/2, and bj−1 by bj−1 + 1 if bj−1 = pr/2. (See Remark 4.2
on page 18.)

For each i = 1, . . . , s , write ni =
⌊

ln N
ln pi

⌋
+ 1 and consider the numbers

z(i)
k =

∑k−1
j=0 a(i)

j p−j
i for k = 1, . . . , ni satisfying the conditions in Claims 1

and 2 with M big enough, say ni + 1. (Notice that the z(i)
k defined here is

different from what it was above.) Define z(i)
0 = 0 and z(i)

ni+1 = z(i) . Applying
Lemma 3.5, we expand J =

∏s
i=1[0, z(i)) using (z(i)

j )ni
j=1 , obtaining a collection

of intervals

I(j) =

s∏
i=1

[min(z(i)
ji , z

(i)
ji+1),max(z(i)

ji , z
(i)
ji+1)), 0 ≤ ji ≤ ni, (4.4)

and signs ε(j1, . . . , js) =
∏s

i=1 sgn(z(i)
ji+1 − z(i)

ji ).
Since µ and AN are both additive, so is any scalar linear combination of
them, and hence AN(J)− Nµ(J) may be expanded as

AN(J)− Nµ(J) =

n1∑
j1=0

· · ·
ns∑

js=0

ε(j)(AN(I(j))− Nµ(I(j))) =
∑

1 +
∑

2. (4.5)

We rearrange the terms so that in
∑

1 , we put the terms with pj1
1 · · · p

js
s ≤ N

(i.e. j ∈ T(N) ) and in
∑

2 the rest. Notice that in
∑

1 , the ji ′s are small,
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so the corresponding I(j) is bigger. Hence, as we stated earlier,
∑

1 deals
with the coarser part whereas

∑
2 deals with the finer part. Notice that if

ji = ni for some i , then pj1
1 · · · p

js
s ≥ pni

i > N. That is, any j with ji being its
maximum will not be accounted for in

∑
1. In other words, all I(j) included

in
∑

1 are “regular” in the sense that Lemma 3.1 applies.

Claim 3 :

|
∑

1| ≤
∑

j|pj1
1 ···p

js
s ≤N

|AN(I(j))− Nµ(I(j))| ≤ 1
s!

s∏
i=1

(
(pi − 1) ln N

2 ln pi
+ s
)

+ u,

(4.6)
where u is defined in the statement of Theorem 2.1.
Proof : By Lemma 3.1, we have, for ji < ni,∀i, that

|AN(I(j))− Nµ(I(j))| ≤
s∏

i=1

| z(i)
ji+1 − z(i)

ji | p
ji
i =

s∏
i=1

| a(i)
ji |. (4.7)

If all the pi ’s are odd, applying Lemma 3.3 with fi(pi) = (pi− 1)/2 gives
exactly (4.6).
Suppose now some pr is even. Consider the numbers p′1, . . . , p

′
s defined by

p′i = pi for i 6= r , and p′r = p2
r . Define c(i)

0 = 1 (observe that a(i)
0 = 0 or 1,

by definition), c(i)
j = | a(i)

j | for i 6= r , and c(r)
j = | a(r)

2j−1| + | a
(r)
2j | for all

j ≥ 1. Applying Lemma 3.3 on (p′1, . . . , p
′
s) with fi(p′i) = (p′i − 1)/2 for

i 6= r and fr(p′r) =
√

p′r − 1, we have

∑
j′|

∏s
i=1 p′i

j′i≤N

s∏
i=1

c(i)
j′i
≤ 1

s!

(
(
√

p2
r − 1) ln N
ln p2

r
+ s

)
s∏

i=1
i 6=r

(
(pi − 1) ln N

2 ln pi
+ s
)

=
1
s!

s∏
i=1

(
(pi − 1) ln N

2 ln pi
+ s
)
. (4.8)

Let us see what has been covered and what is missing in
∑

1 :
• First, all vectors j with jr = 0 are covered : a(r)

jr = a(r)
0 = 0

or 1 and c(r)
jr = c(r)

0 = 1 while c(i)
ji = | a(i)

ji | if i 6= r . Hence∏s
i=1 | a

(i)
ji | ≤

∏
i 6=r | a

(i)
ji | =

∏s
i=1 c(i)

ji =
∏s

i=1 c(i)
j′i

.
• For vectors j with jr 6= 0, consider two consecutive s -tuples

(j1, . . . , jr−1, 2hr − 1, jr+1, . . . , js) and (j1, . . . , jr−1, 2hr, jr+1, . . . , js) in∑
1 : we have
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s∏
i=1,i 6=r

|a(i)
ji | · |a

(r)
2hr−1|+

s∏
i=1,i 6=r

|a(i)
ji | · |a

(r)
2hr
| =

s∏
i=1,i 6=r

|a(i)
ji | ·

(
|a(r)

2hr−1|+ |a
(r)
2hr
|
)

=

s∏
i=1,i 6=r

c(i)
ji · c

(r)
j′r

=

s∏
i=1

c(i)
j′i
, (4.9)

with j′i = ji if i 6= r and j′r = hr , according to the definition of integers
c(i)

j for all j ≤ 1. Moreover, since j′r = hr = (jr + 1)/2, we have

s∏
i=1
i 6=r

p′i
j′i · (p2

r )j′r =

{∏s
i=1 pji

i if jr is even∏s
i=1 pji

i · pr if jr is odd.

So terms with
∏s

i=1 pji
i ≤ N/pr have also been covered.

This is the correct version for item 2 above. In the former version of this
note, it was written as

∏s
i=1 | a

(i)
ji | ≤

∏s
i=1,i 6=r | c

(i)
ji | · | c

(r)
bjr/2c| instead of

(4.9) and we see that for two consecutive s -tuples j with jr 6= 0 occurring
in
∑

1 , we only get one integer j′r in the LHS of this inequality, i.e.,
j′r := jr/2 if jr is even or j′r := (jr + 1)/2 if jr is odd. Hence, with
the LHS of this inequality, we only recover one product in

∑
1 instead

of two. This omission is of the same kind as the one that motivated the
Corrigendum [9]. Notice that the corresponding passage in the original
paper from Atanassov is so terse that it is impossible to infer anything
about this tricky point.

The missing terms are contained in S′ = {j : N/pr <
∏s

i=1 pji
i ≤ N}.

Obviously, for any j ∈ S′, we have that
∏s

i=1,i6=r pji
i ≤ N and that jr is

uniquely determined given all other ji ’s. Their total contribution
∑′

1 is∑
′
1 ≤

∑
j |

∏s
i=1,i 6=r pji

i ≤N

pr

2

s∏
i=1,i 6=r

| a(i)
ji |

≤ pr

2
1

(s− 1)!

s∏
i=1,i 6=r

(
(pi − 1) ln N

2 ln pi
+ s− 1

)
= u

where the second inequality follows from Lemma 3.3 with k = s − 1.
Combining this result with (4.8), we have proved Claim 3.

Let us now examine |
∑

2| : recall that in
∑

2 , we are summing over
all vectors j in Q = {j |pj1

1 · · · p
js
s > N} . Divide Q into s disjoint sets

B0, . . . ,Bs−1, where Bk = {j : pj1
1 · · · p

jk
k ≤ N, pj1

1 · · · p
jk
k pjk+1

k+1 > N} for k > 0
and B0 = {j : pj1

1 > N}.
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Fix any k ≤ s− 1 and one k -tuple (j1, . . . , jk) with pj1
1 · · · p

jk
k ≤ N . Let r be

the biggest integer such that pj1
1 · · · p

jk
k pr−1

k+1 ≤ N. Hence, if jk+1, . . . , js are any
nonnegative integers satisfying j1, . . . , js ∈ Bk , then jk+1 ≥ r and jk+2, . . . , js
can be arbitrary.
For convenience, write K1 =

∏k
i=1[min(z(i)

ji , z
(i)
ji+1),max(z(i)

ji , z
(i)
ji+1)). 2 Obviously,

by Lemma 3.5, {
K1 ×

s∏
i=k+1

[min(z(i)
ji , z

(i)
ji+1),max(z(i)

ji , z
(i)
ji+1))

}
with signs {

s∏
i=k+1

sgn(z(i)
ji+1 − z(i)

ji )

}
is a “signed splitting” of

K2 = K1 ×
s∏

i=k+1

[0, z(i)),

whereas the same sets and same signs restricted to jk+1 < r is a “signed
splitting” of

K3 = K1 × [0, z(k+1)
r )×

s∏
i=k+2

[0, z(i)).

Note that
∏s

i=k+1 sgn(z(i)
ji+1−z(i)

ji ) = ε(j1, . . . , js) ·δ, where δ =
∏k

i=1 sgn(z(i)
ji+1−

z(i)
ji ) and ε was defined as in Lemma 3.5. Define

K = K1 × [min(z(k+1)
r , z(k+1)),max(z(k+1)

r , zk+1))×
s∏

i=k+2

[0, z(i)).

Then we see that either K2 = K3∪̇K when zk+1 > zk+1
r , or K3 = K2∪̇K when

zk+1 ≤ zk+1
r . So a simple case analysis implies that

±(AN(K)− Nµ(K)) = (AN(K2)− Nµ(K2))− (AN(K3)− Nµ(K3))

= δ ·
∑

jk+1,...js
j=(j1,...,js)∈Bk

ε(j)(AN(I(j))− Nµ(I(j))) (4.10)

where the ± = sgn(z(k+1) − z(k+1)
r ) , and the last equality follows from the

definition of signed splitting.

2 Strickly speaking, K1 is a function of j, but we will simply write K1 to save space. The
same goes for other Ki to be defined later.
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Notice that

| z(k+1)
r − z(k+1)| = |

∞∑
j=r

a(k+1)
j p−j

k+1| <
pk+1

2
p−r

k+1

1− pk+1
≤ p−r

k+1pk+1,

where the first inequality follows since by Claims 1 and 2, each a(k+1)
j ≤

pk+1/2 and not all of them are equal to pk+1/2 ; whereas the last inequality
follows since 2(1− p−1

k+1) ≥ 1 as pk+1 ≥ 2. Since pr
k+1z(k+1)

r ∈ Z, it follows
that

[min(z(k+1)
r , z(k+1)),max(z(k+1)

r , z(k+1))) ⊆ [m1p−r
k+1,m2p−r

k+1)

for some nonnegative integers m1,m2 satisfying 0 ≤ m2−m1 < pk+1 . Hence,
we have that K ⊆ K4 = K1 × [m1p−r

k+1,m2p−r
k+1) ×

∏s
i=k+2[0, 1). Applying

Lemma 3.1 on K4 , since N ≤ pj1
1 · · · p

jk
k pr

k+1 by definition of r , we get :

AN(K) ≤ AN(K4) ≤ (m2 − m1)
k∏

i=1

pji
i | z

(i)
ji+1 − z(i)

ji | ≤ pk+1

k∏
i=1

| a(i)
ji |.

On the other hand,

Nµ(K) ≤ pj1
1 · · · p

jk
k pr

k+1 · µ(K4) = (m2 − m1)
k∏

i=1

| a(i)
ji | ≤ pk+1

k∏
i=1

| a(i)
ji |.

Therefore,

|AN(K)− Nµ(K)| ≤ pk+1

k∏
i=1

| a(i)
ji |. (4.11)

Since | a(i)
j | ≤

⌊ pi
2

⌋
for i ≤ k , applying Lemma 3.3, we have∣∣∣∑2

∣∣∣ =
∣∣∣ s−1∑

k=0

∑
(j1,...,jk)

pj1
1 ···p

jk
k ≤N

∑
(jk+1,...,js)

j=(j1,...,js)∈Bk

ε(j)(AN(I(j))− Nµ(I(j)))
∣∣∣

=
∣∣∣ s−1∑

k=0

∑
(j1,...,jk)

pj1
1 ···p

jk
k ≤N

±(AN(K)− Nµ(K))
∣∣∣ by (4.10)

≤
s−1∑
k=0

pk+1

∑
(j1,...,jk)

pj1
1 ···p

jk
k ≤N

k∏
i=1

| a(i)
ji | by (4.11)

≤
s−1∑
k=0

pk+1

k!

k∏
i=1

(⌊pi

2

⌋ ln N
ln pi

+ k
)
. (4.12)
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The result now follows by combining (4.6), (4.12) and the fact that DN(σ) ≤
2sD∗N(σ) .

REMARK 4.1. The original paper by Atanassov gives a different proof for
Claim 1 :
Inductively, choose a(i)

k to be the smallest integer in absolute value such that
| z(i) −

∑k
j=0 a(i)

j p−j
i | < p−k

i /2. Such a(i)
k satisfies | a(i)

k | ≤ (pi − 1)/2 since

p−(k−1)
i

2
− pi − 1

2
p−k

i =
p−k

i

2
.

REMARK 4.2. The original paper by Atanassov also contains a different proof
for Claim 2 :
Inductively, choose a(i)

k to be the smallest integer in absolute value such that

| z(i)−
k∑

j=0

a(i)
j p−j| < p−k−1

(
p
2

+
p− 2

2p
+

p
2p2 +

p− 2
2p3 + · · ·

)
=

p−k(p + 2)
2(p + 1)

,

where p = pr for convenience.
Such a(i)

k satisfies | a(i)
k | ≤ p/2 since

p−(k−1)(p + 2)
2(p + 1)

− p−k(p + 2)
2(p + 1)

<
p
2

p−k,

and | a(r)
k |+ | a

(r)
k+1| ≤ p− 1 since

p−k
(

p
2

+
p− 2

2p
+

p
2p2 +

p− 2
2p3 + · · ·

)
− p

2
p−k − (

p
2
− 1)p−k−1

= p−k−2
(

p
2

+
p− 2

2p
+

p
2p2 +

p− 2
2p3 + · · ·

)
.

REMARK 4.3. The fact that DN(σ) ≤ 2sD∗N(σ) can be seen from :
Take any J =

∏s
i=1[ai, bi) . For each i , define z(i)

1 = ai, ni = 1. Then by
Lemma 3.5, (z(i)

1 ) induces a “signed splitting”

I(j) =

s∏
i=1

[min(z(i)
ji , z

(i)
ji+1),max(z(i)

ji , z
(i)
ji+1)) =

s∏
i=1

[z(i)
ji , z

(i)
ji+1), 0 ≤ ji ≤ 1

for
∏s

i=1 [0, bi) , with signs ε(j) = 1 for all j.
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Thus, AN(
∏s

i=1 [0, bi))−Nµ(
∏s

i=1 [0, bi)) =
∑

j AN(I(j))−Nµ(I(j)) . Therefore,
we have

|AN(J)− Nµ(J)| = |(AN − Nµ)
s∏

i=1

[0, bi)−
∑

j6=(1,...,1)

(AN(I(j))− Nµ(I(j)))|

≤ 2sD∗N(σ) since there are 2s terms each ≤ D∗N(σ)

Taking sup over J yields DN(σ) ≤ 2sD∗N(σ) .

REMARK 4.4. It is now worthwhile to look at the proof again to see what
is essential to the Halton sequences. Doing so is very important in applying
the same proof to other types of sequences.
The proof begins with two number theoretical claims, from which a signed
splitting of a particular interval is obtained. Then by using Lemma 3.1 and
careful case analysis, an estimate for |

∑
1| is obtained in Claim 3. To obtain

the desired upper bound for |
∑

2|, some set theoretical manipulations were
applied to get the containment K ⊆ K4 . By applying Lemma 3.1 on K4 ,
upper bounds of AN(K) and Nµ(K) were obtained. The proof concludes by
applying Lemma 3.3 on the sum of products of the upper bounds for each K .
In other words, in order to prove Theorem 2.1, all that is needed about the
Halton sequences is Lemma 3.1. As Lemma 3.1 also holds for the modified
Halton sequences (based on any permutations τ (i)

j ), so does Theorem 2.1. It
is also not hard to see that Lemma 3.1 holds for those sequences because
equation (4.2) is true.

REMARK 4.5. The estimate for cs holds as advertised since :
First off, by expanding, we see that

s∏
i=1

(
(pi − 1) ln N

2 ln pi
+ s
)

=
lns N

2s

(
s∏

i=1

pi − 1
ln pi

)
+ remaining terms all

dominated by O(lns−1 N)

=
lns N

2s

(
s∏

i=1

pi − 1
ln pi

)
+ O(lns−1 N).

Now, for N large,
⌊ pi

2

⌋ ln N
ln pi
� k, hence,

2s
s−1∑
k=0

pk+1

k!

k∏
i=1

(⌊pi

2

⌋ ln N
ln pi

+ k
)
∼ 2s

s−1∑
k=0

dk lnk N = O(lns−1 N),
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where ∼ denotes “on the same order” and dk = pk+1
k!

∏k
i=1

⌊ pi
2

⌋ 1
ln pi

is some
constant. Similar treatment on u implies that u = O(lns−1 N). Thus,

NDN(σ) <

(
1
s!

s∏
i=1

pi − 1
ln pi

)
lns N + O(lns−1 N).

Strictly speaking, we get from Theorem 2.1 only ≤ . However, because of the
presence of O(lns−1 N) , we could replace ≤ by < .

As claimed before, we now have the following result :
Corollary 2.1 : lims→∞ cs(p1, . . . , ps) = 0, where p1, . . . , ps are the first s
primes.

Proof. For sufficiently large x , say x > M , we know from Analytic Number
Theory that π(x) > x ln−1 x, where π(x) is the number of prime numbers less
than or equal to x. So for large n , we have

n− 1 = π(pn − 1) >
pn − 1

ln(pn − 1)
>

pn − 1
ln(pn)

⇒ pn − 1
n ln pn

<
n− 1

n
.

Thus, for s > M

cs =
1
s!

s∏
i=1

pi − 1
ln pi

=

M∏
i=1

pi − 1
i ln pi

s∏
i=M+1

pi − 1
i : ln pi

≤
M∏

i=1

pi − 1
i : ln pi

·
s∏

i=M+1

i− 1
i

=

M∏
i=1

pi − 1
i : ln pi

· M
s

→ 0 as s→∞.

5. PROOFS LEADING TO THEOREM 2.3

After proving the first main result, Atanassov turned to improve the bounds
even more for the so-called “modified Halton sequence”. To start, he proved
the existence of admissible integers which are vital in the construction of the
modified Halton sequence.
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Lemma 4.1. Let p1, . . . , ps be distinct primes. There exist admissible integers
k1, . . . , ks .

Proof. Observe that given any positive integers a, b, a prime number p and a
primitive root g mod p , if a ≡ gm (mod p), b ≡ gn (mod p), then by Fermat’s
Little Theorem, we see that a ≡ b (mod p) if and only if m ≡ n (mod p−1).
Back to the proof, for each i = 1, . . . , s, let gi be a fixed primitive root mod
pi . Write pj ≡ g

aij
i (mod pi) for j 6= i. We also write ki ≡ gaii

i (mod pi) and
bi ≡ gmi

i (mod pi). We need to prove that we can find integers k1, . . . , ks so
that for any integers b1, . . . , bs , the defining congruence (2.2) for admissible
integers can always be satisfied. By the above observation, we see that (2.2)
is equivalent to

ai1x1 + · · ·+ aisxs ≡ mi (mod pi − 1), i = 1, . . . , s, (5.1)

where x1, . . . , xs are integer variables representing α1, . . . , αs. We show that
for some suitable choice of the numbers ri = aii, (5.1) can always be solved
for integers x1, . . . , xs given any m1, . . . ,ms.

We shall show by induction that the determinant of the matrix C = (cij),
where cij = aij, cii = aii = ri can be made 1 for some r1, . . . , rs given any
aij, j 6= i. The base case when s = 1 is obvious. In general when s > 1,
applying cofactor expansion along the last column of C with cofactors Cij

gives
det(C) = a1sC1s + · · ·+ rsCss.

By induction hypothesis, choose r1, . . . , rs−1 given (aij)1≤i≤s−1,1≤j≤s−1 so
that Css = (−1)s+s · 1 = 1. Take rs = 1− (a1sC1s + · · ·+ as−1,sCs−1,s), then
det(C) = 1.
Now, C−1 = 1

det(C) adj(C) = adj(C) ∈ Ms(Z) where adj(C) is the adjugate
matrix of C. That is, C−1 is an s× s matrix with integer entries. Multiplying
C−1 by (m1, . . . ,ms)T on the right gives an s -vector whose (integer) entries
solve (5.1), where T denotes the transpose operator. Actually, they solve (5.1)
with congruences replaced by equalities.
Putting each ki to be the remainder of gri

i mod pi gives admissible integers
k1, . . . , ks .

To prove the next lemma, we need an easy result from Calculus :
Lemma 4.2.-1 | e(−x) − 1| = 2 sin(π ‖x‖) ≥ 4 ‖x‖ , where e(x) = exp(2πix)
with i =

√
−1.

Proof. We have that
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| e(−x)− 1| = | cos 2πx− i sin 2πx− 1| = | − 2 sin2 πx− i 2 cosπx sinπx|
= 2| sinπx| = 2 sinπ ‖x‖ by a simple case analysis

≥ 2 · 1− 0
1/2− 0

(‖x‖ − 0)︸ ︷︷ ︸
equation of line segment joining

(0,sin(π0)) and (1/2,sin(π/2))

= 4 ‖x‖

since sinπy is convex on [0, 1/2].

Lemma 4.2. Let p = (p1, . . . , ps) be a vector of distinct prime numbers and
ω = {ωn}∞n=0 be a sequence with ωn = (ω(1)

n , . . . , ω(s)
n ) ∈ Zs . Let b and c be

fixed elements in Zs , such that 0 ≤ bi < ci ≤ pi , for i = 1, . . . , s . Denote
by aK(b, c) the number of terms of ω among the first K such that for all
i = 1, . . . , s , we have bi ≤ ω(i)

n mod pi < ci . Then

sup
b,c

∣∣∣∣∣aK(b, c)− K
s∏

i=1

ci − bi

pi

∣∣∣∣∣ ≤ ∑
j∈M(p)

|SK(j, ω)|
R(j)

, (5.2)

where

SK(j, ω) =

K−1∑
n=0

e

(
s∑

k=1

jkω(k)
n

pk

)
,

and R(j) is defined as in (3.1).
As already noted in Section 3, we mention that Lemma 4.2 is a special case
of [15, Satz 2].

Proof. Observe that

1
pi

pi−1∑
j=0

e
(

j
m
pi

)
=

{
1 if pi|m
0 if pi6 |m,

(5.3)

for any integer pi , which could easily be proven as a geometric sum.
By multiplying a few sums as in (5.3) together, we see that for integers
l1, . . . , ls , and w(1)

n , . . . , w(s)
n :

∑
j |0≤ji<pi
i=1,...,s

e
(

j1
w(1)

n − l1
p1

+ · · ·+ js
w(s)

n − ls
ps

)
p1 · · · ps

=


1 if w(i)

n ≡ li (mod pi)

for all i = 1, . . . , s

0 otherwise.

Therefore, we have



NOTE ON ATANASSOV’S BOUND 23

aK(b, c) =
∑

all wn

∑
possible values li
for w(i)

n mod pi

{
1 if w(i)

n ≡ li (mod pi) for all i = 1, . . . , s

0 otherwise

=

K−1∑
n=0

c1−1∑
l1=b1

· · ·
cs−1∑
ls=bs

∑
j∈M(p)∪{0}

e
(

j1
w(1)

n − l1
p1

+ · · ·+ js
w(s)

n − ls
ps

)
p1 · · · ps

=
∑

j∈M(p)∪{0}

[
K−1∑
n=0

e
(

j1
w(1)

n

p1
+ · · ·+ js

w(s)
n

ps

)
·

s∏
i=1

1
pi

ci−1∑
li=bi

e
(
−ji

li
pi

)]
.

Observe that the term corresponding to j = 0 is
K−1∑
n=0

e(0) ·
s∏

i=1

1
pi

ci−1∑
li=bi

e(0) = K
s∏

i=1

ci − bi

pi
,

so,

aK(b, c)− K
s∏

i=1

ci − bi

pi
=
∑

j∈M(p)

SK(j, ω) ·
s∏

i=1

1
pi

ci−1∑
li=bi

e
(
−ji

li
pi

)
. (5.4)

Comparing (5.4) and (5.2), we see that it suffices to establish :

1
pi

∣∣∣∣∣
ci−1∑
li=bi

e
(
−ji

li
pi

)∣∣∣∣∣ ≤ 1
ri(ji)

.

When ji = 0, the left hand side LHS = (ci − bi)/pi ≤ 1 = RHS the right
hand side. For ji 6= 0, we have that e(−ji/pi) 6= 1 and so :

1
pi

∣∣∣∣∣
ci−1∑
li=bi

e
(
−ji

li
pi

)∣∣∣∣∣ =
1
pi

∣∣∣∣∣∣
e
(
−ji bi

pi

)
− e

(
−ji ci

pi

)
1− e

(
− ji

pi

)
∣∣∣∣∣∣

≤ 1
pi

∣∣∣e(−ji bi
pi

)∣∣∣+
∣∣∣e(−ji ci

pi

)∣∣∣∣∣∣e(− ji
pi

)
− 1
∣∣∣

≤ 1
pi

2
4 ‖ji/pi‖

by Lemma 4.2.-1 and since | e(·)| = 1

≤ max
{ 1

pi

2
4(ji/pi)

,
1
pi

2
4(1− ji/pi)

}
= max

{ 1
2ji
,

1
2(pi − ji)

}
=

1
min{2ji, 2(pi − ji)}

=
1

ri(ji)
,
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since 0 < ji < pi, so min{2ji, 2(pi− ji)} > 1 and hence ri(ji) = min{2ji, 2(pi−
ji)}
According to the above discussion, the proof is now complete.

Lemma 4.3. Let σ = σ(p1, . . . , ps, k1, . . . , ks) = {xn}∞n=0 be a modified Halton
sequence. Fix some elementary interval

I =

s∏
i=1

[aip−αi
i , (ai + 1)p−αi

i ), 0 ≤ ai < pαi
i ,

and a subinterval

J =

s∏
i=1

[aip−αi
i + bip−αi−1

i , aip−αi
i + cip−αi−1

i ), 0 ≤ bi < ci ≤ pi.

Let n0 be the smallest integer such that xn0 ∈ I (whose existence will be
proved). Suppose that xn0 belongs to

J1 =

s∏
i=1

[aip−αi
i + dip−αi−1

i , aip−αi
i + (di + 1)p−αi−1

i ),

and consider the sequence ω = {yt}∞t=0 with yt ∈ Zs defined by

y(i)
t = di + tPi(ki; (α1, . . . , αs)).

Then
1. We have that n0 <

∏s
i=1 pαi

i and the indices n of the terms xn of σ that
belong to I are of the form n = n0 + t

∏s
i=1 pαi

i .
2. For these n , the relation xn ∈ J is possible if and only if for some integers

(l1, . . . , ls) , li ∈ {bi, . . . , ci − 1} , the following system of congruences is
satisfied by t :

di + tPi(ki; (α1, . . . , αs)) ≡ li (mod pi), i = 1, . . . , s. (5.5)

3. If K is the largest integer with n0 + (K − 1)
∏s

i=1 pαi
i < N , then

|AN(J)− Nµ(J)| < 1 +
∑

l∈M(p)

|SK(l, ω)|
R(l)

.

Proof.
1. Done in the proof for Lemma 3.1 with n0 = b for the same b defined

there.
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2. Fix any i = 1, . . . , s, look at the next digit (the αi + 1st digit) of
n = n0 + t

∏s
j=1 pαj

j in base pi : The coefficient for pαi
i in n in base

pi, call it si, satisfies

si ≡ k−αi
i di + t

s∏
j=1
j 6=i

pαj
j (mod pi),

since kαi
i (such coefficient for n0 ) ≡ di (mod pi), as xn0 ∈ J1. Thus, the

coefficient of p−αi−1
i in xn, say li, satisfy

li ≡ kαi
i si ≡ di + tPi(ki; (α1, . . . , αs)) (mod pi).

Now the result follows immediately.
3. By part (2), we see that(

number of wn accounted
towards aK(b, c)

)
=
(

number of
solutions to (5.5)

)
= AN(J),

that is, AN(J) = aK(b, c). The given condition also implies that

(K−1)
s∏

i=1

pαi
i ≤ n0 +(K−1)

s∏
i=1

pαi
i < N ≤ n0 +K

s∏
i=1

pαi
i < (K +1)

s∏
i=1

pαi
i .

Multiplying by µ(J) =
∏s

i=1
ci−bi

pαi+1
i
≥ 0, we get :

(K − 1)
s∏

i=1

ci − bi

pi
< Nµ(J) < (K + 1)

s∏
i=1

ci − bi

pi

and hence

−1 + K
s∏

i=1

ci − bi

pi
< Nµ(J) < K

s∏
i=1

ci − bi

pi
+ 1

since ci − bi ≤ pi. Therefore,

|AN(J)− Nµ(J)| <

∣∣∣∣∣ aK(b, c)− K
s∏

i=1

ci − bi

pi

∣∣∣∣∣+ 1

≤ 1 +
∑

l∈M(p)

|SK(l, ω)|
R(l)

by Lemma 4.2.
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Proof of modified Proposition 4.1.

Proof. We expand an arbitrary z = (z(1), . . . , z(s)) ∈ Es in the same way as in
the proof of Theorem 2.1. Using the same idea, and same notation, there we
obtain a “signed splitting” and equality (4.5), that is, AN(J)−Nµ(J) =

∑
1+
∑

2

where J =
∏s

i=1[0, z(i)). The estimates for
∑

1,
∑

2 in the proof for Theorem
2.1 use only Lemma 3.1, 3.3 and 3.5 all of which work here. We will use the
same estimate for

∑
2 but will reevaluate |

∑
1| ≤

∑
j∈T(N) |AN(I(j))−Nµ(I(j))|

for a tighter bound.

Fix some
∼
j = (

∼
j 1, . . . ,

∼
j s) ∈ T(N).

Case 1 :
∼
j i ≥ 1 for all i = 1, . . . , s. That is,

∼
j ∈ T∗(N).

Write 1 = (1, . . . , 1) , we define j =
∼
j−1, then obviously, each ji ≥ 0 and

j ∈ T(N). The interval I(
∼
j )—see Equation (4.4) on page 13—is contained

inside some elementary interval

G =

s∏
i=1

[cip−ji
i , (ci + 1)p−ji

i )

since | z(i)
∼
j i

− z(i)
∼
j i+1
| = | a(i)

∼
j i

|p−
∼
j i

i ≤ p−
∼
j i+1

i = p−ji
i , and pji

i z(i)
∼
j i

= p
∼
j i−1
i z(i)

∼
j i

∈
Z, for each i.
Consider the sequence ω = {ωn}∞n=0 ⊆ Zs, defined as in Lemma 4.3,
that is, w(i)

n = di + nPi(ki; j) where the integers di are determined by the
condition that the first term of the sequence σ that falls in G fits into the
interval

s∏
i=1

[cip−ji
i + dip−ji−1

i , cip−ji
i + (di + 1)p−ji−1

i ). (5.6)

From part (3) in Lemma 4.3 (where (5.6), I(
∼
j ) and G above correspond

respectively to J1 , J and I there), it follows that

|AN(I(
∼
j ))− Nµ(I(

∼
j ))| < 1 +

∑
l∈M(p)

|SK(l, ω)|
R(l)

, (5.7)

where K is the number of terms of σ among the first N terms that fall
into G. Note that we can apply Lemma 4.3 to obtain the above because

the end points of I(
∼
j ) are of the form m/p

∼
j i
i = m/pji+1

i for some integer
m.
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REMARK 5.1. In [1], the above treatment is applied to any
∼
j ∈ T(N) ;

this is where we believe there is a mistake, because the application of

Lemma 4.3 as done above requires
∼
j to be such that

∼
j i − 1 ≥ 0 for

all i , which is why we use a two-case analysis here. Alternatively, we

could define j = max{
∼
j −1, 0} where the “max” operation of vectors is a

component-wise operation, and 0 = (0, . . . , 0) . However, such a definition
would lead to a new form of Proposition 4.1 which will be discussed in
more details in Section 6.

We now digress a little to prove a result about exponential sums : for
α /∈ Z and so e(α) 6= 1, we have∣∣∣∣∣

K−1∑
k=0

e(kα+ β)

∣∣∣∣∣ =

∣∣∣∣e(β)(1− e(Kα))
1− e(α)

∣∣∣∣ as a geometric sum

=
| e(β)| sin(π ‖Kα‖)

sinπ ‖α‖
≤ 1

2 ‖α‖
by Lemma 4.2.-1 and the fact that sin(·) ≤ 1.
Since the pi ’s are coprime, we see that Pi(ki, j) 6= 0, in particular, it is not
divisible by pi and hence coprime to pi. For any l ∈ M(p), by definition,
there is an lt , with 1 ≤ t ≤ s such that lt 6= 0, and so pt6 | lt. Define
∼
α =

∑s
i=1

li
pi

Pi(ki; j). Putting the summands in
∼
α into common denominator

p1 · · · ps, we see that pt divides every summand in the numerator except
for the term ltPt(kt; j)p1 · · · pt−1pt+1 · · · ps, as pt, being a prime, does not
divide any term in that product. Since pt divides the denominator, it follows
that

∼
α /∈ Z. Thus, by the above digression, we have

|SK(l, ω)| =

∣∣∣∣∣
K−1∑
n=0

e

(
s∑

i=1

li
pi

(di + nPi(ki; j))

)∣∣∣∣∣ =

∣∣∣∣∣
K−1∑
n=0

e(n
∼
α+ (·))

∣∣∣∣∣
≤ 1

2

∥∥∥∥∥
s∑

i=1

li
pi

Pi(ki; j)

∥∥∥∥∥
−1

.

Combining this result with (5.7), we obtain∑
∼
j∈T∗(N)

|AN(I(
∼
j ))− Nµ(I(

∼
j ))|

≤
∑

∼
j∈T∗(N)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)

 (5.8)
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which is the first piece as in the result of the proposition . As we will see
later, we can still prove Theorem 2.3 using our modified Proposition 4.1.

Case 2 :
∼
j i = 0 for some i. That is,

∼
j ∈ Tz(N).

We shall use a similar estimate as (4.7), which was used in the proof of

Theorem 2.1. Remember that as Tz(N) ⊂ T(N), none of the
∼
j ∈ Tz(N)

has any j̃i = ni. So Lemma 3.1 applies and we get :∑
∼
j∈Tz(N)

|AN(I(
∼
j ))− Nµ(I(

∼
j ))| ≤

s∑
i=1

∑
∼
j∈T(N),

∼
j i=0

s∏
k=1
k 6=i

∣∣∣∣a(k)
∼
j k

∣∣∣∣
≤

s∑
i=1

1
(s− 1)!

s∏
k=1
k 6=i

(
pk

2
ln N
ln pk

+ s− 1
)

= O(lns−1 N), (5.9)

since each summand is O(lns−1 N) and there is s, which does not depend
on N, such summands. Above, we recalled the fact that a(i)

0 ∈ {0, 1} by
definition. Note that the first inequality above is quite conservative, in the
sense that vectors with at least one zero component are counted more than
once. But the bound is good enough to get the desired result (Theorem
2.3), and thus we haven’t tried to make it tighter.
Combining (5.9) and the estimate (4.12) for

∑
2, we get the remaining

two pieces in the desired result.
Combining Case 1 and Case 2, we see that the proof is complete now.

The following lemma will be used twice in the proof for Lemma 4.4 :
Lemma 4.4.-1 Let m be any positive integer, then

m−1∑
j=1

1
min(j,m− j)

≤ 2 ln m.

Proof. Now,
n∑

k=1

1
k

= 1 +

∫ n

1

1
x

dx + shaded area on Fig. 1−
n−1∑
k=1

1 ·
(

1
k
− 1

k + 1

)
︸ ︷︷ ︸

area of each little rectangle
with thick boundary

.

Also, looking at Figure 1, we have that

shaded area ≤ γ −
∞∑

k=n

1
2

(
1
k
− 1

k + 1

)
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FIGURE 1
Left : integrating 1/x ; Right : comparison of regions

1 2 3 4 5 6

1/x

where γ is the Euler constant, and is equal to the sum of all the surfaces
in shaded area. The inequality holds because ln x is a convex function, and
therefore the surface area of each shaded region is at least as large as the
corresponding triangle (see right-hand-side of Figure 1), whose area is given
by

1
2

(
1
k
− 1

k + 1

)
.

Combining these facts gives

n∑
k=1

1
k
≤ 1 + ln n + γ −

∞∑
k=n

1
2

(
1
k
− 1

k + 1

)
−

n−1∑
k=1

1 ·
(

1
k
− 1

k + 1

)
= 1 + ln n + γ − 1

2n
− (1− 1

n
)

= ln n + γ +
1
2n
.

For 2n ≥ 9, we see that

ln n + γ +
1

2n
≤ ln n + 0.5773 +

1
9

= ln n + 0.68841̄ < ln n + ln 2 = ln 2n,

where we used the fact that γ = 0.5772... and ln 2 = 0.693147... . So for
m ≥ 10, we have that
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m−1∑
j=1

1
min(j,m− j)

=
1
1

+
1
2

+ . . .+
1

bm/2c
+ . . .+

1
2

+ 1

≤ 2
bm/2c∑

j=1

1
j

(
with equality iff m is odd so

there were an even number of terms

)
≤ 2 ln

(
bm

2
c
)

(since 2bm/2c ≥ 2 · 5 = 10 ≥ 9)

≤ 2 ln
(

2
m
2

)
= 2 ln m (as bm/2c ≤ (m/2)).

One can easily check that
∑m−1

j=1 min(j,m− j)−1 ≤ 2 ln m for m ≤ 9 as well.
In fact,

m 1 2 3 4 5 6 7 8 9∑m−1
j=1 min(j,m− j)−1 0 1 2 2.5 3 3.3̄ 3.6̄ 3.916̄ 4.16̄

2 ln m (to 2 decimals) 0 1.3 2.1 2.7 3.2 3.5 3.8 4.1 4.3

So
m−1∑
j=1

min(j,m− j)−1 ≤ 2 ln m for all m ≥ 1.

Lemma 4.4. Let p1, . . . , ps be distinct prime numbers. Then

G =
∑

j∈M(p)

p1−1∑
m1=1

· · ·
ps−1∑
ms=1

∥∥∥ j1m1
p1

+ . . .+ jsms
ps

∥∥∥−1

2R(j)

≤
s∑

i=1

ln pi

s∏
i=1

pi

−1 +

s∏
j=1

(1 + ln pj)

 .

Proof. Write P = p1 · · · ps. Fix some j ∈ M(p), then for each i = 1, . . . , s ,
we have that 1 ≤ ji ≤ pi − 1. Let I denote the subset of indices for which
ji = 0 and let J denote its complement. Let G(j) denote the contribution to
the above sum from j. We wish to prove,

G(j) ≤ PlnP
R(j)

.

Without loss of generality, assume I = {1, . . . , k} for some k . For each
i = k + 1, . . . , s , write j∗i = jipk+1 · · · ps/pi. The map

(Z/pk+1Z)× × · · · × (Z/psZ)× → (Z/pk+1 · · · psZ)×

(mk+1, . . . ,ms) 7→ j∗k+1mk+1 + · · ·+ j∗s ms

is an isomorphism by the Chinese Remainder Theorem since
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gcd(j∗k+1, . . . , j
∗
s , pk+1 · · · ps) = 1.

In other words, for each t = 1, . . . , pk+1 · · · ps coprime to pk+1 · · · ps, there
exists a unique tuple (mk+1, . . . ,ms) with 1 ≤ mi ≤ pi − 1 such that

jk+1mk+1

pk+1
+ · · ·+ jsms

ps
− t

pk+1 · · · ps
∈ Z.

Therefore,

G(j) =
1

2R(j)

∑
1≤t≤pk+1···ps

gcd(t,pk+1···ps)=1

|| t
pk+1 · · · ps

||−1

≤ p1 · · · pk

2R(j)

pk+1···ps−1∑
t=1

1
min( t

pk+1···ps
, 1− t

pk+1···ps
)

=
P

2R(j)

pk+1···ps−1∑
t=1

1
min(t, pk+1 · · · ps − t)

≤ P
2R(j)

· 2 ln(pk+1 · · · ps) by Lemma 4.4.-1

≤ P ln P
R(j)

.

Summing everything up, we get what we want :

G =
∑

j∈M(p)

G(j) ≤
∑

j∈M(p)

P ln P
R(j)

= P ln P

(
− 1

R(0)
+

p1−1∑
m1=1

· · ·
ps−1∑
ms=1

s∏
k=1

1
rk(jk)

)
since 0 /∈ M(p)

= P ln P

−1 +

s∏
k=1

pk−1∑
jk=0

1
rk(jk)

 by associativity

= P ln P

−1 +

s∏
k=1

 1
rk(0)

+

pk−1∑
jk=1

1
2 min(jk, pk − jk)


≤ P ln P

[
−1 +

s∏
k=1

(
1 +

1
2

2 ln pk

)]
by Lemma 4.4.-1

=

s∑
i=1

ln pi

s∏
i=1

pi

−1 +

s∏
j=1

(1 + ln pi)

 by definition of P.
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Theorem 2.3 can now be proved :
Proof of Theorem 2.3.

Proof. The proof relies on (modified) Proposition 4.1. Take J =
∏s

i=1 [0, zi)
and form I(j) as before.
Write K =

∏s
i=1(pi − 1). For each nonnegative vectors a = (a1, . . . , as) ∈

Zs, we consider the box of integers U(a) = {(j1, . . . , js)| aiK ≤ ji <

(ai + 1)K, for all i = 1, . . . , s}.
Claim : For each b = (b1, . . . , bs) ∈ Zs with 1 ≤ bi ≤ pi − 1 for each i,
there are exactly Ks−1 s -tuples j ∈ U(a) such that

Pi(ki; j) = bi for all i = 1, . . . , s. (5.10)

Proof : Observe that there are Ks vectors in U(a) with only K distinct
such vectors b = (b1, . . . , bs). By the Pigeonhole principle, there is a b0

so that (5.10) has at least Ks−1 solutions. Now write b0 = (b1, . . . , bs)
with 1 ≤ bi ≤ pi− 1. Since pi6 | bi, there exists mi ∈ Z such that bi ≡ gmi

i
(mod pi) where gi is some primitive root modpi.

Then by definition of Pi(ki; j) and the proof of Lemma 4.1, we see that j
satisfies (5.10) if and only if :

ai1j1 + · · ·+ aisjs ≡ mi (mod pi − 1), (5.11)

where pj ≡ g
aij
i (mod pi) for j 6= i, and ki = gaii

i (mod pi) for all i. Notice

that if the vector j1, . . . , js satisfies (5.11), then so does
∼
j 1, . . . ,

∼
j s where

∼
j i = ji + ci

∏s
i=1(pi − 1) for some integer ci for all i. In what follows,

we will not write “for all i” just to save some space, but it should be
understood that the statements are true for all i = 1, . . . , s.
Fix j′ ∈ U(a), a solution to (5.10) with right-hand side (RHS) equals b0.

Now, given any solution j′′ ∈ U(a) to (5.10) with RHS = b0, then from
(5.11), we see that (j′′′1 , . . . , j

′′′
s ) satisfies the corresponding homogeneous

equation, that is (5.10) with RHS = b = (1, . . . , 1), (i.e, (5.11) with
mi = 0) where j′′′i = j′i − j′′i . Since j′i , j

′′
i ∈ [aiK, (ai + 1)K), we have that

each j′′′i ∈ (−K,K). By adding K =
∏s

i=1(pi − 1) to j′′′i if necessary,
we get a vector j(iv) = (j(iv)

1 , . . . , j(iv)
s ) ∈ U(0) satisfying the homogeneous

equation.
Note that if j′′(2)

= (j′′(2)
1 , . . . , j′′(2)

s ) ∈ U(a) is also a solution to
(5.10) with RHS = b0 but with the same resulting vector jiv, then
|(j′i − j′′i )− (j′i − j′′(2)

i )| = 0 or K. In particular, we see that K|(j′′i − j′′(2)
i ).

However, similar to j′′′i , we know that |(j′′i − j′′(2)
i )| < K. Therefore,

j′′i = j′′(2)
i and hence j′′(2)

= j′′. Since there are at least Ks−1 distinct
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solutions in U(a) to (5.10) with RHS = b0, there must also be at least
Ks−1 distinct solutions in U(0) to the homogeneous equation.
Now, select an arbitrary RHS b′. Since k1, . . . , ks are admissible, then by
Definition 2.1, a particular solution j to (5.10) with RHS = b′ exists. If j′

is any solution to the homogeneous equation, then from (5.11), we see that
j + j′ is a solution to (5.10) with RHS = b′. As ji + j′i ∈ [aiK, (ai + 2)K),
by subtracting by K if necessary, we get a solution j′′ ∈ U(a) to (5.10)
with RHS = b′ . By the same argument as above, distinct such j′ yields
distinct such j′′. So there are at least Ks−1 solutions for each RHS b′.
By an easy “number-of-elements” argument, one sees that there are exactly
Ks−1 solutions for each RHS b′. (See Remark 5.3).

Obviously, since
⋃

a∈Zs U(a) = Zs, each j ∈ T(N) is inside some box U(a)
with

∏s
i=1 paiK

i ≤
∏s

i=1 pji
i ≤ N. So

∣∣∣{a :
s∏

i=1

paiK
i ≤ N}

∣∣∣ =
∑

a|
∏s

i=1 pK·ai
i ≤N

1 ≤ 1
s!

s∏
i=1

(
1 · ln N

ln pK
i

+ s
)
,

by Lemma 3.3 with p′i = pK
i , fi(p

′
i) = 1.

For convenience, let us write t(j) for |AN(I(j))− Nµ(I(j))|, we now have :

∣∣∣∑1

∣∣∣ ≤ ∑
j∈T(N)

t(j) =
∑

j∈T∗(N)

t(j) +
∑

j∈Tz(N)

t(j) =
∑

j∈T∗(N)

t(j) + O(lns−1 N)

≤
∑

a|
∏s

i=1 pK·ai
i ≤N

∑
j∈U(a)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)

+ O(lns−1 N)

(5.12)

by the proof of (modified) Proposition 4.1 and also the fact that T∗(N) ⊆
T(N) ⊆

⋃
{U(a) :

∏s
i=1 paiK

i ≤ N}.

Further, we have, up to a O(lns−1 N) term whose constant depends only on
the primes p1, . . . , ps :
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(5.12) ≤

[
1
s!

s∏
i=1

(
ln N

K ln pi
+ s
)]

︸ ︷︷ ︸
#a with

∏s
i=1 pKai

i ≤N

×
p1−1∑
b1=1

· · ·
ps−1∑
bs=1︸ ︷︷ ︸

enumerate U(a)
according to (5.10)

Ks−1

1 +
∑

l∈M(p)

‖l1 b1
p1

+ · · ·+ ls bs
ps
‖−1

2R(l)



=

[
1
s!

(
s∏

i=1

ln N
K ln pi

)
+ O(lns−1 N)

]
Ks−1

×

K +
∑

l∈M(p)

∑
b

‖l1 b1
p1

+ · · ·+ ls bs
ps
‖−1

2R(l)


≤
[

Ks−1

s!
lns N

Ks
∏s

i=1 ln pi

]K +

s∑
i=1

ln pi

s∏
i=1

pi

−1 +

s∏
j=1

(1 + ln pi)


=

1
s!

lns N∏s
i=1 ln pi

(
1−

(
s∑

i=1

ln pi

)
s∏

i=1

pi

pi − 1

+

(
s∑

i=1

ln pi

)
s∏

i=1

pi(1 + ln pi)
pi − 1

)

<
1
s!

(
s∑

i=1

ln pi

s∏
i=1

pi(1 + ln pi)
(pi − 1) ln pi

)
lns N (5.13)

where the Ks−1 in the second line represents the number of j ∈ U(a)
with Pi(ki; j) = bi, as in the above Claim; the first equality follows by
expanding the product on the first line as in Remark 4.5 on page 19, and the
second K comes from summing 1 over all suitable b; the second inequality
follows from Lemma 4.4, and by remembering that we are trying to get
a bound valid up to O(lns−1 N) terms; the second equality follows from
some cancellation and rearrangement while recalling the definition of K
as
∏s

i=1(pi − 1); and finally, the last inequality follows by some further
rearrangement and a simple case analysis (whether 2 ∈ {p1, . . . , ps} or not)
which yields (

∑
ln pi)(

∏s
i=1

pi
pi−1 ) > 1.

The result now follows by combining the estimate for |
∑

1| as in (5.12) and
(5.13), the estimate for |

∑
2| as in (4.12), taking sup over J, and finally the

fact that DN(σ) ≤ 2sD∗N(σ).
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REMARK 5.2. As at the end of the proof of Theorem 2.1, we discuss the
essential steps in the proof of Theorem 2.3.

The proof begins with the definition of U(a) and a claim that will be used
later to partition the sum of all j ∈ T(N). The proof of the claim is purely
number theoretical with the fact that equations (5.10) and (5.11) are equivalent.
Therefore, it is essential that we define Pi(ki; j) in a certain way.

By using the estimate of t(j) as in the proof of (modified) Proposition 4.1, the
next milestone, equation (5.12), is obtained. From there, along with another
number theoretical result (Lemma 4.4), we obtain our targeted upper bound for
|
∑

1|. To finish the proof, the estimate of |
∑

2| as in the proof of Theorem
2.1 is needed. That is, we also need Lemma 3.1 to hold (See Remark 4.4).

The proof of (modified) Proposition 4.1 consists of three parts. The first part

is to apply Lemma 4.3 on I(
∼
j ) for

∼
j ∈ T∗(N). The second part uses the fact

that pi6 |Pi(ki; j) to obtain an upper bound for |SK(l, ω)| and then the equation

(5.8). The last part is to apply Lemma 3.1 on
∼
j ∈ Tz(N) to complete the

estimate of |
∑

1|.
To summarize, we see that the proof of Theorem 2.3 replies on and only on
Lemma 3.1 (so in fact equation (4.2)), a proper definition of Pi(ki; j) (so that
(5.10) and (5.11) are equivalent), and also Lemma 4.3. It is not hard to see
that Lemma 4.3(3) follows from part (2). Therefore, the whole Lemma 4.3
holds if the first two parts hold.

REMARK 5.3. The original paper by Atanassov gives another way of getting
j(iv) and another way of obtaining new solutions to (5.10) with RHS = b′ from
a particular solution and a general solution to the homogeneous equations.

Namely,

j(iv)
i = j′i − j′′i −

(⌊
j′i − j′′i

(p1 − 1) · · · (ps − 1)

⌋)
(p1 − 1) · · · (ps − 1) (5.14)

j′′i = ji + j′i −
(⌊

ji + j′i
(p1 − 1) · · · (ps − 1)

⌋
− ai

)
(p1 − 1) · · · (ps − 1)(5.15)

In fact, these two equations are in the same vein as the construction given
in our proof, since in (5.14),

⌊
j′i−j′′i

(p1−1)···(ps−1)

⌋
= −1 or 0, whereas in (5.15),⌊

ji+j′i
(p1−1)···(ps−1)

⌋
− ai = 0 or 1.
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6. PROPOSITION 4.1 REVISITED

As we discussed before, the inaccuracy in the proof of Proposition 4.1 from
[1] is quite subtle. There are three ways to fix this and still be able to prove
Theorem 2.3. The first one has been presented in the previous section, where
we have separated T(N) into T∗(N) and Tz(N) . Then we used Lemma 4.3
on vectors in T∗(N)− 1 , while the approach in Theorem 2.1 to estimate

∑
2

was used on elements of Tz(N).
The second one is to prove our modified2 Proposition 4.1, stated again below
for convenience, and then show that Theorem 2.3 will also hold. This is what
we do next. A third approach is discussed at the end of the section, which is
a simplified version of our first approach, but where we replace the second
term of the bound in the original Proposition 4.1 by a O((ln N)s−1) term. The
proof of Theorem 2.3 given in the previous section then carries through.

(Modified2 ) Proposition 4.1. The star-discrepancy of the modified Halton
sequence σ = σ(p1, . . . , ps, k1, . . . , ks) satisfies :

ND∗N(σ) ≤
∑

j∈T(N)

2z(j)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)


+

s−1∑
k=0

pk+1

k!

k∏
i=1

(⌊pi

2

⌋ ln N
ln pi

+ k
)
,

where z(j) = #{i = 1, . . . , s : ji = 0}.

Proof.
We will repeat or rephrase part of the proof of modified Proposition 4.1, in
particular from the beginning of Case 1 to the beginning of Remark 5.1, for
convenience.
Same setup as before to get the signed splittings with intervals

I(j) =

s∏
i=1

[min(z(i)
ji , z

(i)
ji+1),max(z(i)

ji , z
(i)
ji+1)), 0 ≤ ji ≤ ni,

where z(i)
k =

∑k−1
j=0 a(i)

j p−j
i . Notice that z(i)

1 =
∑0

j=0 a(i)
j p−j

i = a(i)
0 which is

either 0 or 1. Therefore, if ji = 0, then the ith coordinate-projection of I(j)
is either empty or [0, 1).

Fix some
∼
j = (

∼
j 1, . . . ,

∼
j s) ∈ T(N), define j = λ(

∼
j ) := max{

∼
j − 1, 0}.

Obviously, if
∼
ji = 0, then ji = 0. Therefore, we have
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| z(i)
∼
j i

− z(i)
∼
j i+1
| =

| a
(i)
∼
j i

|p−
∼
j i

i ≤ p−
∼
j i+1

i = p−ji
i if ji ≥ 1

|z(i)
0 − z(i)

1 | ≤ 1 = p−ji
i if ji = 0

. (6.1)

Therefore, the interval I(
∼
j ) is contained inside some elementary interval

G =

s∏
i=1

[cip−ji
i , (ci + 1)p−ji

i ).

Now we can apply Lemma 4.3 as in the proof of modified Proposition 4.1 to
get (5.7). Using the same inequality regarding |SK(l, ω)| , we get

|
∑

1| ≤
∑
∼
j∈T(N)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)

 . (6.2)

Notice now that the sum in RHS(6.2) is indexed by
∼
j whereas the summands

are in terms of j = λ(
∼
j ). Moreover, the function λ is not one-to-one. Namely,

different
∼
j may lead to the same j = max{

∼
j−1, 0}. In other words, if we use

j as the index of the sum in RHS(6.2), then some j ’s are summed multiple
times.
If a particular j has z(j) zero entries, then those entries could be coming

from either 1 or 0 in the corresponding entry of
∼
j . The nonzero entries

uniquely determine the corresponding entries of
∼
j by adding 1. Therefore,

#{
∼
j : λ(

∼
j ) = j} = 2z(j). Also, since λ(T(N)) ⊂ T(N), taking inverse gives

T(N) ⊂
⋃

j∈T(N)

λ−1(j).

Hence, we have

|
∑

1| ≤
∑
∼
j∈T(N)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)


≤
∑

j∈T(N)

∑
∼
j∈λ−1(j)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki;λ(
∼
j ))‖−1

2R(l)


=
∑

j∈T(N)

2z(j)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)

 .

(6.3)

The result now follows by combining (6.3) with the estimates (4.12) of
∑

2

in the proof of Theorem 2.1.
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Even though this new upper bound seems a lot larger than the one in modified
Proposition 4.1, we can still prove Theorem 2.3. In fact, we shall use an even
weaker result, namely,

ND∗N(σ) ≤
∑

j∈T(N)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)

+ O(lns−1 N)

+
∑

j∈Tz(N)

2s

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)

 .

(6.4)

It is not hard to see that (6.4) comes right out of modified2 Proposition 4.1.
The fact that the estimate (4.12) for

∑
2 is O(lns−1 N) was proven and used

many times already. From the definition, we know that 2z(j) = 1 for j ∈ T∗(N)
and z(j) ≤ s for all j . Finally, since we are looking for an upper bound, it
does not hurt to sum over T(N) in the first sum in RHS(6.4) where it suffices
to sum over T∗(N) .
The following lemma provides the key why the extra term in (6.4) does not
create much trouble as far as proving Theorem 2.3 is concerned. Namely, we
did not add too much.
Lemma 5.1. card(Tz(N)) ∈ O(lns−1 N), where card(.) denotes the cardinality
of a set.

Proof.
We will first introduce some set-theoretic notations, not because the proof is
complicated, but to make it easier for us to explain.
Let P∗ be the set of all proper subsets of {1, 2, . . . , s}. For any set
S = {a1, . . . , am} ∈ P∗, define

TS(N) = card{(j1, . . . , jm) : pj1
a1
· · · pjm

am
≤ N, j1, . . . , jm ∈ Z+},

and dS(N) = card(TS(N)) = d(pa1 , . . . , pam ; N) which was defined in Definition
3.1.
Take any j ∈ Tz(N), it will have none-zero entries with indices in a proper
subset of {1, . . . , s} , say S for some set S ∈ P∗, and hence j ∈ TS(N).
Obviously, TS(N) ⊂ T(N) and TS1 (N) ∩ TS2 (N) = ∅ if S1 6= S2. Therefore,

Tz(N) =
⋃̇

S∈P∗
TS(N)

Taking card gives, for N large, in fact bigger than 2 :
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card(Tz(N)) =
∑

S∈P∗
dS(N) =

s−1∑
k=1

∑
S={a1,...,ak}∈P∗

d(pa1 , . . . , pam ; N)

≤
s−1∑
k=1

∑
S={a1,...,ak}∈P∗

1
k!

k∏
i=1

ln N
ln pai

by Lemma 3.2

≤ 1
ln 2

s−1∑
k=1

∑
S={a1,...,ak}∈P∗

1
k!

lnk N

≤ lns−1 N
ln 2

s−1∑
k=1

∑
S={a1,...,ak}∈P∗

1

=
lns−1 N

ln 2
· card(P∗) = lns−1 N

2s − 1
ln 2

∈ O(lns−1 N),

(6.5)

where the upper limit of k is s − 1 since P∗ does not contain the full
{1, . . . , s}; the third line follows because all but possibly one pai ≥ 3 and
ln 3 > 1; the fourth line follows as lnk N ≤ lns−1 N and 1/k! ≤ 1.

Next, we prove a nearly trivial and seemingly useless corollary of Lemma
4.4.
Lemma 5.2. For arbitrary j (distinctive primes p1, . . . , ps and their admissible
integers p1, . . . , pk as always),

∑
l∈M(p)

‖
∑s

i=1(li/pi)Pi(ki; j)‖−1

2R(l)
≤

s∑
i=1

ln pi

s∏
i=1

pi

−1 +

s∏
j=1

(1 + ln pj)

 =: ξ

(6.6)

Proof.
For each i , Pi(ki; j) ∈ {1, 2, . . . , pi − 1} . Thus,

∑
l∈M(p)

‖
∑s

i=1(li/pi)Pi(ki; j)‖−1

2R(l)
≤

∑
l∈M(p)

p1−1∑
m1=1

· · ·
ps−1∑
ms=1

∥∥∥ l1m1
p1

+ . . .+ lsms
ps

∥∥∥−1

2R(l)

≤
s∑

i=1

ln pi

s∏
i=1

pi

−1 +

s∏
j=1

(1 + ln pj)

 ,

as required.
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Now we are in shape to finish the proof of Theorem 2.3 using modified2

Proposition 4.1. Remember that we are showing that the extra term in
the new Proposition 4.1 is small enough. Therefore, we will use the same
setup/approach involving U(a).
Going directly to (5.12), we have, up to O(lns−1 N),∣∣∣∑1

∣∣∣ ≤ ∑
j∈T(N)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)


+
∑

j∈Tz(N)

2s

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)


≤

∑
a|

∏s
i=1 pK·ai

i ≤N

∑
j∈U(a)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)


+
∑

j∈Tz(N)

2s(1 + ξ)

<
1
s!

(
s∑

i=1

ln pi

s∏
i=1

pi(1 + ln pi)
(pi − 1) ln pi

)
lns N

+O(lns−1 N) · 2s(1 + ξ) (6.7)

=
1
s!

(
s∑

i=1

ln pi

s∏
i=1

pi(1 + ln pi)
(pi − 1) ln pi

)
lns N, (6.8)

where we refer to (5.13) to get the estimate in the fourth line. As in the proof
of Theorem 2.3 in the previous section, equation (6.7) is essentially Theorem
2.3.
As a summary, we used a more straightforward approach to Proposition 4.1 to
get a seemingly bad upper bound, which in turns requires some extra lemmas,
though not difficult, so that Theorem 2.3 still carries through.
As mentioned at the beginning of this section, yet another way to address
the inaccuracy found in the proof of Proposition 4.1 given in [1] is to use
asymptotic notation to replace the second term of the bound given in that
result. More precisely, we have :

(Simplified) Proposition 4.1. The star-discrepancy of the modified Halton
sequence σ = σ(p1, . . . , ps, k1, . . . , ks) satisfies :

ND∗N(σ) ≤
∑

j∈T(N)

1 +
∑

l∈M(p)

‖
∑s

i=1
li
pi

Pi(ki; j)‖−1

2R(l)

+ O((ln N)s−1).
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Proof.
The proof is almost the same as in [1], except that on p.28, line 12, after “Fix
some j ∈ T(N) .”, we have to say “Without loss of generality we can assume
that all ji ≥ 1 because if some ji = 0 then AN(I(j))−Nµ(I(j)) ∈ O((ln N)s−1) .
This is because if at least one ji = 0, then it means that at least one projection
of I(j) is equal to [0, 1) or the empty set, and consequently when we compute
AN(I(j))−Nµ(I(j)) , we only need to consider a (strict) subset of the coordinates
of the first N points of the sequence. Hence we deal with modified Halton
sequences in dimension no larger than s − 1, and can thus apply Theorem
2.1 to show that AN(I(j)) − Nµ(I(j)) ∈ O((ln N)s−1) , since this theorem also
applies to modified Halton sequences (see end of Remark 4)”. Note that a
similar argument is used in [16, Thm 4.49, p. 90].

The proof of Theorem 2.3 follows in the same way as in Section 5 after the
proof of (modified) Proposition 4.1.
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