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Abstract We propose randomized quasi-Monte Carlo (RQMC) methods to estimate
expectations ` = E(6(_ ,,)) where _ is independent of, and can be sampled by
inversion, whereas , cannot. Various practical problems are of this form, such as
estimating expected shortfall for mixture models where , is stable or generalized
inverse Gaussian and_ is multivariate normal. We consider two settings: In the first,
we assume that there is a non-uniform random variate generation method to sample
, in the form of a non-modifiable “black-box”. The methods we propose for this
setting are based on approximations of the quantile function of , . In the second
setting, we assume that there is an acceptance-rejection (AR) algorithm to sample
from , and explore different ways to feed it with quasi-random numbers. This has
been studied previously, typically by rejecting points of constant dimension from
a low-discrepancy sequence and moving along the sequence. We also investigate
the use of a point set of constant (target) size where the dimension of each point is
increased until acceptance. In addition, we show how to combine the methods from
the two settings in such a way that the non-monotonicity inherent to AR is removed.

1 Introduction

Consider the problem of estimating the quantity
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` = E(6(_ ,,)) (1)

where 6 : R3+1 → R is integrable and _ ∼ �_ is a 3-dimensional random vector
independent of the random variable , ∼ �, . For instance, if _ is multivariate
normal and , follows a generalized inverse Gaussian (GIG) distribution (see, e.g.,
[10] for an AR algorithm to sample from GIG distributions), we could be estimating
the expected shortfall of a generalized hyperbolic distribution; this is an important
class of multivariate distributions in risk management, see, e.g., [17].

The classical Monte Carlo (MC) estimator ˆ̀mc
= based on = samples for ` is given

by

ˆ̀mc
= =

1
=

=∑
8=1

6(_8 ,,8),

where (_8 ,,8) ind.∼ �_ × �, for 8 = 1, . . . , =.
We assume that there is an easy way to sample from �_ based on uniforms;

e.g., based on the Rosenblatt transform ([21]). That is to say, assume there is a
transformation )_ : (0, 1)3+: → R3 such that )_ ([) ∼ �_ for [ ∼ U3+: for
constant : ≥ 0; if, e.g., _ ∼ N3 (-, Σ) then : = 0 and the function )_ (u) is given
by )_ (u) = - + �(Φ−1 (D1), . . . ,Φ−1 (D3))> where � is such that ��> = Σ.

In this paper, we investigate the following question:

How can a randomized quasi-Monte Carlo (RQMC) estimator for ` be constructed
when, cannot be sampled by inversion?

More precisely, we assume that the (always existing) quantile function �←
,
(D) =

inf{G : �, (G) ≥ D} is intractable and instead we rely on other methods for non-
uniform random variate generation (NRVG), such as AR algorithms, where at first
glance it may seem hard to directly apply RQMC methods.

We investigate the above question under two sets of assumptions on what we
mean by the existence of a “NRVG” method for, .

1. Black-box case. Here, we assume that we have a function ', : N → R= such
that if ', (=) = ] for ] = (,1, . . . ,,=) then ,8 ind.∼ �, for 8 = 1, . . . , =. As
such, we have a “black box” function that returns samples from �, of any size.
The underlying sampling method could be based on MCMC, machine learning
techniques or methods based on a stochastic representation (SR), among others.
We study this setting in Section 2, along with introducing some notation. The pro-
posed methods, which rely on estimating the quantile function �←

,
, are explored

and compared numerically.
2. AR algorithms for , , where the proposal (or envelope) distribution and the ac-

ceptance decision can be sampled by inversion of uniforms. The main difference
to the black-box setting is that here, we do have access to the underlying sampling
mechanism and can feed the AR sampler with a randomized low-discrepancy
sequence (LDS). AR algorithms are typically not popular in RQMC as it is pos-
sibly infinite-dimensional. [18] consider using smoothed rejection and weighted
uniform sampling and show in their numerical results that these outperform AR
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sampling in terms of convergence speed. [22] show that the � discrepancy, i.e.,
supG |�= (G) − � (G) |, where �= and � denote the empirical and theoretical distri-
bution function, of a sample obtained via AR is in O(=−U) for 1/2 ≤ U < 1. They
improve the error convergence rate by replacing the purely binary AR decision
with weights, called extended smoothed rejection. This circumvents integration
of an indicator function. [23] derive discrepancy properties of points produced
by totally deterministic AR methods, i.e., AR with a (non-randomized) Sobol’
sequence. [20] give a convergence result, error bounds and a numerical study
for AR with RQMC. What all previous references have in common is that they
hold the dimension of the LDS constant and effectively use a subset of size = of
the first # points in the sequence. We investigate, among other things, whether
there is a difference between holding 3 constant (and thereby skipping points in
the sequence) or holding = constant (thereby thinking of the first = points having
potentially unbounded dimension). This is the topic of Section 3.

To be clear, AR could even be an algorithm used within the black-box setting, but
given its prevalence, we choose to treat AR separately. We revisit this point at the
end of Section 3, where we combine ideas from both settings.

Section 4 applies the methods presented in Sections 2 and 3 to the problem of
estimating the price of a basket call option under C copula dependencewhile Section 5
concludes the paper.

2 Methods for the black box setting

Recall that the classical MC estimator ˆ̀mc
= based on = samples for (1) can be written

as

ˆ̀mc
= =

1
=

=∑
8=1

6()_ ([8),,8), (2)

where [8
ind.∼ U(0, 1)3+: is independent of ,1, . . . ,,=

ind.∼ �, obtained by calling
', (=). To simplify the notation, we henceforth assume : = 0; the case : > 0 is
handled by replacing 3 by 3 + : in what follows. In order to be able to apply RQMC
to the problem, we first rewrite (1) as an integral over the unit hypercube. With a
change of variable, we obtain

` =

∫
(0,1)3+1

6()_ (D1:3), &(D3+1)) du, (3)

where u = (D1:3 , D3+1) with D1:3 = (D1, . . . , D3), and we use the function & :
[0, 1] → R as a shorthand notation for the quantile function �←

,
for the remainder

of this paper.
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If we were able to sample , via inversion, then RQMC sampling could be
used to estimate ` using the following approach: Let %̃1,= = {u1,1, . . . , u1,=} ⊆
[0, 1)3+1, where u1,8 = (D1,8,1, . . . , D1,8,3+1) for 1 = 1, . . . , �, denote � independent
randomizations of the first = points of the low-discrepancy sequence (LDS) used;
here we assume that the randomization is such that each u1,8 ∼ * (0, 1)3+1. Then

ˆ̀rqmc
1,=

=
1
=

=∑
8=1

6()_ (u1,8,1:3), &(D1,8,3+1)), 1 = 1, . . . , �, (4)

and an RQMC estimator for ` based on a total of =� points would be given by

ˆ̀rqmc
�,=

=
1
�

�∑
1=1

ˆ̀rqmc
1,=

.

The variance/error of ˆ̀rqmc
�,=

could then be estimated in the usual way; see [15].
However, we do not know&, so the estimators ˆ̀rqmc

1,=
in (4) cannot be computed. In

this section, we propose two differentmethods to approximate ˆ̀rqmc
1,=

for 1 = 1, . . . , �.
Both methods essentially replace & by an estimate thereof.

2.1 Methods based on the empirical quantile function

A simple ad-hoc method to approximate ˆ̀rqmc
1,=

could be to replace the & values by
a random sample of �, obtained by calling ', (�=). More precisely, let ,1,8 for
1 = 1, . . . , �, 8 = 1, . . . , =, denote the �= iid samples from �, obtained by calling
', (�=). Replacing &(D1,8,3+1) by ,1,8 for 1 = 1, . . . , �, 8 = 1, . . . , =, is then
equivalent to replacing the last coordinate of the = points in %̃1,= by independent
U(0, 1) variates. With ,1,8 = &(*1,8) where *1,8 ind.∼ U(0, 1), 1 = 1, . . . , �, 8 =
1, . . . , =, 1 = 1, . . . , �, we can write

ˆ̀mc-rqmc
1,=

=
1
=

=∑
8=1

6()_ (u1,8,1:3), &(*1,8))), 1 = 1, . . . , �. (5)

From the inverse probability integral transform (see, e.g., [3, Theorem 2.1]), we
know that &(*) for * ∼ U(0, 1) and '= (1) have the same distribution, namely
�, . As such, unbiasedness of ˆ̀mc-rqmc

1,=
(and therefore of (1/�)∑�

1=1 ˆ̀mc-rqmc
1,=

) for `
follows immediately.

Note that only the first 3 coordinates of %̃1,= enter the estimation, so that the
good projection properties of coordinate 3 + 1 (and its interactions) are lost. Loosely
speaking, the last coordinate of the point set we are effectively using to integrate the
function 6 is unrelated with the first 3. A better approach is to use the sampled,1,8
to construct � empirical quantile functions &̂=,1 , 1 = 1, . . . , �, and replace &(*1,8)
by &̂=,1 (D1,8,3+1) = ,1, ( d=D1,8,3+1 e) , where, for 1 = 1, . . . , �, we denote by ,1, (8) ,
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8 = 1, . . . , =, the order statistics of ,1,1, . . . ,,1,=, so ,1, (1) ≤ · · · ≤ ,1, (=) . We
define

ˆ̀b-eqf
1,=

=
1
=

=∑
8=1

6()_ (u1,8,1:3),,1, ( d=D1,8,3+1 e) ), 1 = 1, . . . , �,

where superscript “b-eqf” indicates that in each randomization 1, the empirical
quantile function obtained in that randomization based on = samples is used (instead
of &). That is, in each of the � randomizations (each of which requires = function
evaluations), estimate & by its empirical quantile function &̂=,1 obtained from =

independent samples from �, via a call to the black-box function ', (=).
Note that as long as %̃1,=,3+1 = {D1,8,3+1 : 8 = 1, . . . , =} is properly stratified,

i.e., has exactly one point in each interval of the form [ 9/=, ( 9 + 1)/=) for 9 ∈
{0, . . . , = − 1}, each ,1,8 , 8 = 1, . . . , = will be sampled exactly once when using
%̃1,=,3+1 to sample the empirical quantile function &̂1,=. Hence an alternative way
to describe the estimator ˆ̀b-eqf

1,=
that is useful from an implementation perspective is

to realize that if the last coordinate of a given point u1,8 is the 9 th smallest value
among those = last coordinates, we “stitch" ,1, ( 9) to that 8th point. Hence the last
coordinate of %̃1,= is used to order the sample,1,1, . . . ,,1,=. Note that the problem
of concatenating two samples within an RQMC-based approach also appears in the
Array-RQMCmethod of [13, 16], where one needs to assign particles to points when
paths are propagated. Also note that if %̃1,= is a digitally shifted or scrambled Sobol’
point set with = = 1: points or a randomly shifted rank-1 lattice, then %̃1,=,3+1 is
properly stratified; see [14].

The estimators ˆ̀b-eqf
1,=

for 1 = 1, . . . , � are independent and as long as %̃1,=,3+1 is
properly stratified, they are also unbiased, see Proposition 1.

This alternative description gives rise to a slightly different estimator: Let
A= (D1,8,3+1) be the rank of D1,8,3+1 among D1,1,3+1, . . . , D1,=,3+1. We then define
the rank-based estimator as

ˆ̀b-rk1,= =
1
=

=∑
8=1

6()_ (u1,8,1:3),,1, (A= (D1,8,3+1)) ), 1 = 1, . . . , �. (6)

If %̃1,=,3+1 is properly stratified, then ˆ̀b-rk
1,=

and ˆ̀b-eqf
1,=

coincide, and each sample
,1,8 is used exactly once. Otherwise, unlike ˆ̀b-eqf

1,=
, ˆ̀b-rk
1,=

still uses every,1,8 exactly
once.

Proposition 1 Let 1 ∈ {1, . . . , �} and let %̃1,=,3+1 be properly stratified. Then ˆ̀b-rk
1,=

(and therefore ˆ̀b-eqf
1,=

) is unbiased for `.

Proof Let 8 ∈ {1, . . . , =}. We show that E(6()_ (u1,8,1:3),,1, (A= (D1,8,3+1)) ,=)) = `.
By definition, (D1,8,1, . . . , D1,8,3+1) ∼ U(0, 1)3+1, in particular, _ := )_ (u1,8,1:3) ∼
�_ is independent of D1,8,3+1. Let A= (D1,8,3+1) =  (8) (a random variable) and
note that ( (1), . . . ,  (=)) is a permutation of (1, . . . , =) chosen according to some
distribution (which may not be uniform because of the low-discrepancy properties of
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%̃1,=). Then,1, (8) is an element chosen from the list,1,1, . . . ,,1,= according to
some distribution, and the latter is an independent random sample from �, . Hence,
,1, (8) and_ are independent, (_ ,,1, (8) ) ∼ �_ ×�, and the main claim follows
by linearity of the expectation. �

The previous methods can be thought of as approximating the quantile function
� times, each based on = samples obtained from the black box. In order to base
our simulation on a sampling mechanism closer to inversion and thereby mimicking
more closely the estimator in (4), we could instead construct a single rank-based
quantile function estimator based on the �= outputs,1,8 , 1 = 1, . . . , �, 8 = 1, . . . , =.
That is, instead of reordering the = samples,1,8 , 8 = 1, . . . , = according to D1,8,3+1
in each randomization 1 = 1, . . . , �, separately, we reorder the �= realizations,1,8 ,
8 = 1, . . . , =, 1 = 1, . . . , �, according to the ranks of the D1,8,3+1. That is, we construct
the estimator

ˆ̀1:B-rk1,= =
1
=

=∑
8=1

6()_ (u1,8,1:3),,(A�= (D1,8,1)) ), 1 = 1, . . . , �, (7)

where A�= (D1,8,3+1) = : if D1,8,3+1 is the :th smallest among the �= uniforms
D1,1,3+1, . . . , D1,=,3+1, . . . , D�,1,3+1, . . . , D�,=,3+1.

We can replace the ranks by the empirical quantile function computed from
', (�=), and obtain as an analog of ˆ̀b-eqf the estimator

ˆ̀1:B-eqf
1,=

=
1
=

=∑
8=1

6()_ (u1,8,1:3),,( d=�D1,8,1 e) ), 1 = 1, . . . , �,

for a sample,1, . . . ,,=�
ind.∼ �, obtained by calling ', (�=). The superscript “1:B-

eqf” shall indicate that in all randomizations 1, . . . , �, the same quantile function
estimator is used. Note that ˆ̀1:B-eqf

1,=
are not independent anymore for 1 = 1, . . . , �,

the same applies to ˆ̀1:B-rk
1,=

.
Here we note that Pierre L’Ecuyer and his collaborators have proposed very

efficient methods that combine conditional MC and RQMC to estimate quantile
functions associated with a simulation output; see [19]. Our setting here is different,
as we focus on estimating a univariate quantile function for the sole purpose of
sampling.

2.2 Methods based on a Generalized Pareto approximation in the tail

The methods presented in the previous section are purely nonparametric and amount
to replacing the true quantile function& by an empirical estimate thereof. Empirical
quantile functions typically estimate quantiles away from the tail with reasonable
accuracy; this does not hold for the tails if, is unbounded. However, approximating
the tail of & well is crucial for an effective RQMC procedure to outperform MC.
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In the following, assume that , is supported on [0,∞) so that only the upper
tail needs to be estimated. Since this is typically the case in practice, this is a rather
weak assumption. If , is instead supported on R, the methods described here can
be applied to the positive and negative real line separately.

The main idea behind the methods presented in this section is the following:
Given a random sample from �, , estimate & in the body (say, for D ∈ (0, 0.9))
by interpolation of the empirical quantile function and in the (right) tail based on
a fitted generalized Pareto Distribution (GPD), which has a cumulative distribution
function (cdf)

� b ,V (G) =


1 −
(
1 + b G

V

)− 1
b

, if b ≠ 0,

1 − exp
(
− G
V

)
, if b = 0,

where V > 0 and the support is G ∈ [0,∞) when b ≥ 0 and G ∈ [0,−V/b] when
b < 0.

Let � be any cdf and let - ∼ �. Denote by �D (G) = P(- − D ≤ G | - > D)
the excess distribution over the threshold D. Under weak assumptions, the Pickands-
Balkema-de-Haan Theorem (see [4, Theorem 3.4.13]) implies that for large enough
D one can approximate �D by � b ,V .

In practice, b and V are estimated from given data. With estimates of b, ` at hand,
we can compute �−1

b ,V
analytically, which, appropriately scaled, provides us with an

estimate of �−1. In what follows, assume �, fulfills the assumptions underlying the
Pickands-Balkema-de-Haan Theorem, and denote by 6b ,V the density of � b ,V . The
following algorithm returns a quantile function estimator &̂ of &.

Algorithm 1 Given,1, . . . ,,=′
ind.∼ �, and U ∈ (0, 1), construct an estimator &̂ for

& as follows:

1. Denote by,(1) , . . . ,,(=′) the order statistics of,1, . . . ,,=′ .
2. Let ) = ,( d=′Ue) and denote by # = |{8 ∈ {1, . . . , =′} : ,8 > )}| the number of

exceedances over ) . Let ,̃8 = ,( d=′Ue+8) − ) for 8 = 1, . . . , # be the excesses.
Then maximize the log-likelihood function

; (b, V; ,̃1, . . . , ,̃# ) =
#∑
:=1

log 6b ,V (,̃: )

with respect to b and V numerically over their ranges to obtain the MLEs b̂ and V̂.
3. Return the function

&̂(D) =

(1 − ^),( b (=′+1)Dc) + ^,( b (=′+1)Dc+1) , if D ≤ U,

) + V̂

b̂

((
1−D
1−U

)−b
− 1

)
, otherwise,

where ^ = (=′ + 1)D − b(=′ + 1)Dc.
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Algorithm 1 does not give any error estimates, nor do we have an a-priori
guess of how large = should be. In order to obtain error estimates, one could use
Algorithm 1 to obtain " independent estimators &̂<, < = 1, . . . , " , and esti-
mate the error using a CLT argument. That is, the (absolute) error of &̂(D) =
(1/")∑"

<=1 &̂< (D) for some fixed D ∈ (0, 1) may be estimated via 3.5/
√
" × f̂,

where f̂ = sd(&̂1 (D), . . . , &̂" (D)). As &̂< (D) − &(D) follows approximately a
N(0, f̂2/") distribution, we can be 99.95% confident that the error is within
±3.5/

√
" × f̂.

With an error estimation procedure at hand, one can now construct the quantile
function iteratively until a pre-specified error tolerance for the estimated absolute
error is met. That is, one can specify knots D′1, . . . , D

′
#
∈ (0, 1) and error tolerances

Y1, . . . , Y# > 0 and construct the quantile function with more and more points until
the error tolerance at all knots is met. The choice of knots and error tolerances can
be guided from the function 6 so that important subdomains have little error, or one
can put most of the knots uniformly between 0 and 1 and the remaining ones in the
tails. The main idea is summarized in the following algorithm.

Algorithm 2 Given =0 ∈ N, U ∈ (0, 1), NRVG ', , knots D′1, . . . , D
′
#
∈ (0, 1), error

tolerances Y1, . . . , Y# > 0, maximum number of iterations 8max, � ∈ N, construct
an estimator &̂ for & as follows:

1. Set 8 = 1, and (1 = {} for : = 1, . . . , �.
2. Repeat

a. For 1 = 1, . . . , �,
i. Set (1 = (1 ∪ {', (=0)}.
ii. Call Algorithm 1 with input sample (1 to construct an estimated quantile

function &̂1 .
b. For : = 1, . . . , # set 4: = 3.5/

√
�×sd(&̂1 (D′: ), . . . , &̂� (D

′
:
)) as the estimated

error at knot D′
:
.

c. Set 8 = 8 + 1.

Until 4: ≤ Y: for : = 1, . . . , # or 8 > 8max.
3. Return the estimated quantile function &̂eqf-gpd (D) = (1/�)∑�

1=1 &̂1 (D).

The input argument 8max determines the maximum number of iterations allowed
in case convergence cannot be achieved. Note that the superscript “eqf-gpd” shall
indicate that the (interpolated) empirical quantile function is used in the body and
a GPD approximation in the tail. For an implementation, in any iteration 8 > 1,
results from the previous iterations should be reused; for instance, the MLE (b̂, V̂)
from a previous iteration can be used as a starting value for the maximization of the
log-likelihood function in the next iteration. In practice one could also return the
&̂1 , 1 = 1, . . . , �, so that for any D ∈ (0, 1) one can compute &̂(D) along with an
error estimate.

Given an estimated quantile function, say &̂eqf-gpd, an RQMC estimator for `
from (1) is given by
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Fig. 1 Estimated and realized absolute and relative errors when estimating the quantile function of
IG(1.2, 1.2) using Algorithm 2 with =0 = 7500, � = 20.

ˆ̀eqf-gpd
�,=

=
1
�

�∑
1=1

ˆ̀eqf-gpd
1,=

, (8)

where

ˆ̀eqf-gpd
1,=

=
1
=

=∑
8=1

6()_ (u1,8,1:3), &̂eqf-gpd (D1,8,3+1)), 1 = 1, . . . , �,

and the inputs D1,8,3+1 and u1,8,1:3 are as in the previous section. In contrast to the
estimators fromSection 2.1, computing this estimator requires a two-stage procedure:
First, Algorithm 2 needs to be applied to compute the estimated quantile function
&̂eqf-gpd, whichwill then, in the second stage, be treated as the “true quantile function“
when computing the estimator ˆ̀eqf-gpd.

Inverse-gamma example

Consider , ∼ IG(1.2, 1). We use =0 = 7500, � = 20, and uniform knots between
0.01 and 0.95 with relative error tolerance 0.025, one knot at 0.99 with relative error
tolerance 0.075 and and another knot at 0.999 with relative error tolerance 0.1. The
algorithm needed 10 iterations until convergence, so a total of 1 350 000 realizations
of , . The approximation is very accurate and the true quantile lies within the
approximated error bounds. This can be seen from Figure 1, which displays realized
and estimated absolute and relative errors.
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Expected shortfall of portfolio under a multivariate C distribution

The multivariate C distribution is a normal variance mixture distribution and falls
into the general framework of this paper, if we assume that the quantile function of
an inverse-gamma distribution is not available. We do this to compare our methods
with the “best possible” estimator from (4). Let - ∈ R3 and Σ = ��> for some
covariance matrix Σ. Then ^ ∼ C3 (a, -, Σ) has stochastic representation

^ = - +
√
,_ , (9)

where , ∼ IG(a/2, a/2) independent of _ ∼ N3 (0, Σ). For a continuous random
variable ! ∼ � with E( |! |) < ∞ and level U ∈ (0, 1) small, expected shortfall is
the mean conditional loss ESU (!) = E(! | ! > �−1

!
(U)). In our simulation, we

assume that ! = 1>^ where ^ ∼ C3 (a, 0, Σ); it follows from the closedness of
normal variance mixtures that ! ∼ C1 (a, 0, 1>Σ1). The value of ` = ESU (!) :=
E(6(_ ,,)) is known in closed-form; see [17, Example 2.15]. This allows us to
estimate the mean squared error (MSE) and compare it with the variance. For a
range of values of the total number of function evaluations, we report in Figure 2
the mean squared error (MSE) and variance for various methods, each estimated by
using" = 50 independent copies of the estimators, each of which is based on � = 20
repetitions. Here and in what follows, we use a digitally shifted Sobol’ sequence as
implemented in the R package qrng; see [9]. All RQMC based estimators, including
MC-RQMC from (5), outperform MC, though MC-RQMC gives only a moderate
variance reduction. This is in contrast to b-rk, which for small = gives MSE similar
to inversion, which we recall would not be available in a realistic setting where & is
unknown.
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Fig. 2 Mean squared errors as a function of = (left) and variances as a function of 3 (right) when
estimating ES0.95 (!) for ! = 1>^ where ^ ∼ C3 (a, 0, Σ) .
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3 Combining AR with RQMC

Rather than working with a “black-box” RVG ', , we assume in this section that
, can be sampled using AR and explore how we can apply RQMC in this setting.
Recall from (3) that we are interested in estimating ` = E(6(_ ,,)), so we need =
samples (_8 ,,8) where,8 ∼ �, .When usingAR, there is no a-priori bound on how
many uniforms are needed, so we have an a priori infinite-dimensional integration
problem: If )AR denotes the AR transformation, we can write ` = E(ℎ([)) =
E(6()_ ([1:3), )AR ([(3+1):∞)) with [ ∼ U(0, 1)∞ and ℎ appropriately defined. The
integrand ℎ is a non-monotone and discontinuous function of its input uniforms, a
result from the acceptance decision. This can diminish the variance reduction effect
of RQMC over MC.

We assume that , has density 5, over (0, 1) ⊆ R, we use the proposal
density 5 having the same support (0, 1) with quantile function �−1, and that
2 = supG∈(0,1) 5, (G)/ 5 (G) < ∞.

A major difference between the application of RQMC and MC is that with the
former, we need to carefully assign which coordinate of the points is used to sample
which random variable, and there is typically more than one way to do so. As in the
previous section, we assume that the first 3 coordinates u1:3 of u ∈ (0, 1)∞ are used
to sample from �_ . Algorithms 3 and 4 describe two ARmethods to sample = copies

8 Sample_ �−1 AR
1 D1,1 D1,2 . . . D1,3 D1,3+1 D1,3+2
2 D2,1 D2,2 . . . D2,3 D2,3+1 D2,3+2
3 D3,1 D3,2 . . . D3,3 D3,3+1 D3,3+2
4 D4,1 D4,2 . . . D4,3 D4,3+1 D4,3+2
5 D5,1 D5,2 . . . D5,3 D5,3+1 D5,3+2
6 D6,1 D6,2 . . . D6,3 D6,3+1 D6,3+2
.
.
.
.
.
.

.

.

.
.
.
.

Fig. 3 Schematic description of AR-=. Gray coordinates in the same row correspond to rejected
coordinates.

8 Sample_ �−1 AR �−1 AR �−1 AR . . .
1 D1,1 D1,2 . . . D1,3 D1,3+1 D1,3+2 D1,3+3 D1,3+4 D1,3+5 D1,3+6
2 D2,1 D2,2 . . . D2,3 D2,3+1 D2,3+2
3 D3,1 D3,2 . . . D3,3 D3,3+1 D3,3+2
4 D4,1 D4,2 . . . D4,3 D4,3+1 D4,3+2 D4,3+3 D4,3+4

8 Sample_ �−1 �−1 �−1 . . . AR AR AR . . .
1 D1,1 D1,2 . . . D1,3 D1,3+1 D1,3+"+1
2 D2,1 D2,2 . . . D2,3 D2,3+1 D2,3+2 D2,3+3 D2,3+"+1 D2,3+"+2 D2,3+"+3
3 D3,1 D3,2 . . . D3,3 D3,3+1 D3,3+"+1
4 D4,1 D4,2 . . . D4,3 D4,3+1 D4,3+2 D4,3+"+1 D4,3+"+2

Fig. 4 Schematic description of AR-3 with consecutive (top) and blockwise (bottom) coordinate
assignment. Gray coordinates in the same row correspond to rejected coordinates.



12 Erik Hintz, Marius Hofert and Christiane Lemieux

of (_ ,,); a schematic description is given in Figures 3 and 4. The former method,
henceforth referred to as AR-=, always uses coordinates {3 +1, 3 +2} in the AR part,
and moves along the index 8. If a point is rejected, just like the point in row 8 = 1 in
Figure 3, the algorithm tries again with point 8 + 1. That is, when sampling = points
we move along the index of a randomized LDS with constant dimension 3 + 2. In
contrast, Algorithm 4 (AR-3) samples the 8th point by moving along the coordinates
{3 + 1, 3 + 2, 3 + 3, . . . } of the 8th point in the sequence until it is accepted; see
the top of Figure 4, where we assume that coordinates 3 + 2 9 − 1 and 3 + 2 9 for
9 = 1, 2, . . . are used for sampling from the proposal and sampling from the AR
decision, respectively. Another possibility to assign the coordinates for the AR part
is to consider two blocks of size " (chosen so that, with high probability, " trials
are sufficient to accept a point), where the coordinates in the first block are used for
the sampling in Step 2(a)i and the coordinates in the second block determine the
acceptance decision in Step 2(a)ii. This version of AR-3 is illustrated at the bottom
of Figure 4.

Algorithm 3 (AR-=) Let {u1, u2, . . . , } ⊂ (0, 1)3+2 be a randomized LDS. Sample
= copies of (_ ,,) as follows.

1. Set 9 = 1, $= = {}.
2. For 8 = 1, . . . , =,

a. Repeat
i. Compute, = �−1 (D 9 ,3+1) and set* = D 9 ,3+2.
ii. If* > 5, (,)/(2 5 (,)) set 9 = 9 + 1 Else

Set $= = $= ∪ {()_ (u 9 ,1:3 ,,)}
Set 9 = 9 + 1 and break;

3. Return $=.

The main difference between AR-= and AR-3 is that in the former approach,
points in the sequence are skipped, and, effectively, a subset of size = of the first
# > = points in the sequence is used to integrate 6, whereas in AR-3 we always use
the first = points in the sequence and move along the coordinates.

Algorithm 4 (AR-3) Let {u1, u2, . . . , u=} ⊂ (0, 1)∞ be a randomized low discrep-
ancy point-set. Sample = copies of (_ ,,) as follows.

1. Set $= = {}.
2. For 8 = 1, . . . , =,

a. For 9 = 1, 2, . . . ,
i. Compute, = �−1 (D8,3+2 9−1).
ii. If D8,3+2 9 ≤ 5, (,)/(2 5 (,)):

A. Set $= = $= ∪ {()_ (u8,1:3 ,,)}
B. Break.

3. Return $=.
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A potential advantage of AR-3 over AR-= for numerical integration is that it
really only uses the first = points of the LDS rather than a subset of the first # > =

points in the sequence. In order to highlight this point, assume that our integrand
does not depend on, and that = = 2: . When estimating ` based on AR-3, we will
then use the first 2: points of the underlying LDS and keep all its good projection
properties. In contrast, using AR-=, we only use a subset of size 2: of the first
# > 2: points, thereby potentially loosing some of the good projection properties
of the LDS. This point is illustrated in Figure 5, where we first sample (,8 , .81, .82)
where .8 9 ∼ N(0, 1), 9 = 1, 2, and ,8 ∼ Γ(1.2, 1) for 8 = 1, . . . , = = 27, and then
set [8 = (�, (,8),Φ(.81),Φ(.82)) for 8 = 1, . . . , =. By the probability integral
transformation, [8 ∼ U(0, 1)3. Note that if we had used inversion to sample the
,8 , the points would be exactly the original LDS. Note how Sobol’-3 gives a point
set with better marginal uniformity than Sobol’-=, which is also confirmed in the
histogram of the first standardized coordinate in Figure 6. Note that if we had 2:
bins with : ≤ 7 we would see a flat histogram on the right-hand side of this figure;
here and it what follows, we use the AR samplers for the Gamma distribution from
[1] and [11] for a > 1 and a < 1, respectively.

Next, we show in Propositions 2 and 3 that both algorithms produce point sets
with the correct distribution.

Proposition 2 Each x ∈ $= produced by Algorithm 3 has distribution �_ × �, .

Proof It suffices to show that the two numbers used to sample from the proposal
and the acceptance decision are independent U(0, 1) random variables. The rest
follows from the correctness of the AR algorithm; see, e.g., [5] for a proof. Let
x = (_ ,,) ∈ $=. Then there is a 9 ∈ {1, 2, . . . } such that , = �−1 (*1) and
*2 ≤ 5, (,)/(2 5 (,))where*1 = D 9 ,3+1 and*2 = D 9 ,3+2 satisfy*1,*2

ind.∼ U(0, 1)
by the randomization of the LDS. �
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Fig. 5 Pairs plot of (�, (,8) ,Φ(/81) ,Φ(/82)) ∼ U(0, 1)3, where the trivariate points were
sampled with AR-= (left) and with AR-3 (right) for, ∼ Γ (1.2, 1) and = = 28.
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Fig. 6 Histogram of*1 when constructed with AR-= (left) and AR-3 (right).

Proposition 3 Each x ∈ $= produced by Algorithm 4 has distribution �_ × �, .

Proof Since we assumed that the chosen LDS is randomized so that each u1,8 ∼
* (0, 1)3+1, the coordinates D8,3+ 9 used in Step 2(a)i and 2(a)ii are independent
U(0, 1) for 9 ≥ 1. The claim follows from the correctness of the AR algorithm. �

Our investigation of AR-3 was motivated by the argument that AR corresponds
to infinite-dimensional integration; see [6, p. 62–63], who also notes that “potential
drawback of AR methods, compared with the inverse transform method, is that
their outputs are generally neither continuous nor monotone functions of the input
uniforms.” We can address the monotonicity by using the rank transformations from
the black box setting in Section 2: that is, we re-order the outputs,1, . . . ,,= so that
their order matches the ordering of D1,3+1, . . . , D=,3+1. If = = 2: , this is exactly the
1-rk method from Section 2 applied with the output of AR-3 as a “black box”. Note
that this makes the AR-3 output monotone in coordinate 3+1 of the underlying LDS.
Note that with AR-=, we always use D8,3+1 for some 8 to sample from the envelope
via inversion, so that the monotonicity in this coordinate is already given.

Expected shortfall example continued

We perform the same example as on page 10, but this time, using the AR based
methods instead of the black-box setting. See Figure 3. All AR based methods
outperform pure MC and MC-RQMC, and the convergence speed of AR-= and AR-
3, 1:B-rk are almost as high as for the method “inversion”, which we recall would
not be available in a realistic setting.
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Fig. 7 Mean squared errors as a function of = (left) and variances as a function of 3 (right) when
estimating ES0.95 (!) for ! = 1>^ where ^ ∼ C3 (a, 0, Σ) .

4 Application: Basket option pricing

Consider the problem of estimating the value of a Basket call option with strike  ,
whose payoff with maturity ) = 1, can be expressed as

`bskt = 4
−AE

©«max
 1
3

3∑
9=1
( 9 −  , 0

ª®¬ ;

we assume that the dependence of the log-normal assets ( 9 , 9 = 1, . . . , 3, is modelled
via a C-copula. As such, the assets ( 9 have stochastic representation

( 9 = �
−1
LN (* 9 ), * 9 = �Ca (- 9 ), 9 = 1, . . . , 3, ^ ∼ C3 (a, 0, Σ);

here, Σ is a correlation matrix. The C copula is one of the most widely used copulas in
risk management; see, e.g., [2] for more. Pricing basket options is a popular problem
to perform RQMC experiments; see, e.g., [12]. The value of `bskt is not known, so
we look at the estimated variances for the following methods:

• MC: Use MC for, and _;
• MC-RQMC: use MC for , (and inversion based on RQMC for _), i.e., compute

ˆ̀mc-rqmc in (5).
• AR-d: Use Algorithm 4, i.e., sample , based on AR whilst moving along the

coordinates of a point in the LDS until acceptance.
• AR-n: Use Algorithm 3, i.e., sample , based on AR whilst moving along the

index of the point in the LDS until acceptance.
• AR-d, b-rk: Use AR-3 in each repetition 1 and additionally reorder the =

samples,1,1 , . . . ,,=,1 according to D1,1,3+1, . . . , D=,1,3+1 for 1 = 1, . . . , �.
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• AR, 1:B-rk: Use AR-3 and sort all the sample ,1,1, . . . ,,=,� according to
D1,1,3+1, . . . , D=,�,3+1.

• b-rk: Treat ', as black-box and compute ˆ̀b-rk
1,=

from (6) for 1 = 1, . . . , �.
• 1:B-rk: Treat ', as black-box and compute ˆ̀1:B-rk

1,=
from (7) for 1 = 1, . . . , �.

• eqf-gpd: First, build gpd based estimate &̂ using samples obtained from the
black box ', , then treat it as true & and proceed with inversion; see ˆ̀eqf-gpd
in (8).

• inversion: Compute the inversion based estimator ˆ̀rqmc
1,=

from (4) for 1 =

1, . . . , � using the true quantile function.

The last method “inversion” is not available in a realistic setting like the GIG example
at the end of this section, but is included here to compare our methods with the best
possible one. All methods (except for MC) sample the multivariate normal random
vector _ based on inversion of a digitally shifted Sobol’ sequence.

The results in Figure 8 indicate that using RQMC for sampling _ gives at least
a modest variance reduction. Furthermore, treating the sampler as a black box and
reordering the, samples as described in Section 2 gives further variance reduction.
On the right hand side we see the AR methods from Section 2 which all give
lower variance than the black-box methods; this makes sense as we are directly
manipulating the sampler. with some rank reordering, outperform AR-=.
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Fig. 8 Variances when estimating `bskt under a C copula with a = 2.2 dof, A = 0.01, f = 0.2
(volatility for all stocks) as a function of = (left) and as a function of 3 (right).

Finally, we alter this example so that we end up with a model where the quantile
function of , is indeed not available. To this end, we replace the C copula with a
GIG-mixture copula. A random vector ^ has a GIG-mixture distribution if it follows
the stochastic representation (9) with , ∼ GIG(V, _). The marginal distribution
functions �9 of - 9 needed to compute the copula sample are not known, so we
denote by �̂9 (G) = (= + 1)−1 ∑=

8=1 1{-8 9 ≤G } the empirical distribution function of
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- 9 , and instead compute the pseudo observations [8 = (�̂1 (-81), . . . , �̂3 (-83)) for
8 = 1, . . . , =. Figure 9 shows estimated variances as a function of = (left) and the
number of assets 3 (right). All RQMC based methods outperform MC and MC-
RQMC. The remaining methods, with the exception of AR-3 and AR-=, perform
very similarly and give good convergence rates over all dimensions. Figure 10 shows
CPU times needed to compute various estimators. All methods, with the exception
of “eqf-gpd”, take roughly the same time. Recall that with eqf-gpd, the idea is to
estimate the quantile function & once, and then use it as a true quantile function for
all subsequent simulations.
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Fig. 9 Variances when estimating `bskt under a GIG mixture copula with _ = 0.5, V = 0.3,
A = 0.01, f = 0.2 (volatility for all stocks) as a function of = (left) and as a function of 3 (right).
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Fig. 10 Boxplot of CPU times when estimating `bskt under a GIG mixture copula with _ = 0.5,
V = 0.3, A = 0.01, f = 0.2 (volatility for all stocks).



18 Erik Hintz, Marius Hofert and Christiane Lemieux

5 Conclusion

We explored the question how RQMC can be applied to estimate ` = E(6(_ ,,))
when all components but one can be sampled via inversion, and the remaining one
, by calling a NRVG only. Our proposed algorithms in the black box setting were
motivated by the fact that RQMC works best when combined with inversion, so that
our methods aim at mimicking this observation by exploiting the sample to estimate
the quantile function. In Section 3, we assumed the existence of anAR algorithm, and
motivated an AR-3 algorithm that samples along the coordinates rather than moving
along the sequence. Our numerical results indicate that RQMC can still provide a
substantial variance reduction when combined with a NRVG. In particular we saw
that the re-ordering methods outperform MC-RQMC (where we merely combine
RQMC with pseudo-random sampling of ,). Furthermore, we saw that moving
along the coordinates as we do in AR-3 can give better results than the previously
proposed AR-=methods.With the methods in this paper at hand, we could extend the
algorithms in [7] and [8] to estimate various quantities related to multivariate normal
variance mixture distributions, such as the distribution function. Furthermore, we
plan to address some questions of computational nature, such as exploring efficient
implementations of AR-3 based on point sets that are easily extensible in the number
of coordinates, such as Korobov rules based on well-chosen generators 0; see [14].
Finally, this paper mostly focused on numerical comparisons of different RQMC-
based algorithms based on digitally shifted Sobol’ sequences. In the near future we
plan to study settings under which it might be possible to obtain theoretical results
demonstrating the superiority of our proposedRQMC-basedmethods (perhaps based
on scramblings rather than shifts) over Monte Carlo.
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