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Abstract We extend Atanassov’s methods for Halton sequences in two differ-
ent directions: (1) in the direction of Niederreiter (t,s)−sequences, (2) in the di-
rection of generating matrices for Halton sequences. It is quite remarkable that
Atanassov’s method for classical Halton sequences applies almost “word for word”
to (t,s)−sequences and gives an upper bound quite comparable to those of Sobol’,
Faure, and Niederreiter. But Atanassov also found a way to improve further his
bound for classical Halton sequences by means of a clever scrambling producing
sequences which he named modified Halton sequences. We generalize his method
to nonsingular upper triangular matrices in the last part of this article.

1 Introduction

Halton sequences and their generalizations are a popular class of low-discrepancy
sequences. Their relevance in practical settings has been enhanced by various im-
provements that have been proposed over the years (see [8] for a survey). But it is
the remarkable result published by E. Atanassov in 2004 [1] that has increased their
appeal from a theoretical point of view. In Theorem 2.1 of this paper, Atanassov re-
duced by a factor of s! the value of the hidden constant cs in the discrepancy bound
of these sequences. His proof relies on a result from diophantine geometry, and as
such, provides a new approach to study the behavior of low-discrepancy sequences.
The purpose of this paper is to explore how this approach can be extended to other
constructions.
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Our contribution is to first extend Atanassov’s methods to (t,s)−sequences, in-
cluding Sobol’ and Faure sequences, and then to a more general class of Halton
sequences which makes use of generating matrices.

It is quite remarkable that Atanassov’s method for the original Halton sequences
applies almost “word for word” to (t,s)−sequences in the narrow sense (as defined
in [16]) and gives an upper bound that is comparable to those of Sobol’, Faure, and
Niederreiter, with the same leading term. The details are provided in Section 3, after
first reviewing Halton and (t,s)-sequences in Section 2. This method also applies to
extensions of these sequences introduced by Tezuka [17, 18]) and Niederreiter–Xing
[16] as shown in our recently submitted work [9].

In [1], Atanassov also introduces a family of sequences called modified Hal-
ton sequences, and proves that an even better behavior for the constant cs holds in
that case. So far, this approach has no equivalent for (t,s)−sequences. In fact, this
method works for Halton sequences and gives asymptotic improvements thanks to
the structure of these sequences, which is completely different from the structure of
(t,s)−sequences.

However, what we propose to do here is to extend these modified Halton se-
quences, which rely on so-called admissible integers, by using what we call admis-
sible matrices. As shown later in Section 4, the same improved behavior holds for
this more general construction.

Another direction for generalizations would be to consider a larger family in-
cluding both Halton and (t,s)−sequences. Until now, attempts in this direction have
been disappointing, except in the almost trivial case of (0,s)−sequences in variable
base which, in fact, are very close to original Halton sequences (see [7] and [11]
more recently, where many other references are given).

We end the introduction with a review of the notion of discrepancy, which will be
used throughout the paper. Various types exist but here, for short, we only consider
the so-called extreme discrepancy, which corresponds to the worst case error in
the domain of complexity of multivariate problems. Assume we have a point set
PN = {X1, . . . ,XN} ⊆ Is = [0,1]s and denote J (resp J ∗) the set of intervals J of
Is of the form J = ∏

s
j=1[y j,z j), where 0≤ y j < z j ≤ 1 (resp. J = ∏

s
j=1[0,z j)). Then

the discrepancy function of PN on J is the difference

E(J;N) = A(J;PN)−NV (J),

where A(J;PN) = #{n;1≤ n≤ N,Xn ∈ J} is the number of points in PN that fall
in the subinterval J, and V (J) = ∏

s
j=1(z j− y j) is the volume of J.

Then, the star (extreme) discrepancy D∗ and the (extreme) discrepancy D of PN
are defined by

D∗(PN) = sup
J∈J ∗

|E(J;N)| and D(PN) = sup
J∈J
|E(J;N)|.

It is well known that D∗(PN)≤ D(PN)≤ 2sD∗(PN). For an infinite sequence X ,
we denote by D(N,X) and D∗(N,X) the discrepancies of its first N points. Note that
several authors have a 1/N factor when defining the above quantities.
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A sequence satisfying D∗(N,X) ∈ O((logN)s) is typically considered to be a
low-discrepancy sequence. But the constant hidden in the O notation needs to be
made explicit to make comparisons possible across sequences. This is achieved in
many papers with an inequality of the form

D∗(N,X)≤ cs(logN)s +O((logN)s−1). (1)

As mentioned before, the constant cs in this inequality is the main object of study in
[1], as well as in the present paper.

2 Review of Halton and (t,s)−sequences

2.1 Generalized Halton sequences

Halton sequences are s-dimensional sequences, with values in the hybercube Is.
They are obtained using one-dimensional van der Corput sequences Sb in base b for
each coordinate, defined as follows: For any integer n≥ 1

Sb(n) =
∞

∑
r=0

ar(n)
br+1 , where n−1 =

∞

∑
r=0

ar(n) br (b-adic expansion of n−1).

An s-dimensional Halton sequence [10] X1,X2, . . . in Is is defined as

Xn = (Sb1(n), . . . ,Sbs(n)),n≥ 1, (2)

where the b j’s, for j = 1, . . . ,s, are pairwise coprime.
A generalized van der Corput sequence [4] is obtained by scrambling the digits

with a sequence Σ = (σr)r≥0 of permutations of Zb = {0,1, . . . ,b−1}:

SΣ
b (n) =

∞

∑
r=0

σr
(
ar(n)

)
br+1 . (3)

If the same permutation σ is used for all digits, (i.e., if σr = σ for all r ≥ 0), then
we use the notation Sσ

b to denote SΣ
b . The van der Corput sequence Sb is obtained by

taking σr = id for all r ≥ 0, where id stands for the identity permutation over Zb.
A generalized Halton sequence [6] X1,X2, . . . in Is is defined by choosing s gen-

eralized van der Corput sequences:

Xn = (SΣ1
b1
(n), . . . ,SΣs

bs
(n)), n≥ 1, (4)

where the b j’s are pairwise coprime bases. In applications, these b j’s are usually
chosen as the first s prime numbers. In this case, we denote the jth base as p j.

Throughout the paper, we denote respectively by H and GH the Halton and gen-
eralized Halton sequence defined by (2) and (4), in which case, to avoid some dif-
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ficulties, for 1 ≤ j ≤ s, the sequence Σ j = (σ j,r)r≥0 satisfies σ j,r(0) 6= b j − 1 for
infinitely many r. Various bounds for the discrepancy of Halton sequences have
been obtained since their introduction by Halton — by Meijer, Faure, Niederreiter
— all of them by refinements of the same idea. But the major theoretical improve-
ment goes back to Atanassov [1, Theorem 2.1], with a completely different proof
using an argument of diophantine geometry:

D∗(N,GH)≤ 1
s!

s

∏
j=1

(
(b j−1) logN

2logb j
+ s
)
+

s−1

∑
k=0

bk+1

k!

k

∏
j=1

(⌊
b j

2

⌋
logN
logb j

+ k
)
+u,

(5)
where u = 0 when all bases b j are odd, and

u =
b j

2(s−1)! ∏
1≤i≤s,i6= j

(
(bi−1) logN

2logbi
+ s−1

)
if b j is the even number among them. Therefore estimate (1) holds with constant

cs =
1
s!

s

∏
j=1

b j−1
2logb j

. (6)

By making the constant cs smaller by a factor s! compared to previously established
bounds, it is going to 0, instead of infinity, as s goes to infinity!

2.2 (t,s)−sequences

The concept of (t,s)−sequences has been introduced by Niederreiter to give a gen-
eral framework for various constructions including Sobol’ and Faure sequences.

Definition 1. Given an integer b ≥ 2, an elementary interval in Is is an interval
of the form ∏

s
i=1[aib−di ,(ai + 1)b−di) where ai,di are nonnegative integers with

0≤ ai < bdi for 1≤ i≤ s.
Given integers t,m with 0 ≤ t ≤ m, a (t,m,s)−net in base b is an s-dimensional
set with bm points such that any elementary interval in base b with volume bt−m

contains exactly bt points of the set.
An s-dimensional sequence X1,X2, . . . in Is is a (t,s)−sequence if the subset {Xn :
kbm < n≤ (k+1)bm} is a (t,m,s)−net in base b for all integers k ≥ 0 and m≥ t.

Further generalizations by Niederreiter and Xing would require an extension of that
definition with the so-called truncation operator. To avoid the additional develop-
ments required to explain these, we leave them out. Issues related to the construction
of these sequences and the optimization of the quality parameter t are not relevant
for our purpose in Section 3. But since we will use the digital method with gener-
ating matrices for Halton sequences in Section 4, we now briefly recall that method
for constructing (t,s)−sequences in base b.
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A linearly scrambled van der Corput sequence is obtained by choosing an ∞×∞

matrix C = (Cr,l)r≥0,l≥0 with elements in Zb, and then defining the nth term of this
one-dimensional sequence as

SC
b (n) =

∞

∑
r=0

yn,rb−(r+1) with yn,r =
∞

∑
l=0

Cr,lal(n) mod b, (7)

where ar(n) is the r-th digit of the b-adic expansion of n−1 = ∑
∞
r=0 ar(n) br.

Then, in arbitrary dimension s, one has to choose s linearly scrambled van der
Corput sequences with generating matrices C1, . . . ,Cs to define the so-called digital
sequence (SC1

b , . . . ,SCs
b ) as proposed by Niederreiter in [14]. Of course the generat-

ing matrices must satisfy strong properties to produce low-discrepancy sequences.
Special cases are the Sobol’ sequences — defined in base b = 2 and making use
of primitive polynomials to construct the non-singular upper triangular (NUT) Ci
recursively — and the Faure sequences — defined in a prime base b≥ s and taking
Ci as the NUT Pascal matrix in Zb raised to the power i−1.

As to bounds for the star discrepancy, (t,s)−sequences satisfy estimate (1) with
constant cs (see for instance [3, 14])

cs =
bt

s!
b−1
2b b

2c

(
b b

2c
logb

)s

. (8)

Note that Kritzer [12] recently improved constants cs in (8) by a factor 1/2 for odd
b ≥ 3 and s ≥ 2, and by a factor 1/3 for b = 2 and s ≥ 5 (a similar result holds for
even b).

3 Atanassov’s method applied to (t,s)−sequences

In this section, we apply Atanassov’s method to (t,s)−sequences and obtain a new
proof for estimate (1) and constant (8). To do so, we need to recall an important
property of (t,s)−sequences and lemmas used in [1], reformulated here for con-
venience with base b instead of bases pi (in brackets we recall the corresponding
lemmas in [1] with label A). In what follows, PN denotes the set containing the
first N points of a sequence X .

Property 1. (Lemma A.3.1.) Let X be a (t,s)−sequence. Let J =
s

∏
i=1

[bib−di ,cib−di)

where bi,ci are integers satisfying 0≤ bi < ci ≤ bdi . Then

A(J;PN) = kbt(c1−b1) · · ·(cs−bs) where N = kbtbd1 · · ·bds (k ≥ 0) and

|A(J;PN)−NV (J)| ≤ bt
s

∏
i=1

(ci−bi), for any integer N ≥ 1.
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This property directly follows from the definition of (t,s)−sequences and is left for
the reader to verify.

Lemma 1. (Lemma A.3.3.) Let N ≥ 1,k ≥ 1 and b ≥ 2 be integers. For integers
j ≥ 0,1≤ i≤ k, let some numbers c(i)j ≥ 0 be given, satisfying c(i)0 ≤ 1 and c(i)j ≤ c
for j ≥ 1, for some fixed number c. Then

∑
( j1,..., jk)|b j1 ···b jk≤N

k

∏
i=1

c(i)ji ≤
1
k!

(
c

logN
logb

+ k
)k

. (9)

For convenience, all the ji’s are nonnegative unless otherwise stated.

Proof. The proof proceeds very closely to the one given for Lemma 3.3 in [1],
except that here we work with a single base b rather than with s different bases.
For each m ∈ {0,1, . . . ,k}, fix a subset L = {i1, . . . , im} of {1, . . . ,k} and consider
the contributions of all the k-tuples j with jr > 0 for r ∈ L, and jr = 0 for r /∈ L,
with ∏

k
i=1 b ji = ∏i∈L b ji ≤ N. One can verify as in [1, Lemma A.3.2] that there are

1
m!

(
logN
logb

)m
such k-tuples, each having a contribution of

k

∏
i=1

c(i)ji = ∏
i∈L

c(i)ji ∏
i/∈L

c(i)ji ≤∏
i∈L

c ∏
i/∈L

1 = cm.

Expanding both sides of (9), the result now follows since 1
m! ≤

1
k! kk−m. ut

Definition 2. (Definition A.3.2.) Consider an interval J ⊆ Is. We call a signed split-
ting of J any collection of intervals J1, . . . ,Jn and respective signs ε1, . . . ,εn equal
to ±1, such that for any (finitely) additive function ν on the intervals in Is, we have
ν(J) = ∑

n
i=1 εiν(Ji).

The following lemma is taken from [1], in a slightly modified form.

Lemma 2. (Lemma A.3.5.) Let J = ∏
s
i=1[0,z

(i)) be an s-dimensional interval and,
for each 1 ≤ i ≤ s, let ni ≥ 0 be given integers. Set z(i)0 = 0, z(i)ni+1 = z(i) and, if

ni ≥ 1, let z(i)j ∈ [0,1] be arbitrary given numbers for 1 ≤ j ≤ ni. Then the col-

lection of intervals ∏
s
i=1[min(z(i)ji ,z

(i)
ji+1),max(z(i)ji ,z

(i)
ji+1)), with signs ε( j1, . . . , js) =

∏
s
i=1 sgn(z(i)ji+1− z(i)ji ), for 0≤ ji ≤ ni, is a signed splitting of J.

Now we have all the ingredients to prove the following theorem:

Theorem 1. The discrepancy bound for a (t,s)−sequence X in base b satisfies

D∗(N,X)≤ bt

s!

(⌊
b
2

⌋
logN
logb

+ s
)s

+bt
s−1

∑
k=0

b
k!

(⌊
b
2

⌋
logN
logb

+ k
)k

. (10)
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Proof. As in [5] and [1], we will use special numeration systems in base b — using
signed digits a j bounded by

⌊ b
2

⌋
— to expand reals in [0,1). That is, we write z ∈

[0,1) as

z =
∞

∑
j=0

a jb− j

{
with |a j| ≤ b−1

2 if b is odd
with |a j| ≤ b

2 and |a j|+ |a j+1| ≤ b−1 if b is even.
(11)

The existence and unicity of such expansions are obtained by induction, see [1, p.
21–22] or [19, p. 12–13] where more details are given. For later use, it is worth
pointing out that the expansion starts at b0 and as a result, it is easy to see that a0 is
either 0 or 1.

Now we can begin the proof: Pick any z = (z(1), . . . ,z(s)) ∈ [0,1)s. Expand each
z(i) as ∑

∞
j=0 a(i)j b− j according to our numeration systems (11) above.

Let n :=
⌊

logN
logb

⌋
and define z(i)0 = 0 and z(i)n+1 = z(i). Consider the numbers z(i)k =

∑
k−1
j=0 a(i)j b− j for k = 1, . . . ,n. Applying Lemma 2 with ni = n, we expand J =

∏
s
i=1[0,z

(i)) using (z(i)j )n+1
j=1 , obtaining a signed splitting

I(j) =
s

∏
i=1

[min(z(i)ji ,z
(i)
ji+1),max(z(i)ji ,z

(i)
ji+1)), 0≤ ji ≤ n, (12)

and signs ε( j1, . . . , js) = ∏
s
i=1 sgn(z(i)ji+1− z(i)ji ), where j = ( j1, . . . , js).

Since V and A( . ;PN) are both additive, so is any scalar linear combination of them,
and hence A(J;PN)−NV (J) may be expanded as

A(J;PN)−NV (J) =
n

∑
j1=0
· · ·

n

∑
js=0

ε(j)(A(I(j);PN)−NV (I(j))) =: Σ1 +Σ2 (13)

where we rearrange the terms so that in Σ1 we put the terms j such that b j1 · · ·b js ≤N
(that is j1 + · · ·+ js ≤ n) and in Σ2 the rest. Notice that in Σ1, the ji’s are small, so
the corresponding I(j) is bigger. Hence, Σ1 deals with the coarser part whereas Σ2
deals with the finer part.

It is easy to deal with Σ1: from Property 1 and since z(i)k+1−z(i)k = a(i)k b−k, we have
that

|A(I(j);PN)−NV (I(j))| ≤ bt
s

∏
i=1
|z(i)ji+1− z(i)ji |b

ji = bt
s

∏
i=1
|a(i)ji |. (14)

Hence, applying Lemma 1 with k = s, c(i)j = |a(i)j | and c =
⌊ b

2

⌋
, we obtain

|Σ1| ≤ ∑
j|b j1 ···b js≤N

|A(I(j);PN)−NV (I(j))| ≤ bt

s!

(⌊
b
2

⌋
logN
logb

+ s
)s

which is the first part of the bound of Theorem 1.



8 Henri Faure, Christiane Lemieux, and Xiaoheng Wang

The terms gathered in Σ2 give the second part of the bound of Theorem 1, i.e.,
the part in O((logN)s−1). The idea of Atanassov for his proof of Theorem 2.1 for
Halton sequences is to divide the set of s-tuples j in Σ2 into s disjoint sets included
in larger ones for which Lemma 1 applies and gives the desired upper bound. His
proof is very terse. It has been rewritten in detail in [19] and we refer the reader to
this note for further information. Following the same approach, we can adapt the
proof to (t,s)−sequences and get the second part of the bound of Theorem 1. ut

From Theorem 1 we can derive the constant cs, which for the case where b is
odd is the same as in the known bound (8), and for b even is larger than (8) by a
factor b/(b− 1) (this has recently been improved, together with the extension to
Niederreiter–Xing sequences suggested in Section 1, in our submitted work [9]).

Corollary 1. The discrepancy of a (t,s)−sequence X in base b satisfies (1) with

cs =


bt

s!

(
b−1

2logb

)s
if b is odd

bt

s!

(
b

2logb

)s
if b is even.

4 Scrambling Halton sequences with matrices

In this section, we generalize Atanassov’s methods from [1] to Halton sequences
scrambled with matrices, especially the method where he uses admissible integers
to get a smaller constant cs. We start by the simplest case of Theorem 2.1 from [1]
extended with matrices.

4.1 Halton sequences scrambled with lower triangular matrices

Our idea of scrambling Halton sequences with matrices goes back to the scram-
bling of Faure (0,s)-sequences in [18]: to improve the initial portions of these se-
quences that tend to not spread uniformly over [0,1)s, Tezuka suggested to apply
linear transformations to the generating matrices of the original sequences by mean
of non-singular lower triangular (NLT) matrices A1, . . . ,As. That is, he introduced
the idea of generalized Faure sequences, which are based on generating matrices of
the form Ci = AiPi, where Pi is the NUT Pascal matrix in Zb raised to the power
i−1. Now, going back to Halton sequences, it seems natural to use similar ideas to
scramble Halton sequences, as described in the following definition (see also [13,
App. B]).

Definition 3. The linearly scrambled Halton (LSH) sequence (Xn)n≥1, based on
NLT matrices A1, . . . ,As, where Ai has entries in Zpi , is obtained as

Xn = (SA1
p1
(n), . . . ,SAs

ps (n)), n≥ 1,
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where SC
b (n) was defined in (7).

Theorem 2. An LSH sequence satisfies the discrepancy bound (1) with cs given by
(6) (the same constant as for GH sequences).

This theorem results from an analog of [1, Lemma 3.1]. But here, the use of NLT
matrices Ai implies that there might be infinitely many yn,r = b− 1 in (7). This
introduces disruptions in the proof (when using elementary intervals), as it does for
(t,s)−sequences generalized with linear scramblings [18] or with global function
fields [16]. Hence, as in [16, 18], we must introduce the truncation operator to
overcome this difficulty.
Truncation: Let x = ∑

∞
r=0 xrb−(r+1) be a b–adic expansion of x∈ [0,1], with the pos-

sibility that xr = b−1 for all but finitely many r. For every integer m≥ 1, we define
the m-truncation of x by [x]b,m = ∑

m
r=0 xrb−(r+1) (depending on x via its expansion).

In the multi-dimensional case, the truncation is defined coordinate-wise.
Next, we define an elementary interval in bases p1, . . . , ps, i. e., an interval of the
form

s

∏
i=1

[li p
−di
i ,(li +1)p−di

i ), where di ≥ 0 and 0≤ li < pdi
i are given integers. (15)

In order to establish our discrepancy bound for an LSH sequence, we first need to
work with the truncated version of the sequence, and to do so the following defini-
tion is useful.

Definition 4. Let (SA1
p1 , . . . ,S

As
ps ) be an LSH sequence. We define

[PN ] = {([SA1
p1
(n)]p1,D1 , . . . , [S

As
ps (n)]ps,Ds),1≤ n≤ N}, where Di = dlogN/ log pie.

We refer to [PN ] as the first N points of a truncated version of the sequence.

The next result, about A(J; [PN ]) viewed as a function of N, would be trivial without
the truncation operator.

Lemma 3. Let (SA1
p1 , . . . ,S

As
ps ) be an LSH sequence and J be an interval of the form

∏
s
i=1[bi p

−di
i ,ci p

−di
i ) with integers bi, ci satisfying 0 ≤ bi < ci ≤ pdi

i . Then for N ≥
pd1

1 · · · pds
s , A(J; [PN ]) is an increasing function of N.

Proof. Let Di = dlogN/ log pie. If N ≥ pd1
1 · · · pds

s , then Di ≥ di for all i. Therefore
as N increases, there can only be more points (from the truncated sequence) inside
a particular interval J. The reason why we have to make sure Di ≥ di for all i is that
otherwise, as N increases some points could leave the interval J as more precision
is added on their digital expansion, but once the precision Di is greater than the
precision di used to define the interval, then this can no longer happen. ut

We then establish the following lemma, analog of [1, Lemma 3.1] and Property 1.
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Lemma 4. Let (SA1
p1 , . . . ,S

As
ps ) be an LSH sequence. Then for any integer k ≥ 0, any

elementary interval as in (15) contains exactly one point of the point set{(
[SA1

p1
(n)]p1,d1 , . . . , [S

As
ps (n)]ps,ds

)
; kpd1

1 · · · p
ds
s +1≤ n≤ (k+1)pd1

1 · · · p
ds
s

}
.

Moreover, for all intervals of the form J = ∏
s
i=1[bi p

−di
i ,ci p

−di
i ) with integers bi,ci

satisfying 0≤ bi < ci ≤ pdi
i , we have for all k ≥ 0

A(J; [PN ]) = k(c1−b1) · · ·(cs−bs), where N = kpd1
1 · · · p

ds
s .

Proof. For short, write X (i)
n := SAi

pi (n) for all 1 ≤ i ≤ s. First, the condition on n
implies that the digits ar(n) from the expansion of n− 1 are uniquely determined
for r ≥ pd1

1 · · · pds
s .

Then, it is easy to see that the digits y(i)n,r (0≤ r < di) defining [X (i)
n ]pi,di are uniquely

determined by the integers di, li describing a given elementary interval.
Now, since Ai is an NLT matrix, the di× di linear system in the unknowns ar(n)
(0≤ r < di) given by

Ai
(
a0(n), . . . ,adi−1(n)

)T
= (y(i)n,0, . . . ,y

(i)
n,di−1)

T ,

also has a unique solution and hence the digits ar(n) (0 ≤ r < di) are uniquely
determined, which means that n is unique modulo pdi

i for all 1≤ i≤ s.
Finally, applying the Chinese remainder theorem, we obtain that n is unique modulo
pd1

1 · · · pds
s . Together with the condition kpd1

1 · · · pds
s + 1 ≤ n ≤ (k+ 1)pd1

1 · · · pds
s , all

digits ar(n) (r ≥ 0) are unique and so is n, which ends the proof of the first part
of Lemma 4. The second part simply results from the fact that J splits into (c1−
b1) · · ·(cs−bs) disjoint elementary intervals. ut

We also need the following lemma, another result that would be trivial without the
truncation.

Lemma 5. Let (SA1
p1 , . . . ,S

As
ps ) be an LSH sequence and J be an interval of the form

J = ∏
s
i=1[bi p

−di
i ,ci p

−di
i ) with integers bi,ci satisfying 0 ≤ bi < ci ≤ pdi

i . If N <

pd1
1 · · · pds

s then A(J; [PN ])≤ (c1−b1) · · ·(cs−bs).

Proof. Define d̃i = min(Di,di). Let [J] be defined as the smallest interval of the
form ∏

s
i=1[b̃i p

−d̃i
i , c̃i p

−d̃i
i ) with 0 ≤ b̃i < c̃i ≤ pd̃i

i and such that J ⊆ [J]. We can see

that [J] is obtained by using c̃i = dci/pd̃i−di
i e and b̃i = bbi/pd̃i−di

i c. Using the same
arguments as in the proof of the previous lemma, we have that each interval of the
form ∏

s
i=1[li p

−d̃i
i ,(li +1)p−d̃i

i ) has at most one point from [PN ]. Hence

A(J; [PN ])≤ A([J]; [PN ])≤
s

∏
i=1

(c̃i− b̃i)≤
s

∏
i=1

(ci−bi),

where the last inequality follows from the definition of b̃i and c̃i. ut
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Now, we can give the proof of Theorem 2.

Proof. From Lemma 3 and the second part of Lemma 4, we obtain that for every
N ≥ pd1

1 · · · pds
s and J = ∏

s
i=1[bi p

−di
i ,ci p

−di
i )

|A(J; [PN ])−NV (J)| ≤ (c1−b1) · · ·(cs−bs). (16)

Further, Lemma 5 proves that (16) also holds when N < pd1
1 · · · pds

s .
The inequality (16) is similar to the result stated in Lemma A.3.1 from [1], but

note that here it applies to the truncated sequence. From that point, we can pro-
ceed as in Atanassov’s proof of his Theorem 2.1, which consists in breaking down
A(J; [PN ])−NV (J) into a sum Σ1 +Σ2 as done in (13), and then bound each term
separately. Note however that in our case, the obtained bound applies to the trun-
cated version of the sequence. But as discussed in [15, 16], it is easy to show that if
a bound of the form (1) applies to the truncated version of a sequence, it applies to
the untruncated version as well (with the same constant cs). ut

4.2 Scrambling Halton sequences with admissible matrices

In this section, we show that by using admissible integers to construct the matrices
Ai of an LSH sequence, we obtain sequences satisfying the same improved discrep-
ancy bound as in [1, Theorem 2.3], obtained there for modified Halton sequences,
which use permutations based on admissible integers. We first need a few defini-
tions, including that of admissible integers and the “generating–matrices” analog of
these integers, which we call “admissible matrices”.

Definition 5. Given non-negative integers α1, . . . ,αs,β1, . . . ,βs and k1, . . . ,ks, we
define the quantity

P(βi)
i (ki;(α1, . . . ,αs)) := kαi+βi

i ∏
1≤ j≤s, j 6=i

p
α j
j mod pi, i = 1, . . . ,s. (17)

Definition 6. We say that k1, . . . ,ks are admissible for the primes p1, . . . , ps if
pi6 |ki and for each set of integers (b1, . . . ,bs), pi6 |bi, there exists a set of integers
(α1, . . . ,αs) such that

P(0)
i (ki;(α1, . . . ,αs))≡ bi mod pi, i = 1, . . . ,s.

Lemma A.4.1. Let p1, . . . , ps be distinct primes. Then there exist admissible integers
k1, . . . ,ks.

Definition 7. Let A1, . . . ,As be NLT matrices in distinct prime bases p1, . . . , ps and
let k1, . . . ,ks be admissible integers for these bases. Then the matrices Ai, i = 1, . . . ,s
are admissible if the jth entry on their diagonal has the form kβi+ j

i , j ≥ 1, where
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β1, . . . ,βs are non-negative integers. An LSH sequence based on admissible matrices
A1, . . . ,As is called a modified linearly scrambled Halton (MLSH) sequence.

Atanassov’s modified Halton sequence corresponds to the case where Ai is diag-
onal and βi = 0 for all i, while if we take Ai diagonal and βi = 1, then we obtain the
sequences used in the experiments in [2] (where the authors also apply digital shifts
chosen independently(mod pi)). It is important to take βi ≥ 1 for applications in
QMC methods, otherwise the sequences behave like original Halton sequences in
the usual ranges of sample sizes [8, Section 3, Paragraph 2].

We can now state the main result of this section.

Theorem 3. The discrepancy of an MLSH sequence based on distinct primes bases
p1, . . . , ps, non-negative integers β1, . . . ,βs and admissible integers k1, . . . ,ks satis-
fies the bound (1) with constant

cs(p1, . . . , ps) =
1
s!

s

∑
i=1

log pi

s

∏
i=1

pi(1+ log pi)

(pi−1) log pi
.

The proof of Theorem 3 follows closely that of [1, Theorem 2.3], which in turn
essentially proceeds through an intermediate result called Proposition 4.1 in [1].
Here this result must be adapted to the more general setting of admissible matrices,
and is described in a slightly different version in the following proposition.

Proposition 1. For an MLSH sequence based on distinct primes p1, . . . , ps, non-
negative integers β1, . . . ,βs and admissible integers k1, . . . ,ks, we have that

∑
j∈T (N)

|A(I(j); [PN ])−NV (I(j))| ≤ ∑
j∈T (N)

(
1+ ∑

l∈M(p)

‖∑
s
i=1(li/pi)P

(βi)
i (ki; j)‖−1

2R(l)

)
+O((logN)s−1),

where T (N) = {j|p j1
1 · · · p

js
s ≤ N, j1, . . . , js ≥ 0}, M(p) = {j|0 ≤ ji ≤ pi− 1, j1 +

· · ·+ js > 0}, R(j) = ∏
s
i=1 ri( ji), with ri(m) = max(1,min(2m,2(pi−m))) and ‖ ·‖

denotes the “distance to the nearest integer” function.

Before presenting the proof of this result, we first need to recall a technical lemma
from [1] and an adapted version of a key lemma used in the proof of [1, Prop. 4.1].
Lemma A.4.2. Let p = (p1, . . . , ps) and let ω = (ω

(1)
n , . . . ,ω

(s)
n )∞

n=0 be a sequence
in Zs. Let b,c be fixed elements in Zs, such that 0≤ bi < ci ≤ pi, for 1≤ i≤ s. For
C ≥ 1, denote by aC(b,c) the number of terms of ω among the first C such that for
all 1≤ i≤ s, we have bi ≤ ω

(i)
n mod pi < ci. Then

sup
b,c

∣∣∣∣∣aC(b,c)−C
s

∏
i=1

ci−bi

pi

∣∣∣∣∣≤ ∑
j∈M(p)

|SC(j,ω)|
R(j)

, (18)

where SC(j,ω) = ∑
C−1
n=0 e

(
∑

s
k=1

jkω
(k)
n

pk

)
and e(x) = exp(2iπx).
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This result is applied in Lemma 6 below, but to the counting function A(J; [PN ])
in place of aC(b,c). Hence, the discrepancy function will be estimated by means of
a trigonometrical sum, which in turn will give the part ‖∑

s
i=1(li/pi)P

(βi)
i (ki; j)‖−1

in the upper bound of Proposition 1.

Lemma 6. Let X be an MLSH sequence in bases p1, . . . , ps as in Definition 7. Fix
some elementary interval I = ∏

s
i=1[ai p

−αi
i ,(ai + 1)p−αi

i ) with 0 ≤ ai < pαi
i , and a

subinterval J = ∏
s
i=1[ai p

−αi
i +bi p

−αi−1
i ,ai p

−αi
i + ci p

−αi−1
i ) with 0≤ bi < ci ≤ pi.

Let N > ∏
s
i=1 pαi

i and let n0 (whose existence will be proved) be the smallest in-
teger such that [Xn0 ] ∈ I (the notation [Xn] = ([X (1)

n ]p1,D1 , . . . , [X
(s)
n ]ps,Ds) has been

introduced in Definition 4). Suppose that [Xn0 ] belongs to

s

∏
i=1

[ai p
−αi
i +di p

−αi−1
i ,ai p

−αi
i +(di +1)p−αi−1

i ),

and let ω = {ωt}∞
t=0 in Zs be defined by ω

(i)
t = di + tP(βi)

i (ki;(α1, . . . ,αs)). Then

1. We have that n0 < ∏
s
i=1 pαi

i and the indices n of the terms [Xn] of [PN ] that
belong to I are of the form n = n0 + t ∏

s
i=1 pαi

i .
2. For these n, [Xn] ∈ J if and only if for some integers (l1, . . . , ls), li ∈ {bi, . . . ,ci−

1}, the following system of congruences is satisfied by t:

ω
(i)
t = di + tP(βi)

i (ki;(α1, . . . ,αs))≡ li mod pi, i = 1, . . . ,s. (19)

3. If C is the largest integer with n0 +(C−1)∏
s
i=1 pαi

i < N, then

|A(J; [PN ])−NV (J)|< 1+ ∑
l∈M(p)

|SC(l,ω)|
R(l)

.

Proof. We consider each of the three claims one by one.

1. This has been dealt with in the proof of Lemma 4 (first part with k = t), which
applies here since an MLSH sequence is a special case of an LSH sequence.

2. We first note that for [Xn] to be in J, for each fixed i the (αi + 1)st digit of
[X (i)

n ] must be in {bi, . . . ,ci− 1}. Hence we need to show that this digit is given
by (19). By the definition of n0, we know that Ai

(
a0(n0), . . . ,adi−1(n0)

)T
=

(∗, . . . ,∗,di,∗, . . .)T (where di is the (αi+1)st digit), (a0(n0), . . . ,adi−1(n0)) com-
ing from the expansion of n0−1 in base pi. For brevity, let Pi := ∏

s
j=1, j 6=i p

α j
j

mod pi. Since the (αi + 1)st digit of ∏
s
j=1 p

α j
j in base pi is tPi, we have that

(a0(n), . . . ,adi−1(n)) = (a0(n0), . . . ,adi−1(n0)) + (0, . . . ,0, tPi,∗, . . .). Note that
possible carries to higher order digits are absorbed in the stars ∗. Now,

Ai(a0(n), . . . ,adi−1(n))T = Ai(a0(n0), . . . ,adi−1(n0))
T +Ai(0, . . . ,0, tPi,∗, . . .)T

= (∗, . . . ,∗,di,∗, . . .)T +(0, . . . ,0, tkαi+βi
i Pi,∗, . . .)
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by definition of Ai. Therefore, the first αi digits of [X (i)
n ] and [X (i)

n0 ] are equal
and the (αi + 1)st digit of [X (i)

n ] is di + tkαi+βi
i Pi ≡ di + tP(βi)

i (ki;α) mod pi, as
desired.

3. We apply Lemma A.4.2 with aC(b,c) = A(J; [PN ]) and use the inequalities

C
s

∏
i=1

ci−bi

pi
−1≤ NV (J)≤ (1+C)

s

∏
i=1

ci−bi

pi
≤ 1+C

s

∏
i=1

ci−bi

pi

resulting from the hypothesis of item 3. ut

Proof. (Proposition 1) As in [19] we first consider the case where ji ≥ 1 for all
i, as this allows use to use Lemma 6. The interval I(j) is contained inside some
elementary interval G = ∏

s
i=1[ci p

− ji
i ,(ci + 1)p− ji

i ). We define a sequence ω as in
Lemma 6, where the integers di are determined by the condition that the first term
of the sequence σ that falls in G fits into the interval

s

∏
i=1

[ci p
− ji
i +di p

− ji−1
i ,ci p

− ji
i +(di +1)p− ji−1

i ). (20)

Hence ω
(i)
n = di +nP(βi)

i (ki, j). From part (3) of Lemma 6, it follows that

|A(I(j); [PN ])−NV (I(j))|< 1+ ∑
l∈M(p)

|SK(l,ω)|
R(l)

, (21)

where K is the number of terms of the MLSH sequence among the first N terms that
fall into G. Since the pi’s are coprime, we see that P(βi)

i (ki, j) 6= 0, in particular, it is
not divisible by pi and hence coprime to pi. For any l ∈M(p), by definition, there
is an lt , with 1 ≤ t ≤ s such that lt 6= 0, and so pt6 | lt . These properties imply that
α = ∑

s
i=1

li
pi

P(βi)
i (ki; j) is not an integer. Thus we have

|SK(l,ω)| =

∣∣∣∣∣K−1

∑
n=0

e

(
s

∑
i=1

li
pi
(di +nP(βi)

i (ki; j))

)∣∣∣∣∣=
∣∣∣∣∣K−1

∑
n=0

e(nα +
s

∑
i=1

lidi/pi)

∣∣∣∣∣
=
|e(Kα)−1|
|e(α)−1|

≤ 1
2

∥∥∥∥∥ s

∑
i=1

li
pi

P(βi)
i (ki; j)

∥∥∥∥∥
−1

,

where the last inequality is obtained by noticing that |e(α)−1| ≥ 2π|α|2/π = 4|α|
for −1/2≤ α ≤ 1/2. Combining this result with (21), we obtain

∑
j∈T (N),

ji≥1

|(A(I(j); [PN ])−NV (I(j))| ≤ ∑
j∈T (N),

ji≥1

1+ ∑
l∈M(p)

‖∑
s
i=1

li
pi

P(βi)
i (ki; j)‖−1

2R(l)

 .

(22)
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In the second case, the fact that at least one ji is 0 implies that we can use a
similar approach to the one used to bound Σ1 in Theorem 1, and the obtained bound
in O(logs−1 N) as we are essentially working in at most s−1 dimensions. Observing
that T (N) contains the vectors j such that ji ≥ 1 for all i completes the proof.

We still need two more technical lemmas before proceeding to the proof of The-
orem 2.3. The first one is directly from [1], and is useful to bound the upper bound
derived in Proposition 1.

Lemma A.4.4. Let p = (p1, . . . , ps), then

∑
j∈M(p)

p1−1

∑
m1=1
· · ·

ps−1

∑
ms=1

‖ j1m1
p1

+ . . .+ jsms
ps
‖−1

2R(j)
≤

s

∑
i=1

log pi

s

∏
i=1

pi

(
s

∏
j=1

(1+ log p j)−1

)
.

The next one is useful to count the vectors j ∈ T (N), over which the sum that is
bounded in Proposition 1 is defined. In [1, p. 30–31], this is achieved in the text of
the proof but, for the sake of clarity, we prefer to state it as a last lemma.

Lemma 7. Let a∈Zs be a vector of non-negative integers and let U(a) := {j ; aiK≤
ji < (ai+1)K for all 1≤ i≤ s}, where K =∏

s
i=1(pi−1). The s functions P(βi)

i (ki; j),
1≤ i≤ s, are such that for each b=(b1, . . . ,bs)∈Zs, with 1≤ bi≤ pi−1 for all 1≤
i ≤ s, there are exactly Ks−1 s-tuples j ∈ U(a) such that P(βi)

i (ki; j) ≡ bi mod
pi for all 1≤ i≤ s.

Proof. The proof essentially follows from the fact that the s functions P(0)
i (ki; j) sat-

isfy the property described in this Lemma 7 (see [1, p. 30]), and then the observation
that P(βi)

i (ki; j)≡ bi mod pi if and only if P(0)
i (ki; j)≡ k−βi

i bi mod pi. ut

We are now ready to prove Theorem 3.

Proof. As in the proof of Theorems 1 and 2, we first write the discrepancy function
of [PN ] on J using (13) and similarly get

A(J; [PN ])−NV (J) = Σ1 +Σ2.

The terms gathered in Σ2 are still in O((logN)s−1) and those in Σ1 are divided in
two sums bounded separately as follows:∣∣∑1

∣∣≤ ∑
j∈T (N)

ji>0

t(j)+ ∑
j∈T (N)

some ji=0

t(j). (23)

Now, using Proposition 1 and the fact that each j ∈ T (N) is inside a box U(a) such
that the s-tuples a satisfy ∏

s
i=1 paiK

i ≤∏
s
i=1 p ji

i ≤ N, we get that the first term on the
right-hand side of (23) is bounded by

∑
a|∏s

i=1 p
ai·K
i ≤N

∑
j∈U(a)

1+ ∑
l∈M(p)

‖∑
s
i=1

li
pi

P(βi)
i (ki; j)‖−1

2R(l)

 . (24)
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We also note that the second term on the right-hand side of (23) is in O(logs−1 N).
We then apply Lemma A.3.3 (whose base b version is given in Lemma 1) with

c = 1 and p′i = pK
i and get the bound 1

s! ∏
s
i=1

(
logN

K log pi
+ s
)

for the number of s-tuples
a enumerated in the first sum of (24). Next we use Lemma 7 to enumerate and count
the number of vectors j in U(a) considered in the inner sum of (24). These two
results together with Lemma A.4.4 give us the bound

1
s!

s

∏
i=1

(
logN

K log pi
+ s
)

Ks−1

(
K +

s

∑
i=1

log pi

s

∏
i=1

pi

(
−1+

s

∏
i=1

(1+ log pi)

))

for Σ1. The final result can then be obtained after a few further simplifications and
using the fact that, as explained in [15], a discrepancy bound holding for the trun-
cated version of the sequence also applies to the untruncated version. ut

Remark 1. The reader interested in the unfolding of the original proof by Atanassov
has the choice between the text in [1, Theorem 2.3] (very terse) and its careful
analysis in [19] (very detailed). With our proof of Theorem 3 in hand, we now
have the opportunity to present an overview of Atanassov’s proof and thus make it
accessible to readers who do not wish to go over [1] or [19].

Atanassov’s modified Halton sequences in bases p1, . . . , ps, with admissible inte-
gers k1, . . . ,ks, are generalized Halton sequences in which the sequences of permu-
tations Σi = (σi,r)r≥0 are defined by

σi,r(a) := akr
i mod pi for all 0≤ a < pi, r ≥ 0, i = 1, . . . ,s.

Of course they are a special case of MLSH sequences (see definitions and comments
just before Theorem 3).

The basis of the proof of Theorem A.2.3 is Proposition A.4.1 which essentially
reads as Proposition 1 where βi = 0.

Lemma A.4.1, which establishes the existence of admissible integers (using
primitive roots modulo pi), and Lemma A.4.2 have already been stated.

Lemma A.4.3 is the core of the proof. It reads as Lemma 6 where brackets have
been removed, i.e., where the truncation is unnecessary, since Atanassov deals with
diagonal matrices only.

Now, Lemma A.4.2 is applied in Lemma A.4.3 to the counting function A(J;PN)
in place of aC(b,c). Hence, as already noted, the discrepancy function is estimated
by means of a trigonometrical sum, which gives the part ‖∑

s
i=1(li/pi)P

(0)
i (ki; j)‖−1

in the upper bound of Proposition A.4.1. The end of the proof of Proposition A.4.1
together with the proof of Theorem A.2.3 are mainly the same as that of Proposition
1 and Theorem 3, respectively, where the brackets have to be removed and where
βi = 0. The only subtle difference is in the split into two cases, ji ≥ 1 for all i or not.
This distinction was ignored by Atanassov whereas it appears crucial at a stage of
the proof (see [19] for complete details).
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