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Abstract

In [1], a construction closely related to generalized Faure sequences was in-
troduced. Unlike generalized Faure sequences, this construction is extensible
in the dimension and lends itself well to high-dimensional problems. In this
paper, we consider a weighted space of functions for which this construction
is particularly well suited and we use it to prove tractability in that space.
This space of functions is a special case of one in which we have “finite-order
weights”, which were studied recently by several authors. We compare our
findings with these previously obtained results and provide numerical results
to illustrate the practical potential of our approach.

Keywords: tractability, generalized Faure sequence, effective dimension,
finite-order weights.

1. Introduction

Low-discrepancy sequences have proven to be useful as deterministic
counterpart to Monte Carlo methods for the approximation of integrals of
the form

Is(f) =

∫
[0,1)s

f(x)dx,

where f is a real-valued function defined over the unit hypercube Is := [0, 1)s.
The idea is to construct a sequence of points x1,x2, . . . in [0, 1)s that is evenly
distributed and then form the approximation

QN,s(f ;PN) =
1

n

n∑
i=1

f(xi)
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for Is(f), where PN = {x1, . . . ,xN} contains the first N points of the se-
quence. For a sequence that is sufficiently well distributed over [0, 1)s — as
measured by the concept of discrepancy to be defined in the next section —
and for smooth enough functions, the error |Is(f) − QN,s(f)| can then be
shown to be of order O((logN)s/N), which is asymptotically better than the
(probabilistic) O(1/

√
N) associated with random sampling [2].

The Faure sequences and their generalizations are among the most widely
used low-discrepancy sequences. These sequences are of interest because they
are constructed so that the quality parameter t measuring their uniformity
(or equidistribution) is equal to 0, which is the best possible value. However,
the price to pay to achieve this is that the base b used to construct the points
(i.e., the coordinates of xi are defined through their base b expansion) must
be at least as large as the dimension s. The problem is then that as the base
increases, larger values of N are required for the low discrepancy regime to
settle in [26, Sec. 5.4].

In this paper, we investigate a construction introduced in [1] that is closely
related to Faure sequences, but is such that the base b can be fixed as s in-
creases. Here we call this construction a periodized generalized Faure sequence
and it is presented in Section 2. In Section 3, we determine a class of functions
for which the error achieved by this construction behaves well enough so that
integration in that class is QMC-tractable or even QMC-strongly tractable.
We then illustrate through a few numerical examples in Section 4 how this
construction performs on different problems, and conclude in Section 5 with
a few final remarks.

2. Periodized Generalized Faure Sequences

We start by describing the van der Corput sequence in base b ≥ 2, whose
nth term is defined as

Sb(n) =
∞∑
r=0

ar(n)b−r−1,

where ar(n) is the rth digit of the b-adic expansion of n−1 =
∑∞

r=0 ar(n) br.
This construction forms the basis of several low-discrepancy sequences,

which are sequences of points that fill the space Is in such a way that the
fraction of the first N points of the sequence included in a given subinter-
val becomes arbitrarily close, as N goes to infinity, to the volume of that
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subinterval. More precisely, denote by PN = {x1, . . . ,xN} ⊆ Is the first
N points of the sequence and by J ∗ the set of intervals of Is of the form
J =

∏s
j=1[0, zj), where 0 < zj ≤ 1. Then the discrepancy function of PN on

such an interval J is the difference

E(J ;PN) =
A(J ;PN)

N
− V (J),

where A(J ;PN) = #{n; 1 ≤ n ≤ N,Xn ∈ J} is the number of points in PN
that fall in the subinterval J , and V (J) =

∏s
j=1 zj is the volume of J .

Then, the star discrepancy D∗ of PN is defined by

D∗(PN) = sup
J∈J ∗

|E(J ;PN)|.

For an infinite sequence X, we denote by D∗(N,X) the discrepancy of its
first N points. As sequence satisfying D∗(N,X) ∈ O(N−1(logN)s) is said to
be a low-discrepancy sequence.

When designing an s-dimensional low-discrepancy sequence from van der
Corput sequences in base b, one must first apply a linear transformation
in each dimension to the digits a0(n), a1(n), . . . before outputting a number
between 0 and 1, an idea originally proposed by Sobol’ in [3]. As in [1], we
call this a linearly scrambled van der Corput sequence. For a prime base b,
it is obtained by choosing a matrix C with elements in Zb and an infinite
number of rows and columns, and then defining the nth term of this sequence
as

SCb (n) :=
∞∑
r=0

yn,r
br+1

in which yn,r =
∞∑
k=0

cr+1,k+1ak(n), (1)

where cr,k is the kth element on the rth row of C. Note that the second
summation is finite and performed in Zb, but the first one can be infinite and
is performed in R, with the possibility that yn,r = b − 1 for all but finitely
many r. This may result in having points with coordinates equal to 1 and
thus outside Is, an issue that can be handled by the use of a truncation
operator as in, e.g., [4, 5]. In this paper, we focus on cases where C is a
nonsingular upper triangular matrix, in which case the first summation is
finite and therefore the issue of having points outside Is is avoided.

To assess the quality of point sets obtained by such linear transformations,
the quality parameter t is often used. It was introduced by Niederreiter in [6]
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to define the concept of (t, s)-sequences, and uses the concept of elementary
intervals in base b, which are subsets of Is of the form

s∏
j=1

[
lj
brj
,
lj + 1

brj

)
,

where lj and rj are integers with 0 ≤ lj < brj and rj ≥ 0, for j = 1, . . . , s. A
(t,m, s)-net is defined as a point set PN with N = bm points such that any
elementary interval of volume b−M with M := r1 + . . .+ rs ≤ m− t contains
bm−M points from PN . A (t, s)-sequence in base b is a sequence of points
x1,x2, . . . such that {xkbm+1, . . . ,x(k+1)bm} is a (t,m, s)-net for all m ≥ t
and all k ≥ 0. A digital (t, s)-sequence over Zb is a (t, s)-sequence obtained
by juxtaposing linearly scrambled van der Corput sequences in base b.

For digital sequences over Zb for a given base b, the first construction
that was defined so that t = 0 was given by Faure in [7]. It is obtained by
choosing a prime base b ≥ s and using generating matrices Cj given by the
(j − 1)th power of the (upper triangular) Pascal matrix Pb in Zb.

It was then shown by Tezuka in [8] that a more general construction for
(0, s)-sequences is obtained by taking

Cj = AjP
j−1
b , j = 1, . . . , s, (2)

where each Aj is a nonsingular lower triangular (NLT) matrix. This family
of constructions is called generalized Faure sequences in [8].

Because (0, s)-sequences need to be defined in a base b ≥ s, as mentioned
in [9], they do not have the property of being extensible in the dimension.
A family of constructions with this property is such that if the dimension of
a problem is not known ahead of time — this is typical for certain types of
simulations that end with a random stopping time — then coordinates can
be added on the fly. The problem with (0, s)-sequences is that if we choose a
base b ≥ s, then for any r > b we need to choose a new base in order to define
a (0, r)-sequence, and thus we cannot simply extend each s-dimensional point
of the sequence into an r-dimensional one.

Now, if we weaken the property of (0, s)-sequences of having t = 0 by
introducing another quality parameter to replace t, then we can create a
construction closely connected to (0, s)-sequences, but that has the advantage
of being extensible in the dimension. Before describing this construction, we
first define this new quality parameter, which has similarities with other
criteria discussed in, e.g., [10].
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Definition 1. For a positive integer k ≤ s, the quality parameter tk of an
s-dimensional digital sequence {x1,x2, . . .} over Zb is defined as the smallest
integer so that for each u = {j1, . . . , jr} satisfying 1 ≤ j1 < · · · < jr ≤ s,
1 ≤ |u| = r ≤ k, and r(u) := jr − j1 + 1 ≤ k, the corresponding projection

{(xn,j1 , xn,j2 , . . . , xn,jr), n ≥ 1}

is a (tk, r)-sequence.

The quality parameter tk thus focuses on projections over subsets of in-
dices u = {j1, . . . , jr} that span a range r(u) no larger than k. Note that for
a (t, s)-sequence, we have ts = t. Also, if tk = 0, then tj = 0 for all 1 ≤ j ≤ k.

The idea proposed in [1] is to fix the base b, and for any dimension
s ≥ 1, to construct an s-dimensional digital sequence over Zb using generating
matrices of the form

Cj = AjP
j−1
b , j = 1, . . . , s. (3)

Moreover, to make this construction truly extensible in the dimension, it is
important to have a predetermined way to choose the scrambling matrices
Aj. The idea proposed in [1] is to choose a period p ≈ b/2 and then let

Aj = f(j mod p)I, (4)

where fl is the integer in Zb with the lth smallest value of θfb , defined as

θfb = max
1≤N≤b

(
T 2(N,SfIb )− N2

12b2

)
,

and where T (N,S) measures the L2-discrepancy of the first N points of
S. Multipliers f for which θfb is small thus give rise to good one-dimensional
sequences. This approach for selecting scrambling matrices was used to define
different types of generalized Faure sequences in [1]. The L2-discrepancy is
used to select these factors (as opposed to the star discrepancy, for example)
because it can be computed easily and is therefore better suited to this type of
computer search. Finally, the reason why we suggest to take the period p to
be around b/2 is that from experience, we find that once we have enumerated
the first half of the possible multipliers f according to θfb , their quality starts
deteriorating and we eventually hit “bad” multipliers that do not sufficiently
“scramble” the sequence, with 1 and b− 1 being the worst cases.

Summing up, we have the following definition:
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Definition 2. Let b be a prime number. A periodized generalized Faure
sequence (PGFS) in base b is based on generating matrices of the form (3).

Note that the matrices Aj as defined in (4) with p > 1 make the period
of the sequence C1, C2, . . . longer than that of the sequence Pb, P

1
b , P

2
b , . . .,

which equals b since P j
b = P j+lb

b for any l ≥ 1. However, the corresponding
PGFS still has bad projections over indices of the form {j, j + lb} for any
j, l ≥ 1, as the points accumulate around the b points of a lattice determined
by the generating vector 1

b
[fj mod p, fj+lb mod p]. Thus, while this is better than

having all the points on the main diagonal of [0, 1)2 — which is what these
two-dimensional projections would be if Aj were the identity matrix for all
j — a PGFS should not be used on problems for which these projections
correspond to important components of the integrand. Finally, we note that
a PGFS with matrices Aj as specified in (4) can handle problems where the
dimension is unbounded, because once b and p are chosen and the factors
f ∈ Zb are sorted according to θfb , no extra parameters need to be chosen.

The following result can be proved easily using the well-known fact that
any projection of a (0, s)-sequence has a quality parameter t = 0.

Proposition 1. Let b be a prime number. For any s ≥ 1, an s-dimensional
PGFS in base b has a quality parameter tb = 0.

The purpose of the next section is to introduce classes of functions for
which constructions having tR = 0 for some range R ≥ 1 are well suited. A
PGFS with b ≥ R gives us such a construction, and the key property that will
allow us to prove tractability results is summarized in the following lemma,
which gives an upper bound on the star-discrepancy of the projections of
such sequences.

Lemma 1. Let b be a prime and let PN be the first N ≥ 1 points of a
digital sequence over Zb with tb = 0. Let u = {j1, . . . , j|u|} and let P u

N be
the projection of PN over u, i.e., P u

N = {(xn,j1 , . . . , xn,j|u|), n = 1, . . . , N}.
Then for any nonempty subset u ⊆ {1, . . . , s} such that r(u) ≤ b, the star
discrepancy of P u

N satisfies

D∗(P u
N) ≤ 1

N

b+ 1

2b
(b logb(bN))|u|.

Before we give the proof of this result, note that any PGFS in base b
(including the one based on Aj = I for each j, i.e., where an s-dimensional
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sequence is obtained by repeating the b first coordinates of a Faure sequence
about s/b times) is such that tb = 0, and therefore satisfies the tractability
results in the next section. However, in practice it seems clear that for
finite values of N and/or problems that may not fit the classes of functions
described in the next section, it is important to “scramble” the sequence
according to some carefully chosen matrices Aj, as we propose to do via (4).
Results comparing these two options are presented in Section 4.

Proof. The proof is very similar to that of Lemma 1 in [11]. We start with
the case where b ≥ 3, and use the bound given in [2, Theorem 4.12] and the
fact that P u

N is a (0, |u|)-sequence if r(u) ≤ b, which implies that

ND∗(P u
N) ≤ b− 1

2

|u|∑
i=1

(
|u| − 1

i− 1

)(
k + 1

i

)(
b− 1

2

)i−1

+
1

2

|u|−1∑
i=0

(
|u| − 1

i

)((
k + 1

i

)
+

(
k

i

))(
b− 1

2

)i
=: Σ1 + Σ2,

for N ≥ 1, where k is the largest integer such that bk ≤ N , which means

k ≤ logbN . In addition and as in [12], we use the fact that
(
k+1
i

)
≤ (k+1)i

i!
≤

(k + 1)|u|. Thus we have that

Σ1 ≤
b− 1

2

|u|∑
i=1

(
|u| − 1

i− 1

)
(k + 1)|u|

(
b− 1

2

)i−1

≤ b− 1

2
(logbN + 1)|u|

|u|∑
i=1

(
|u| − 1

i− 1

)(
b− 1

2

)i−1
=
b− 1

2
(logb bN)|u|

(
b+ 1

2

)|u|−1
≤ b− 1

2b
(b logb bN)|u|.

Similarly, for the second term Σ2 we have

Σ2 ≤ (logb bN)|u|
(
b+ 1

2

)|u|−1
≤ 1

b
(b logb bN)|u|.

Therefore we have

ND∗(P u
N) ≤ b+ 1

2b
(b logb bN)|u|. (5)

The case where b = 2 is handled similarly, making use of [2, Theorem 4.13],
and the bound (5) also holds in that case.
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3. Tractability results

Tractability is a term that refers to a given class of functions and that
quantifies in a very specific way how much computational effort must be
spent in order to achieve a given level of integration error. Our treatment
of tractability is largely based on [13]. More precisely, for a given Hilbert
space Hs of functions f : Is → R, norm ‖ · ‖Hs , and a given ε > 0, we
consider integration algorithms defined by a point set PN used to construct
the approximation QN,s(f, PN). We then look at the worst-case error over
the class Hs, which is defined as

e(PN ;Hs) = sup{|Is(f)−QN,s(f ;PN)| : f ∈ Hs, ‖f‖Hs ≤ 1}, (6)

and compare it with the initial error, defined as

e(0;Hs) = sup{|Is(f)| : f ∈ Hs, ‖f‖Hs ≤ 1}.

We then define n(ε,Hs) as the smallest n for which there exists Pn such that
e(Pn;Hs) ≤ εe(0;Hs), where ε is in (0, 1).

The behavior of the quantity n(ε,Hs) as a function of the desired error
level ε and the dimension s is what defines the tractability of integration over
Hs. More precisely, integration over Hs is said to be QMC-tractable if there
exist non-negative numbers C, p, and q such that

n(ε,Hs) ≤ Cε−psq for all ε ∈ (0, 1) and all s ≥ 1. (7)

So tractability means the number of sample points required to decrease the
error so that it is within ε of the initial error grows polynomially fast with s,
and is therefore considered “manageable”. As in [13], the numbers p and q
are called the ε− and s−exponents of QMC-tractability, respectively. If q = 0
in (7), then integration over Hs is said to be QMC-strongly tractable, and the
infimum of the numbers p satisfying (7) with q = 0 is called the ε−exponent
of QMC-strong tractability.

We first define the space of functions for which a PGFS seems to be
naturally designed. We follow an approach similar to [13] and assume the
space Hs we work with is a reproducing kernel Hilbert space. Such spaces are
characterized by a reproducing kernel Ks(x,y) defined over Is× Is and such
that f(·) = 〈f(x), Ks(x, ·)〉 for any f ∈ Hs, where 〈·, ·〉 is the scalar product
associated with Hs. As in [13], we assume a reproducing kernel of the form

Ks(x,y) =
∑

u⊆{1,...,s}

γs,u
∏
j∈u

ηj(xj, yj), (8)
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where

ηj(x, y) =
1

2
B2(|x− y|) + (x− 1

2
)(y − 1

2
) + µj(x) + µj(y) +mj

and the weights γs,u are arbitrary non-negative numbers, with the assumption
that γs,∅ = 1, and the product over j in (8) is taken to be 1 when u = ∅.
The function B2(·) is the Bernoulli polynomial of degree 2, i.e., B2(x) =
x2 − x + 1

6
. The function µj(·) is assumed to have a derivative that exists

(except in possibly finitely many points), is bounded in [0, 1], and such that∫ 1

0
µj(x)dx = 0. We also havemj =

∫ 1

0
(µ′j(x))2dx. The reproducing kernel (8)

is weighted, with the weights γs,u moderating the importance of the different
subsets u of variables. It is interesting to note that while the weights do not
affect membership toHs, they affect the value of the norm ‖·‖Hs and therefore
come into play when we study the worst-case error (6). More precisely, the
inner product on a weighted space Hs has the form

〈f, g〉 =
∑

u⊆{1,...,s}

γ−1s,u〈f, g〉u,

where 〈f, g〉u is the inner product on the space with reproducing kernel∏
j∈u ηj(xj, yj), defined e.g. in [14, p. 38]. Hence we see that, as the weights

get smaller, we impose more and more conditions on functions f ∈ Hs in
order to have ‖f‖Hs ≤ 1. See [14, Sec. 2.5] for more information.

As in [13], we consider two choices for µj, which respectively lead to
an anchored Sobolev space denoted H(Ks,A) or an unanchored Sobolev space
denoted H(Ks,B). The first choice is to take

µj(x) = µj,A(x) := max(x, aj)−
1

2
(x2 + a2j)−

1

3
with arbitrary aj ∈ [0, 1],

which leads to ηj,A(x, y) = min(|xj − aj|, |y − aj|) if (x − aj)(y − aj) > 0
and 0 otherwise. The point (a1, . . . , as) is called the anchor. In this case,
mj = a2j −aj + 1

3
∈ [1/12, 1/3]. The second choice is to take µj(x) = 0, which

leads to ηj,B(x, y) = 1
2
B2(|x− y|) +

(
x− 1

2

) (
y − 1

2

)
and mj = 0 in this case.

Tractability over weighted spaces usually occurs by choosing weights that
prevent all subsets of variables from having the same weight. Two ways of
doing this that have been explored by many authors (in addition to [13], see,
for example [15, 16]) are (1) product-type weights; (2) finite-order weights.
The first case refers to weights of the form γs,u =

∏
j∈u γj for some non-

negative numbers γj ≤ 1, j = 1, . . . , s. The second case refers to weights for
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which there exists an integer q such that γs,u = 0 for all u with |u| > q. That
is, the weights are 0 when the subset u contains more than q indices.

Here, we propose a special case of the latter, which makes use of the notion
of range r(u) defined earlier. This type of weights is defined as follows.

Definition 3. A set of weights {γs,u}u⊆{1,...,s} is said to be of finite-range if
there exists an integer R ∈ {0, . . . , s−1} (called the range) such that γs,u = 0
if r(u) = maxj{j ∈ u} −minj{j ∈ u}+ 1 > R.

The motivation for this definition takes roots in the connection between
weights and functional ANOVA decompositions [17, 18], which amount to
writing a function f in L2 as

f(x) =
∑

u⊆{1,...,s}

fu(x),

where each component fu(x) depends only on the variables xj such that
j ∈ u. These components also satisfy

∫
Is
fu(x)dx = 0 for any non-empty

u, and
∫
Is
f∅(x)dx = Is(f) otherwise. In addition, this decomposition is

orthogonal, so that
∫
Is
fu(x)fv(x)dx = 0 for any distinct u, v ⊆ {1, . . . , s}.

We refer the reader to [19] for more information on the explicit definition of
the ANOVA components fu.

The ANOVA decomposition provides an appropriate setup to define the
concept of effective dimension [19], by considering the so-called Sobol’ sensi-
tivity indices [20] Su := σ2

u/σ
2 ∈ [0, 1], where

σ2
u =

∫
f 2
u(x)dx and σ2 =

∫
Is
f 2(x)dx− (Is(f))2.

That is, Su is equal to the fraction of the variance of f explained by the com-
ponent fu. Based on this, the effective dimension of f in the superposition
sense (in proportion p) is defined as the smallest integer ds such that∑

u:|u|≤ds

Su ≥ p.

The connection with finite-order weights is that, as proved in [21, Thm
4], for the unanchored Sobolev space H(Ks,B) the ANOVA decomposition is
equivalent to the (unique) orthogonal decomposition

f(x) =
∑
u

f̃u(x),
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such that f̃u ∈ H(Ku,s,B), whereKu,s,B is given by the term γs,u
∏

j∈u ηj(xj, yj)
in the definition (8). That is, the unanchored Sobolev space Ks,B is given
by the sum Ks,B(x,y) =

∑
uKu,s,B(x,y). From this result, it is clear that

if a function is in Hs(Ks,B) with weights of finite-order ds, then its effective
dimension in the superposition sense is ds in proportion 1.

The introduction of a constraint on the range is motivated by the ob-
servation that in practice, functions f(x) that represent a given stochastic
model (examples will be given in Section 4) are often such that the ANOVA
components fu with a significant Sobol’ index Su are those such that not
only |u| is not too large, but also such that the indices in u are not too far
apart. This is because the index j in xj is often related to time in a dynamic
model. For example, xj might be the source of randomness to simulate an
asset price at time j. A notion of effective dimension that was introduced in
[22] with that motivation in mind is to say that f has an effective dimension
of dc in the successive dimensions sense (in proportion p) if∑

u:r(u)≤dc

Su ≥ p.

Hence we have the following result:

Proposition 2. A function f(x) ∈ H(Ks,B) with weights of finite-range R
has an ANOVA decomposition such that σ2

u = 0 if r(u) > R and therefore
the effective dimension of f in the superposition sense and the successive
dimensions sense is no larger than R.

We can now establish an upper bound on the integration error of functions
in H(Ks,A) or H(Ks,B) and with weights of finite range R, when using a
digital sequence over Zb such that tR = 0, as achieved by a PGFS with
b ≥ R. This result is the counterpart of Theorem 10 in [13].

Theorem 1. Let H(Ks) be the anchored Sobolev space H(Ks,A) with an
arbitrary anchor a, or the unanchored Sobolev space H(Ks,B), and assume
we have finite-range weights {γs,u}u⊆{1,...,s} of range R ≥ 1. Let PN be the
first N points of a digital sequence over Zb such that tR = 0, where b ≥ R.
Then

e2(PN ;H(Ks)) ≤
1

N2

∑
∅6=u⊆{1,...,s}

r(u)≤R

γs,u

(
b+ 1

2b

)2

(2b logb bN)2|u|. (9)
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Proof. The proof is very similar to the one for Theorem 10 in [13]. We start
by considering the anchored Sobolev space with the anchor a = (1, . . . , 1).
The corresponding kernel is

Ks,A(x,y) = 1 +
∑

∅6=u⊆{1,...,s}

γs,u
∏
j∈u

min(1− xj, 1− yj).

As explained in [13], in this case we have

e2(PN ;H(Ks,A)) =
∑

∅6=u⊆{1,...,s}

γs,u

∫
[0,1)|u|

E2(J(xu, 1
¯
), PN)dxu, (10)

where J(xu, 1
¯
) =

∏
j∈u[0, xj). We also know that∫

[0,1)|u|
E2(J(xu, 1

¯
));PN)dxu ≤ (D∗(P u

N))2.

Hence from Lemma 1 and for u such that r(u) ≤ b we have that∫
[0,1)|u|

E2(J(xu, 1
¯
));PN)dxu ≤

1

N2

(
b+ 1

2b

)2

(b logb(bN))2|u|.

Therefore, using (10) we get

e2(PN ;H(Ks,A)) ≤ 1

N2

∑
∅6=u⊆{1,...,s},r(u)≤R

γs,u

(
b+ 1

2b

)2

(b logb(bN))2|u|,

which proves the result for a = (1, . . . , 1).
The case of an arbitrary anchor is handled similarly, and here we do not

reproduce all the steps from [13]. The important step to point out (and that
is different from the case where a = (1, . . . , 1)) is that for a general anchor,

e2(PN ;H(Ks,A)) ≤
∑

∅6=u⊆{1,...,s}

γs,u4
|u|(D∗(P u

N))2.

Hence we have

e2(Pn;H(Ks,A)) ≤ 1

N2

∑
∅6=u⊆{1,...,s},r(u)≤R

γs,u

(
b+ 1

2b

)2

(2b logb(bN))2|u|. (11)
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Next we consider the case of an unanchored Sobolev space. Again, fol-
lowing the approach in [13] (which contains several steps that apply to any
low-discrepancy point set and not only the ones considered in that paper),
we use the fact that

e2(PN ;H(Ks,B)) ≤
∑

∅6=u⊆{1,...,s}

γs,u4
|u|(D∗(P u

N))2,

which means the bound (11) holds in that case as well.

Remark 1. We note that the corresponding bound in [13], obtained for
Niederreiter sequences, is of a form similar to (9) but with a term j log2(j+b)
in the product over j ∈ u. Hence the terms comprised in the sum over the
subsets u grow as the indices in u get larger. This problem is avoided with
our construction and its pairing to the class of functions we consider.

The above bound on the integration error allows us to get the next result,
which studies the tractability of integration for classes of functions having
finite-range weights. It is the analog of Theorem 11 in [13].

Theorem 2. Let {γs,u}s≥1,u⊆{1,...,s} be weights of finite-range R ≥ 1. Let PN
be the first N points of a digital sequence over Zb with b ≥ R and such that
tR = 0 for all s ≥ 1. (a) Consider the anchored Sobolev space H(Ks,A) with
an arbitrary anchor a and weights {γs,u}u⊆{1,...,s}. Then we have

e(PN ;H(Ks,A))

e(0;H(Ks))
≤ C(b)

1

N
(logb bN)b,

where C(b) = (4
√

3b)b. Furthermore, for any arbitrary δ > 0 there exists a
constant Cδ independent of s and N such that

e(PN ;H(Ks,A))

e(0;H(Ks,A))
≤ CδN

−1+δ.

Hence we have QMC-strong tractability with ε−exponent 1.
(b) Consider the unanchored Sobolev space H(Ks,B) with weights {γs,u}u⊆{1,...,s}.

(i) If there exists c∗B such that γs,u ≤ c∗B for all u and s ≥ 1, then

e(PN ;H(Ks,B))

e(0;H(Ks,B))
≤ C1(b)

s1/2

N
(logb bN)b,

13



where
C1(b) =

√
c∗B(
√

8b)b.

(ii) If we further assume that

M = sup
s=1,2,...

∑
u:0≤r(u)≤R

γs,u <∞ (12)

then
e(PN ;H(Ks,B))

e(0;H(Ks,B))
≤ C2(b)

1

N
(logb bN)b,

where C2(b) =
√
M(2b)b. Furthermore, for any arbitrary δ > 0 there exists a

constant CB,δ independent of s and N such that

e(PN ;H(Ks,B))

e(0;H(Ks,B))
≤ CB,δN

−1+δ.

Hence we have QMC-strong tractability with ε−exponent 1.

Proof. Consider the anchored Sobolev space H(Ks,A). Following [13], we
have that the initial error e(0;H(Ks,A) satisfies

e2(0;H(Ks,A)) =
∑

u⊆{1,...,s}

γs,u
∏
j∈u

mj.

If we have arbitrary weights of finite range R, then from Theorem 1 we have

e2(Pn;H(Ks,A))

e2(0;H(Ks,A))
≤ 1

N2

∑
0≤r(u)≤R

(
b+1
2b

)2
γs,u(2b logb bN)2|u|∑

0≤r(u)≤R γs,u
∏

j∈umj

≤ 12R

N2

∑
0≤r(u)≤R γs,u

(
b+1
2b

)2
(2b logb bN)2|u|∑

0≤r(u)≤R γs,u

≤ 12R

N2
(2b logb bN)2R

(
b+ 1

2b

)2

≤ 12b

N2
(2b logb bN)2b,

since R ≤ b and b ≥ 2. The second inequality above follows from the fact
that mj ∈ [1/12, 1/3]. Therefore

e(PN ;H(Ks,A))

e(0;H(Ks,A))
≤ 1

N
(2
√

3)b(2b)b(logb bN)b, (13)

14



and since the bound on the right-hand side of (13) does not depend on s, we
clearly have QMC-strong tractability. Also, from (13) and for any δ > 0, we
can write

e(PN ;H(Ks,A) ≤ e(0;H(Ks,A))
1

N
(logbN + 1)bC(b) ≤ e(0;H(Ks,A))CδN

−1+δ

for all N ≥ 1 and for some Cδ > 0. This is because for any δ > 0, there
exists a constant K(b, δ) such that (logbN + 1)b ≤ N δ for all N ≥ K(b, δ).
Therefore, we have

(logbN + 1)b

N
C(b) ≤ CδN

−1+δ for all N ≥ 1

if we take Cδ = C(b)(logbK(b, δ) + 1)b. Hence for fixed ε > 0 we can take
N = dε−1/(1−δ)/Cδe to get e(PN ;H(Ks,A) ≤ εe(0;H(Ks,A)), and thus the
ε-exponent of QMC-strong tractability is 1.

The case of H(Ks,B) is handled similarly, but with the difference that
e2(0;H(Ks,B)) = 1 and thus in case (i)

e2(Pn;H(Ks,B))

e2(0;H(Ks,B))
≤ 1

N2

∑
u:0≤r(u)≤R

(
b+ 1

2b

)2

γs,u(2b logb bN)2|u|

≤ c∗Bs2
R

N2
(2b logb bN)2R

(
b+ 1

2b

)2

≤ sc∗B
N2

(2b logb bN)2b2b,

where the second inequality holds because the number of subsets u such that
r(u) ≤ R is bounded by s2R. Therefore

e(PN ;H(Ks,B))

e(0;H(Ks,B))
≤
√
c∗B
N

(2b)b(logb bN)bs1/22b/2. (14)

Hence here we have QMC-tractability with s-exponent 1/2.
In the case (ii) where we use a stronger assumption on the weights γs,u,

an argument similar to the one for (i) yields

e2(Pn;H(Ks,B))

e2(0;H(Ks,B))
≤ M
N2

(2b logb bN)2b
(
b+ 1

2b

)2

.
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and thus
e(PN ;H(Ks,B))

e(0;H(Ks,B))
≤ M

1/2

N
(2b)b(logb bN)b, (15)

and since the bound on the right-hand side of (15) does not depend on s,
we clearly have QMC-strong tractability. The rest of the argument used for
the anchored case can then be applied in the same way to prove the second
statement for the case (ii).

Remark 2. Comparing with the corresponding results obtained for Nieder-
reiter sequences in [13], in the anchored case we are able to achieve QMC-
strong tractability with no further condition on the weights γs,u other than
being of finite range. To achieve the same with finite-order weights in [13],
the condition

sup
s=1,2,...

(∑
u,|u|≤q∗ γs,u

∏
j∈u(j log2(j + b))2)∑

u,|u|≤q∗ γs,u
∏

j∈umj

)
<∞

is used. In the unanchored case, our condition (12) for QMC-strong tractabil-
ity is weaker than the one in [13], given by

M = sup
s=1,2,...

∑
0≤r(u)≤R

γs,u
∏
j∈u

(j log2(j + b))2 <∞.

Remark 3. We note that in the anchored case, the initial error is bounded by∑
u:r(u)≤R γs,u3

−|u|, which grows linearly in s, assuming γs,u3
−|u| is bounded.

While this does not prevent strong QMC-tractability from holding, one could
add conditions on the weights γs,u to restrict the set of functions considered
to those for which the initial error can remain bounded as s grows.

4. Examples

In this section, we present a few numerical examples where the perfor-
mance of our proposed construction is examined and compared against other
alternatives. These alternative constructions are: 1) the Sobol’ sequence with
direction numbers from the RandQMC library [23]; 2) the extensible rank-1
construction [24] with generating vector found at http://web.maths.unsw.
edu.au/~fkuo/lattice/index.html and based on order-2 weights; 3) the
extensible Korobov lattice proposed in [25], with parameter a = 14, 471.
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Here is what we expect to see in these examples. First, the alternative
constructions used in these examples are also designed to work well in high
dimensions, so we do not necessarily expect our PGFS will do better than
these. But we hope to demonstrate that it can be competitive with these
other methods. In particular, we note that while our method yields better
bounds than Niederreiter or Sobol’ sequences for the classes of functions
considered in this paper, the actual error may behave differently.

In these examples, constructions are compared by using an appropriate
randomization and then computing the average absolute error of the resulting
estimator. More precisely, let P̃n,l be the lth iid randomized copy of a point
set PN , for l = 1, . . . , L. Then we compute

ε̂N =
1

L

L∑
l=1

|(QN,s(f ; P̃N,l)− Is(f)|.

The randomization we chose is simply to add a random shift to PN , which
for point sets from the Sobol’ sequence and PGFS is done on the digital
expansion of each point xi ∈ PN (i.e., we use a digital shift), while for
lattices we add the shift modulo 1 to each component of each point. All
examples are done using L = 50 randomizations. We refer the reader to [26]
for more information on randomized quasi-Monte Carlo methods.

If the integral Is(f) is not known analytically, we estimate it using the
average value obtained from the 222 first points of our extensible Korobov
sequence over 50 iid random shifts. We chose to work with the average
absolute error because although all our estimators are unbiased, the PGFS is
not necessarily uniformly distributed [2], so we cannot guarantee, for a given
randomized copy P̃N,l, that the estimator QN,s(f ; P̃N,l) will converge to Is(f)
when f is not included in the space of functions studied in this paper, as is
the case for the problems considered in our second and third examples. This
potential issue can be better detected by measuring the average absolute
error than, say, the estimated variance.

We consider three examples. The first one is based on the test function

g(x) =
s∏
j=1

(1 + c(xj − 0.5))

introduced in [27]. Here however, we slightly modify this function so that
it fits the type of functions for which a PGFS is expected to do well. More

17



precisely, we fix parameters k and s, and then use the function

gk,s(x) =
1

s− k + 1

s−k+1∑
l=1

g(xl, . . . , xl+k−1)

for different values of s and k.
This first example allows us to consider the case where we have a function,

namely gk,s(x), in the unanchored Sobolev space H(Ks,B) with weights of
finite-order k. To see why this holds, first notice that

g(x) = 1 +
∑

∅6=u⊆{1,...,s}

c|u|
∏
j∈u

(xj − 0.5)

and therefore

gk,s(x) = 1 +
1

s− k + 1

s−k+1∑
l=1

 ∑
∅6=u⊆{l,...,l+k−1}

c|u|
∏
j∈u

(xj − 0.5)

 .
Hence we see that gk,s(x) can be written as a sum

gk,s(x) =
∑

u:r(u)≤k

gu,k,s(x)

where each gu,k,s(x) ∈ H(Ku,s,B). Thus gk,s(x) is in the unanchored Sobolev
space H(Ks,B), but with the additional restriction that γs,u = 0 if r(u) > k.

The results are presented in Figures 1 and 2. We used a PGFS in base
b = 97 (and with p = 42 in (4)) for this example. It should be noted that
since the figures use a log-log scale, there is more emphasis on smaller values
of N .

As we can see in these examples, the extensible Korobov sequence is
usually the one with the smallest error, but the PGFS is typically the next
best one.

Our second example uses an Asian call option (see e.g., [26]). The cor-
responding function f(x) is such that the price of the option C(T, s, r, σ)
satisfies

C(T, s, r, σ) = E

(
e−rT max

(
1

s

s∑
j=1

S(tj), 0

))
=

∫
Is
f(x)dx,
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Figure 1: gk,s with k = 20 and c = 1; s = 96 (left), s = 250 (right)
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Figure 2: gk,s with k = 20 and c = 1; s = 500 (left), s = 1000 (right)

where S(tj) is the price of the underlying asset at time tj = jT/s. Given
the previous price S(tj−1), S(tj) is assumed to have a lognormal distribution
with parameters ((r − σ2/2)/s, σ2/s), and where T is the expiration time of
the option, r is the risk-free rate, and σ is the volatility of the asset. Hence
the function f(x) in this case can be written as

f(x) = e−rT max

(
0,

1

s

s∑
j=1

exp((r − σ2/2)(jT/s) +

j∑
l=1

Φ−1(xl)σ
√
T/s)

)
,

where Φ(·) is the CDF of a standard Normal rv.
In this case, we do not have a function in one of the Sobolev spaces used
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in the previous sections. However, using the method from [28], we were able
to estimate a lower bound on the fraction of the function’s variance that
is explained by projections included in the subset that corresponds to those
with a non-zero weight for functions with a fixed finite range. More precisely,
we estimated a lower bound on

γ(2, 32, s) :=
∑

u:|u|≤2,r(u)≤32

Su

for s = 32, 64, 128, 256. The results are provided in Table 1 (the numbers on
the second row are the half-widths of a 95% confidence interval).

Table 1: Lower bound on fraction of variance explained by ANOVA components of order
2 and range smaller or equal to 32

s = 32 s = 64 s = 128 s = 256
γ̂(2, 32, s) 0.9735 0.9662 0.9105 0.8435
hw 0.0080 0.0056 0.0083 0.0152

While it is clear that γ(2, 32, s) is decreasing with s, the results in Table
1 suggest that even when s = 256, we can approximate the corresponding
function f fairly well by a sum of one- and two-dimensional components with
a range restricted to 32. We thus expect that a PGFS (or any low-discrepancy
point set with corresponding good projections over these subsets of indices
of bounded range) will provide an estimator whose performance does not
decrease too much with s. The results shown in Figures 3 and 4 seem to
confirm this. We used a PGFS in base b = 241 and with p = 122 for this
example. The results also show the performance of the naive construction
mentioned at the end of Section 2, which consists in taking Aj = I in (4).
The error is much larger than for any of the other methods, and we also see
a much larger sensitivity as to whether or not N is a power of b, with a large
downward peak close to b2 = 58081.

Our third example is based on a simple queueing system (see, e.g., [26]).
Clients arrive according to a Poisson process with arrival rate of 1/minute,
and receive service of length that is exponentially distributed with mean 55
seconds. All random variables in this model are assumed to be independent.
We simulate the arrival of l clients and are interested in the expected number
of clients who will have to wait for more than 10 minutes before being served.
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Figure 3: Asian call option with K = 50 and s = 32 (left), s = 64 (right)
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Figure 4: Asian call option with K = 50 and s = 128 (left), s = 256 (right)

The problem is thus 2l-dimensional. We used a PGFS in base b = 727 and
with p = 396.

We see in this example that the Sobol’ sequence in dimension 10,000 is
not performing so well for larger values of N . Our PGFS is competitive with
the extensible lattice.

5. Conclusion

In this paper, we have presented a class of functions that is well suited
for a construction introduced in [1]. This construction, which we call a
periodized generalized Faure sequence here, has the advantage of providing
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Figure 5: Queueing system with l = 500 clients (left) and l = 5000 clients (right)

perfect equidistribution over projections with a restricted range, while also
being extensible in the dimension. This construction seems competitive with
other popular ones, and is simple to implement.
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