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Improved Halton sequences and discrepancy bounds

Henri Faure and Christiane Lemieux

Abstract. For about fifteen years, the surprising success of quasi-Monte Carlo methods in
finance has been raising questions that challenge our understanding of these methods. At the
origin are numerical experiments performed with so-called GSobol’ and @Baguences by

J. Traub and his team at Columbia University, following the pioneering work. dee3uka

in 1993 on generalizations of Niederreitgr s)—sequences, especially with= 0 (Faure
sequences). Then in the early 2000, another breakthrough was achieved by E. Atanasso
who found clever generalizations of Halton sequences by means of permutatione tiaa
asymptotically better than Niederreiter-Xing sequences in high dimensidnfortunately,
detailed investigations of these GHalton sequences, together with nahexperiments, show

that this good asymptotic behavior is obtained at the expense of remaining terms and is not
sensitive to different choices of permutations of Atanassov. As the theisytfe reasons of

the success of GHalton, as well as GFaure, must be sought elsewhere, forarnistspecific
selections of good scramblings by means of tailor-made permutations. In thisywapeport

on our assertions above and we give some tracks to tentatively removeo th@rtnystery of

QMC success.

Keywords. 65C05, 65C10, 11K38.
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1. Introduction

This paper aims to provide some new contributions to thenth@roblem of high
dimensional integration. It is well known that the numbemoidesN required to
approximate ars-dimensional integral with accuraeyis exponential ins [17, 27].
For instance, using a cartesian product of trapezoida milees an error i (N ~¢/%),
hence needingy = 10° points ife = 1072. This phenomenon is named the “curse
of dimensionality" and for more than fifty years it has beea shibject of countless
tentatives to overcome its evil spell.

In short, these tentatives can be divided in two familieshieing still unsatisfac-
tory: (1) Monte Carlo (MC) methods seem to give a solution wittapproximation in
O(1/+/N), butitis only a probabilistic error bound still too slow af®) quasi-Monte
Carlo (QMC) methods do not have this disadvantage, but thermetistic bounds in
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O((log N)*~1/N) that they provide, although asymptotically good, requireimber
of points practically too large to be meaningful. Neveréissispecial sets of nodes used
in QMC methods, among the so-callkxv discrepancy point sets be discussed in
Section 2, give very good results in finance—far better thaniv&thods—where in-
tegration problems are often in several hundreds of dinbessisee [16], [20] and [27,
Section 2] where a very interesting “little history” of irsteyations on that dilemma at
Columbia University is given. How can we explain that? Legvaside the functional
aspect of this problem based on weighted spaces and tiggiats surveyed in [27],
we have taken in [9] and [14] another direction with the deéapgof number theoreti-
cal properties of two main families of low discrepancy setwas, namely generalized
Halton and Faure sequences. In the present study, we r@poetsurprising results of
experiments confirming that our knowledge on irregulasitié distribution of multi-
dimensional sequences is still poor in spite of remarkaddelts obtained in the last
three decades. Its main lack is that theoretical boundségine fundamental impor-
tance of permutations in the behavior of scrambled multigisional sequences. Even
for the modified Halton sequences studied by Atanassov [&]will see that good
asymptotic bounds depending on a clever choice of pernontatire in fact deceiving.

On the other hand, in one dimension there are precise st{#i&s 8] that yield
families of permutations with a tight control on the dis@aepy of the resulting scram-
bled sequences. Using such scrambled one-dimensionasaegias coordinates of
generalized Halton or generalized Faure sequences givggoed results in experi-
ments with high dimensional integrals [9, 14], as good an8skquences with well-
chosen direction numbers. Moreover, it is easy to choosehwtordinates have to be
scrambled or not in relation with the presumed importancgich coordinates for the
problem at hand. In this way, its effective dimension cowdcchecked experimentally
by comparing the results for different, more or less numgrearambled coordinates.

The paper is organized as follows. Bounds for the discrgpahklalton sequences
are recalled in Section 3, with the required background digfits given in Section 2.
Similar bounds but for the class of digitgl s)-sequences are given in Section 4, and
allow us, in Section 5, to establish comparisons betweeseteequences and Halton
sequences with respect to the asymptotic behavior of tisgrepancy bounds. In Sec-
tion 6, we focus instead on the behavior of the bounds in tmeasymptotic regime,
thus unveiling the huge gap between the behavior in thesedgimes, in particular
with respect to the prominent examplermbdified Halton sequencesgrived from the
remarkable theoretical work of Atanassov [1]. We provid&éttion 7 a discussion of
digit permutations and their effect on the discrepancy @s¢htwo regimes, and then
conclude the paper in Section 8.



Improved Halton sequences and discrepancy bounds 3

2. Definitions

2.1. Halton and Faure sequences

Halton sequences aredimensional sequences, with values in the hybercdlibe-
[0,1)%. They are obtained using one-dimensional van der Corputesees in bask
for each coordinate, but in order to have good distributicopprties, it is necessary
to choose pairwise coprime bases, the simplest choice beitadie the first primes.
So, let us first recall the definition ofiean der Corput sequende baseb, denotedsSy:
Its nth term @ > 1) is defined as

> ar(n
sp(m) = 3 ), (2.1)
r=0
wherea,(n) is ther-th digit of theb-adic expansion of

n—1= Zar(n) b".
r=0

An s-dimensionaHalton sequencfl1] X;, Xo,...in I* is defined as
Xn = (Sbl(n)7 ) Sbs (n))7 (22)

where theb;’s, for j = 1,..., s, are pairwise coprime.

A one-dimensionabeneralized van der Corput sequerd¢ is obtained first by
choosing a sequenée= (o, ),>o of permutations ofZ;, = {0, 1,...,b—1}; then, the
nth term of the sequence is defined as

Syn) =Y or(ar(n) (2.3)
r=0

pr+l

If the same permutation is used for all digits, (i.e., ib,. = o for all » > 0), then
we use the notatio§¢ to denoteS7. The van der Corput sequence in bastefined
in (2.1) is obtained by taking, = id for all » > 0, whereid stands for the identity
permutation ovey,.

A generalized Halton sequen{®] is defined by choosing sequences of permuta-
tionsX; = (oj,)r>0.j = 1,...,s, and then by defining theth pointX,, € I*® of the
seguence as

Xn = (St(n),..., S (n), n > 1, (2.4)

where theb;’s are pairwise coprime bases. In applications, tlte'seare usually cho-
sen as the first prime numbers. In this case, we denote ttiebase ap;.

Another way of enriching the van der Corput sequence is biyappa linear trans-
formation to the digitsig(n), a1(n), . . . before outputting a number between 0 and 1.
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We call this alinearly scrambledvan der Corput sequence. For a prime baséis
obtained by choosing amo x oo matrix C' = (C,;) with elements inZ;,, and then
defining thenth term of this sequence as

SE(’I”L) = Cr+17l+1al(n)b_<r+l).
r=0 (=0

A generalized Faure sequence in bas@vhereb is prime) has its:ith point X,, € I°
defined as

X, = (81,854, n>1, (2.5)

whereC; = A;P;, with P; the (upper triangular) Pascal matrix # raised to the
powerj — 1, andA; a nonsingular lower triangular matrix [24]. The originalufa
sequences from [5] amounts to take as the identity matrix. We recall these defini-
tions of (0, s)—sequences because we will point out some interesting ctansavith
generalized Halton sequences in Section 7.

2.2. Discrepancy

Irregularities of distribution of sequences are measurigd thie concept ofliscrep-
ancy. Various notions exist but, for short, here we only consttierso-calledextreme
discrepancywhich corresponds to the worst case error in the domain wipbexity
of multivariate problems. Let be given a point §&¢ = {X3,..., Xy} C I* and an
interval J of I° of the form.J = [[?_;[y;,#;), where 0< y; < z; < 1. Then the
discrepancy functionf Py on J is the difference

E(J;N)=A(J;N)—-NV(J),

whereA(J; N) =#{n;1 <n < N, X,, € J}is the number of points i, that fall
in the subinterval/, andV (/) = [[}_4(2; — y;) is the volume of/.

Let us denote by subintervals of the forn7™ = []7_,[0, z;), where 0< 2; < 1.
Then, thestar (extreme) discrepandy* and the(extreme) discrepanckp of Py are
defined by

D*(Pn) =sup;-|E(J*;N)| and D(Py) = sup;|E(J; N)|.

It is well known thatD*(Py) < D(Pn) < 2°D*(Py). For an infinite sequenc¥,
we denote byD(N, X) and D*(N, X) the discrepancies of its firgf points. Note
that several authors have aX factor when defining the above quantities.

A sequence satisfyin@*(N, X) € O((logN)#) is typically considered to be a
low-discrepancy sequendeaccording to the present knowledge on irregularities of
distribution). But the constant hidden in tli¢ notation needs to be made explicit
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to make comparisons possible across sequences. Thisé&vadhin many papers with
an inequality of the form

D*(N,X) < ¢s(logN)® + O((logN)*~1).
Implicit in that inequality is a bound of the form (for someagerNy)
D*(N, X) < ¢s(logN)* + ds(log N)*~1, forall N > N. (2.6)

Then a common approach to compare low-discrepancy sequénte assume the
second term above can be neglected and to study the behavioa®a function of,
i.e., people consider the asymptotic behavior of the sexzpiagV goes to infinity.

But in applications, the numbey¥ of sample points used is limited and seldom goes
beyond 16 or 1. On the other hand, for the second term to be neglected, weédsho
have, for example,

ds(log N)*~t < ¢y(log N)?,

which holds if and only if logV > (ds/cs), i.e., N > Ny = eds/es It means that
N might have to be huge beforg can be a meaningful way of comparing sequences,
makingcs completely useless as a quality measure for common rangegefiments
in QMC methods. Hence, itis important to take into accounttimaparative values of
¢s anddy if we want to give more realistic comparisons of low discrepasequences.
Moreover, in the Koksma-Hlawka inequality, for high dimemmsl numerical integra-
tion, dividing (2.6) by N does not help because the teflog N)*/N remains promi-
nent, regardless of how small the leading constams. Such a behavior was already
noted, especially by Morokoff and Caflisch [16] and Kocis ankitéh [12]. See also
Section 2 in the remarkable survey of Wozniakowski [27]pwgives an account of the
origin of research on tractability problems in relationiwiihe surprising performance
of QMC methods in finance.

3. Discrepancy bounds for Halton sequences

This subsection describes results that have been estdblsshce the introduction of
Halton sequences in 1960 and that deal with the discrepainggreeralized Halton
sequences. In order to avoid confusion, we will denote tigiral Halton sequences
asin (2.1) byH, the generalized Halton sequences as in (2.4y Biyand the so-called
modified Halton sequencesnstructed by Atanassov &5A (see (3.7) below). Note
that thesel{ A sequences are a special casé&éf sequences.

It was first Meijer [15] who improved a loose bound of Halton]id. inequality

NH<H

IogN +O((log N)*~1).
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Next, Faure [5, 3] further improved the bound to

D" (N. ) < [ i o N)* + O((log )" ) 31)
j=1

rewritten with another proof by Niederreiter [17, p. 29] a&tl the same:;)

[ bi—1 bi +1
D*(N, H I~ JogN + 2 . 3.2
(N, )<]Hl<2'°9bj OgN + = >+s (3.2)

Next, Faure [6] remarked that his proof in [3] extends easilyz H sequences. But
the major theoretical improvement goes back to AtanassoVhgorem 2.1], with a
completely different proof using an argument of diophamgieometry:

(bj — 1) InN - L InN
D(NH)_slel< 2Inb; kz:: k! 1:[ Inb; k)
(3.3)
whereu is 0 when all numbers; are odd, and

b; (b — 1)InN
= — ~ . 7 _ l
YT s 1) I < 2np, 0
1<i<s,i#]

if b; is the even number among them. Therefore estimate (2.63 hotd constant

1ypbi—1
sl 2Inbj '
j=1

(3.4)

Cs =

By making the constant; smaller by a factos!, it is now going to 0 ass goes to
infinity, whereas previously it was tending to infinity suygponentially! Moreover,
as for the preceding bounds, it is easy to extend this lasttresgeneralized Halton
sequence& H. Therefore, in the comparisons to be made in Sections 5 and Gse
the value ofc, given by (3.4) forG H sequences and denotei{GH).

But in the same paper, when the bases are distinct primesagdav was able to
make the constant, even smaller in two cases. In the following, we deal only with
the most interesting of these cases for applications. Wd aeagefinition before we
can state the result.

Definition. Letps,...,ps bes distinct primes. The integeﬂsl, ..., ks are called
admissiblefor them, if p; /[k and for each set of integebs, . .., bs, p; /b;, there
exists a set of integers, . . ., a, satisfying the congruences

k9T pfi=b; (modpy),  j=1,....s. (3.5)
1<i<s,i#j
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Finding sets of admissible integers is not a difficult tasé amounts to solving inte-
ger linear systems. Many choices are possible and lists hese provided, see for
instance [2] and [25].

With the help of admissible integers, Atanassov defines ladified Halton se-
quenceH A as follows: For each coordinage(l < j < s), letT; = (7;,,),>0 be the
sequence of permutations &, defined by

Tjr(z) = kjz  (modp;), >0, (3.6)

whereks, ..., ks are admissible integers for the prime numbers . ., ps. Then, the
modified Halton sequencH A associated with admissible integérs . . ., ks is the
generalized Halton sequence (as defined in (2.4)):

= (§h ST, (3.7)

P12t T ps
This special choice of permutatiofi§ leads to the best bounds found until now for
generalized Halton sequences (whéfe= szl(pj - 1):

S

. log N s
D*(N,HA) < 5 1:[ (Klogp] >) K.
l—l—ZlngjH .pi : <_1+ ﬁ(l+|ogpj)>>
=1 P =1 3.8)
Ph+1 pj | log N e
+Z ] H(BJ log p; +k>

=1

- log N

—1)' <ka |Og§}]pk_'_8_1)7

k=1

k]
The proof of this result is very long and difficult to follow.n lthe technical report
[26], we checked carefully each step of the proof and pralitiece alternative proofs
for an important intermediary result (Prop. 4.1 in [1]) whgmoof contains a little
inaccuracy in [1].

After rewriting, Atanassov took out the leading constanas in (2.6), everything

else being rejected in the complementary tediilog N)*~1) = ds(log N)*~1, thus
getting:

+
PG

pj (1+ |ngj
o Z logp H TTogp; (3.9)

4. Discrepancy bounds for(t, s) —sequences

Before proceeding with comparisons between these variouads for generalized
Halton sequences, we briefly recall the main bounds correspg to the other family
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of low discrepancy sequences, namely thes)—sequences. By doing so, we will
be able to establish further comparisons in the next sectiich hopefully will be
useful to QMC practitioners.

For (0, s)—sequences in prime base> s, in other words Faure sequences, denoted
I, we have an explicit bound deduced from [5, Section 6.4]afbiV > 1

b—1\° 1 &
D*(N,F) < sl 4.1
r) = (P57) o Lo @)
m=0
where the integen satisfieslog N +1og2)/logb — 1 < n < (log N + log2)/logb.
From this bound, we get after some calculations that thetaohs; in (2.6) for

Faure sequences is
1/b-1\°
= (=) . 4.2
Tl <2Iogb> (4.2)

The bound in (4.1) and constaaf in (4.2) remain valid for generalized Faure se-
guences as defined in (2.5). In the following sections, wethesevalue ofc, given in
(4.2) fores(GF).

For (¢, s)—sequences, e.g., Niederreiter sequences (and Sobol' reszim base
2), itis proved (see for instance [17]) that

RIS YAURY
CS_EZL%J (méz;) . (4.3)

As for Faure sequences, this constant is also valid if thedioates are scrambled
by permutations of the digits. Note that in these constounsti the basé and the
dimensions can be chosen independently from each other, but the qyaligmetet
depends o ands. Whilet € O(slogs) for the Sobol’ and Niederreiter sequences
in a given basé, ¢t € O(s) for the Niederreiter-Xing sequences studied in [18]. Note
that Kritzer [13] recently improved the constartsin (4.2) and (4.3) by a factor/2

for oddb > 3 ands > 2, and by a factor A3 for b = 2 ands > 5 (a similar result
holds for ever).

Finally, while (4.3) only gives the constani, Niederreiter also obtains explicit
upper bounds foft, s)—sequences (see, for instance, [17, Theorem 4.12]). However
since these bounds are valid for integfs> b¢, they are useless for usual ranges of
samples in high dimensional integration, therefore we dopnesent them and refer
the interested reader to [17].

5. Asymptotic comparisons

The results in this section come from computations doneJin\[€e report them for
sake of completeness and to enlighten our goal. They cotlcerconstants; in the
leading term of the upper bound (2.6). Such comparisons anatger of Number
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Theory competition, where the most tiny improvement in @clion can have a great
importance, especially if people tried for a long time togress in that direction.
But regarding our present goal of practical implementatifum MC and QMC users,
asymptotic results that require astronomical and even oluggital numbers of trials
to become relevant seem of little interest. Neverthelegsthink it is worthwhile to
present them, because it can help clarify different poihtgesv.

There are two possibilities for comparing the quantitiegiven in Sections 3 and 4:
searching for asymptotic estimatessagrows to infinity or computing; for different
values of the dimension

In the first approach, it is easier to compare the logarithmamsg Stirling formula
and results from Number Theory. We refer to our paper [9] aaxtiSn B of its online
appendix for details. The estimates are as follows, whgi® X) is the value of the
constante, given in (4.3), but in the special case of Niederreiter-Xssgjuences, for
whicht € O(s) as mentioned above:

—slog(1.5) < log(cs(GH

(¢s(GH)) < —logs+ O(1),
—slogs < log(cs(HA)
(cs(GF)

< —slogs + O(s),

)

)
—sloglogs < log(cs(GF)) < —sloglogs + O(s),
)

—slogs < log(cs(NX)) < —slogs+ O(s),

Therefore, from the point of view of asymptotic upper boyritie best sequences
are Halton-Atanassov and Niederreiter-Xing sequenceh,aviler—s log s, followed
by Faure(0, s)—sequences, with ordersloglogs and Halton sequences, with order
—logs. Hence, this shows that modified Halton sequenfdes can have bounds on
their discrepancy that are asymptotically as good as thdeieiter-Xing sequences,
which as mentioned before, are designed so that the qualignretet behaves opti-
mally as a function ok. By constrast, the value ef given in (3.1)—so what was the
best bound prior to the work of Atanassov—is such thatlog O(slogs).

As a last comment for this first approach, we note that for 8slequences, log
is bounded from above bylog logs + O(s), whatever the direction numbers are. This
fact is a firstsurprisesince Sobol’ sequences with carefully chosen directionlyann
are among the best in numerical experiments.

Next, for the second approach, we give in Table 1 the valuesfof Halton, Faure,
Niederreiter-Xing and Halton-Atanassov sequences, flwregofs ranging between
10 and 50. We have kept the values computed Wtfinstead ofD*) in [9], hence
the corrective factor 2for the leading constants in Table 1. The valuggor the
Niederreiter-Xing sequences were obtained using the daghb nT [21]. That s, for
eachs we searched for the paib, ¢) that was yielding the smallest value farin (4.3)
and we used the small improvement by Kritzer for (4.3).

These results show that for smaller valuesspthe Niederreiter-Xing sequences
have the smallest constant, but around 30, the Halton-Atanassov sequences start to
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s | Halton Faure Nied-Xing | Halton-Atan
2°cs(GH) | 2°cs(GF) | 2°cs(NX) | 2°¢cs(HA)
10 | 2.18e-01 | 2.19e-01 | 4.46e-03 | 2.82e+00
20 | 2.85e-02 | 1.72e-02 | 1.75e-08 | 1.44e-07
30 | 3.53e-03 | 3.27e-05 | 1.40e-16 | 1.91e-17
40 | 5.78e-04 | 1.20e-07 | 1.07e-24 | 6.17e-29
50 | 9.50e-05 | 1.19e-09 | 7.56e-35 | 1.34e-41

Table 1. Values of constants in the discrepancy bounds for each sequend different
dimensions.

have a better constant, hence suggesting an advantageirfdkie Halton-Atanassov
sequences inside the-5logs” order. Here is a seconsurprisesince well chosen
generalized Halton sequences and generalized Faure segu@ee Faure—Lemieux
digital scramblings in [9] and [14]) perform as well as Sdlselquences in applications
whereas Halton—Atanassov sequences as defined in [1] bghéeebadly (see [25]
and [9, Section 3 (2) and Appendix (Section H)] .

6. Comparisons in the non-asymptotic regime

While we tried to understand the different steps of the poédheorem 2.3 [1, Section
4], which asserts that inequality (2.6) holds with leadiegstant (3.9), our attention
focused on a quantity introduced in the final step, the condta= ij:l(pj —1).
This constant, which is already big (recall tat . . . , p; are distinct primes, hence at
least the firsts primes), appears in the first line of (3.8) at the poweOf course, it
is compensated in the leading term because of the divisidi dyut a bit of rewriting
shows that the terni’s, which is multiplieds times, remains in the complementary
termd,(log N)*~1 of (2.6). This causes the bound (3.8) to be overall extreragege.
This is a thirdsurprisesince nobody before paid attention to this complementary te
when comparing the merits of low discrepancy sequencethandor Halton nor for
(t, s)—sequences.

In order to have a concrete idea of the importance of the com@htary term in
comparison with the leading one, we have computed the bo{8@8sand (3.3) for
generalized Halton sequenc&4{ (with the firsts prime numbers, excluding prime
2 in (3.3)) and the bound (3.8) for modified Halton sequenédet but without the
two last lines (so as to lighten the computation) as in Ataogs paper [1, p. 31].
We report these results in Tables 2, 3, 4. As a matter of fawtesthe Koksma-
Hlawka inequality involves the rati®* (N, X') /N and since numbers occuring in the
results are very huge, we have actually computed the bouhds @V, X)/N and
¢s(logN)*/N. And finally, since the bounds d¥* (N, X')/N were still too large, we
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* 5

N | bounds | cs Iog(bdD]E]N)> cs(logN)°/N EZ(I;%(NAZ)
10* | (3.2) GH | 2.62e+00| 4.03 1.74e+01 3.10e-01
(8.3) GH | 7.09e-02 | 1.09 4.70e-01 1.59e-01
(3.8) HA | 5.04e+00| 33.07 3.34e+01 1.45e-13

10° | (3.2) GH| 2.62e+00| 2.63 5.31e+00 3.84e-01
(3.3) GH | 7.09e-02 | -0.45 1.43e-01 2.24e-01
(3.8) HA | 5.04e+00| 30.77 1.02e+01 4.41e-13

10° | (3.2) GH| 2.62e+00| 1.09 1.32e+00 4.45e-01
(38.3) GH | 7.09e-02 | -2.08 3.57e-02 2.85e-01
(3.8) HA | 5.04e+00| 28.47 2.54e+00 1.09e-12

1010 | (3.2) GH | 2.62e+00| -5.88 1.70e-03 6.05e-01
(3.3) GH | 7.09e-02 | -9.23 4.59e-05 4.68e-01
(3.8) HA | 5.04e+00| 19.28 3.26e-03 1.38e-11

Table 2. Computations of bounds (3.2), (3.3) and (3.8) in dimension 5

decided to show their logarithm. The results have been reditaltwo decimals.

To sum up, in the first column we give the valuecgfin the second one the value of
log (bound(D*(N, X)/N)), in the third one the value @f (log N)®/N and in the last
one the ratia:s(log N)*® /bound D*(N, X)). Hence, a small ratio means the comple-
mentary termi,(log N)*~tin (2.6) is largely dominating the leading tery(log N)®.

In light of these results, it is obvious that a bound in whigtbehaves extremely
well does not necessarily mean that overall the bound ighbetlamely, although
modified Halton sequencdg A have the constant;, with the best behavior, we can
see thatwheris small,c;(H A) is actually larger than, (G H ) for generalized Halton
sequences; and wheris large, the good behavior of (7 A) would require astronom-
ical values ofV in order to provide smaller discrepancy bounds. In addjticshould
be pointed out that except fa¥ H whens = 5, all the above bounds are still bigger
than 1, while from the definitions it is clear th&x* (N, X)/N < 1...These experi-
ments dramatically show that the good behaviot.af obtained at the expense @f
for H A sequences.

7. Primordial importance of permutations

A remarkable characteristic of bounds on the discrepandyaifon and(t, s)—se-
quences listed in Sections 3—-4 and compared in SectionssStHai they are valid
for their generalizations with sequences of permutatisfistever these sequences of
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* 10
N | sequence cig log <bdD]£7N)> c1o(log N)O/N m
10* | (3.2) GH | 7.72e+02| 22.34 3.39e+08 6.73e-02
(3.3) GH | 1.29e-03 | 11.09 5.66e+02 8.68e-03
(3.8) HA | 2.76e-03 | 222.53 1.21e+03 2.74e-94
10° | (3.2) GH | 7.72e+02| 21.79 3.16e+08 1.09e-01
(3.3) GH | 1.29e-03 | 10.19 5.27e+02 1.98e-02
(3.8) HA | 2.76e-03 | 220.23 1.13e+03 2.55e-93
10° | (3.2) GH | 7.72e+02| 20.97 1.96e+08 1.53e-01
(3.3) GH | 1.29e-03 | 9.12 3.27e+02 3.57e-02
(3.8) HA | 2.76e-03 | 217.93 6.98e+02 1.58e-92
10%° | (3.2) GH | 7.72e+02| 16.16 3.24e+06 3.10e-01
(3.3) GH | 1.29e-03 | 3.76 5.40e+00 1.26e-01
(3.8) HA | 2.76e-03 | 208.72 1.15e+01 2.61e-90
Table 3. Computations of bounds (3.2), (3.3) and (3.8) in dimension 1
* 50
N | sequence cso log <bdD]£7N)> cso(log N /N m
10 | (3.2) GH | 2.57e+45| 225.77 4.20e+89 3.72e-09
(3.3) GH | 2.49¢e-18 | 91.34 4.07e+26 8.73e-14
(3.8) HA | 1.19e-56 | 10521 1.95e-12 0
10° | (3.2) GH | 2.57e+45| 231.32 2.94e+93 1.02e-07
(3.3) GH | 2.49e-18 | 95.79 2.85e+30 7.17e-12
(3.8) HA | 1.19e-56 | 10519 1.36e-08 0
10° | (3.2) GH | 2.57e+45| 235.79 2.68e+96 1.06e-06
(3.3) GH | 2.49e-18 | 99.37 2.60e+33 1.82e-10
(3.8) HA | 1.19e-56 | 10517 1.24e-05 0
1010 | (3.2) GH | 2.57e+45| 247.08 3.31e+103 1.64e-04
(3.3) GH | 2.49e-18 | 108.3 3.21e+40 3.07e-07
(3.8) HA | 1.19e-56 | 10507 1.54e+02 0

Table 4. Computations of bounds (3.2), (3.3) and (3.8) in dimension 5
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permutations are, either the identity or sophisticatedsone

As we saw in Section 3, there is an exception to this, whichtleeeHalton—Ata-
nassov sequences tailored with sequences of permutatiamed from admissible
integers. But in this case, there still exists many possésl for the choice of ad-
missible integers (see our comment after (3.5)) and onci agany sequences of
permutations give the same bound. But there is more: in tfieitiien of sequences
T; of permutations in [1], recalled in (3.6), the first permigatfor each coordinate
75,0 is equal to the identityd and therefore, the first digit of each coordinate is never
scrambled whatever the admissible integers are.

However, there is no need to begin with= 0 to define the sequences of permu-
tationsT}. In [2] Atanassov and Durchova suggest, “because it istinély better",
to changer;, in (3.6) for7;,(z) = k:;-"”a: + bj,» (modp;) with » > 0 and with ar-
bitrary integers; . which, moreover, does not change the bound (3.8). The prfoof o
that assertion, outlined in [2], can be extended to pernust; . (z) = k;+aj:r+b]—¢
(mod p;) with arbitrary integers,; and even in a more general setting involving ma-
trices, as discussed in [10].

Our implementations of Halton—Atanassov sequences, nakiedh [9], using
powerr + 1 (instead ofr) perform well in various experiments and are compara-
ble to our own scrambled Halton sequences, named FL in [Ofndelves comparable
to GSobol' and GFaure sequences as shown in [14]. But on theary, Halton—
Atanassov sequences are hardly distinguishable fromnatigiialton sequences H
when using power. This fact has already been noted by Vandewoestyne and Cools
[25] and is quite prominent in examples shown in Figures 1 amcere “HApowr"
stands forl A sequences with powerin (3.6). With such examples, we hope it is
now clear for the reader that using the identity for the fiigttanly is the cause of a
dramatic damage.

The same situation prevails for implementations of GFaeepiences. That is,
generalized Faure sequences whose first digit is not pednaaenot perform much
better than the original Faure sequences. This is illledirah Figures 2 and 3, where
GF is obtained from the first construction in [14, Section A4yl &GFunperm is the
version of GF where the first digit of each coordinate is notrpged, while F is the
original Faure sequence.

All these observations confirm the primordial importancp@&imutations in the use
of low discrepancy sequences for QMC methods, in spite ofltkery of irregular-
ities of distribution which, until now, provides only uppleounds that are unable to
discriminate the identity among other permutations. THg erception isdimension
onefor which several theoretical and practical results exisingng the gap between
the identity and well chosen permutations. To end this sective give below a short
excerpt of these results (from [4] and [8]) to further emjbeshe crucial role of per-
mutations for readers of the MCM community.

We only consider sequencé§ := S from (2.3) wheres, = o for all » > 0 and
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0 1 0 1

Figure 1. 1000 first points of HApowr (left) and H (right), dimension8 &nd 40

we give results forD only because they are easier to state, but analog formudas al
exist for D*. For such sequences, there exists effectively computaiistantsay,
which here depend on the permutatiprsuch that for allv > 1

ap D(N,S7)  of

log N 7+ 2 d | = .
logb 09N +ap < an A Sup log N logb

D(N,Sy) < (7.1)

It is important to point out that these formulas directlygyivoth the asymptotic and
the non-asymptotic regimes.

For largeb, computingaj is a difficult task, but it has a good approximation by

. _ -1
means of another quantity which is easy to computeZget (0(130)7... 7U(bb )
, B h : .
and definedy := max max |E| |-, |;k;Z; ||, the so-calledliscrete dis-
1<k<b O<h/<h<b b’ b

crepancyof the two-dimensional nef (42, Z7 (k)) ;1 < k < b}). Thendy — 1 <
ay < dj.
First of all, we recall formulas for the original van der Cut[sequencesgd: for
b=2,dil = 1/2 andai! = 1/3. Then for oddh > 3 (analogs exist for eveh)
g b—1 b-1 a b—1
d —T‘FW and Oéb—T.
For instance, with the least prime base larger or equal tg @@0obtaindys, =
33672/367~ 9175 andai, = 366/4 = 915.
Let us now introduce a new definition, which we restrict to angr baseb for
simplicity: alinear digit scramblingis a permutationr of the setZ, of the form
m(k) = fk+ ¢ (modb), wheref # 0 andg are given inZ,. If ¢ = 0, we obtain
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0

Figure 2. 1000 first points of GFunperm (left) and F (right), dimensi@&9® and 40

the so-callednultipliers f of our preceding papers [9], [14]. The additive facias

a translation usually calledigital shift In base 367, with one of the best multipliers,
f = 97, we get £ is identified tof) d3, = 1088/367 ~ 2.96 while di}, ~ 9175,
more than 30 times bigger!

Among all prime bases up o= 1301, the best leading constant in (7.1), that is
a7 /logb, is obtained with base 233 witkf3,/ log 233~ 0.44. Among the 212 prime
numbers we have considered, few such constants are atis®enfainly for smalb.
Recall thatod! = 1/3 anded = 1/2 so thatw!/ log 2 ~ 0.48 anda!/ log 3 ~ 0.45.
Good multipliers in any base often give bounds close to tlegset values, whereas
without scrambling, we would have/ / logbh = (b — 1) /4 logb, a quantity increasing
to infinity with o.

8. Conclusion

In this paper we have reviewed discrepancy bounds for Halemuences and their
generalizations. We have provided numerical evidence dstretting that the im-
plied constant in these bounds—while being a useful toola&ercomparisons in the
asymptotic regime—could dramatically misrepresent thieal®r of the bounds in
the non-asymptotic regime. We also discussed the primlandortance of permuta-
tions, whose effect on the quality of a sequence is well wtded theoretically in one
dimension, but less so in higher dimensions.

In view of all this, we are seemlingly left with no good answerthe question:
how should one choose permutations and/or scrambling pesitio construct “good”
generalized Halton or Faure sequencedfi one hand, as we have seen in the previous
sections, there is a huge gap between what appears to be semoehce depending
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H
““““ HA
¢ = = = HApowr
\ - =F
o —#— GF
\ ¢ GFunperm
10°

abs. error
=
o

N=number of points x10*

Figure 3. Absolute error for digital option problem (see [14] for matetails) with
s = 75: H and HApowr are indistinguishable

on whether we consider the asymptotic or non-asymptoticmegon the other hand,
tight theoretical results are only known for one-dimenai®equences. In an attempt
to best take into account these two realities, the approachdepted in the two recent
papers [9, 14] is to make use of the better knowledge for ameuksional sequences
as a primary criterion for building sequences, while alsaking at the discrepancy
of low-dimensional projections in the non-asymptotic negias a secondary criterion.
This approach automatically avoids using the identity tomee the first digit, because
as we just saw the identity yields a large discrepancy in omegsion. In the case
of GF sequences though, not only the identity should be adyiut also using the
same permutations for different coordinates should bedaebas much as possible, as
this causes the corresponding projections to be almostimne ss if the identity had
been used on each of them. We are working to overcome suatuttitiis with the use
of larger bases, around 2instead of the least prime base greater thakie plan to
report on this later in another paper.

To conclude the present study, we want to emphasize thaté®y people do, we
think the superiority of QMC methods over MC for high dimensibimtegration, as
in finance, comes from the fact that these problems involg @ameasonable set of
“nevralgic" coordinates. Finding such sets (even rougbbgld be helpful to remove
a part of the mystery evoqued by Wozniakowski in his pap@&t {2 the end of Sec-
tions 3, 4 and, last but not least, 10. The remarks on efieclimension given in the
introduction suggest directions for future research. Wepursue our efforts in these
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directions in the near future.

Finally, recall that the great open conjecture in irregtikes of distribution, i.e.,
the exact order for the extreme discrepancy-aimensional sequences (g N )*,
already starts with dimension= 2. Hence it is quite hopeless to wait for theoretical
results able to distinguish between permutations in dimoesgreater than one and so
empirical studies like [9] and [14] currently seem the onywtio improve scramblings
of quasi-random sequences.
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