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Improved Halton sequences and discrepancy bounds

Henri Faure and Christiane Lemieux

Abstract. For about fifteen years, the surprising success of quasi-Monte Carlo methods in
finance has been raising questions that challenge our understanding of these methods. At the
origin are numerical experiments performed with so-called GSobol’ and GFaure sequences by
J. Traub and his team at Columbia University, following the pioneering work of S. Tezuka
in 1993 on generalizations of Niederreiter(t, s)−sequences, especially witht = 0 (Faure
sequences). Then in the early 2000, another breakthrough was achieved by E. Atanassov,
who found clever generalizations of Halton sequences by means of permutations that are even
asymptotically better than Niederreiter-Xing sequences in high dimensions.Unfortunately,
detailed investigations of these GHalton sequences, together with numerical experiments, show
that this good asymptotic behavior is obtained at the expense of remaining terms and is not
sensitive to different choices of permutations of Atanassov. As the theory fails, the reasons of
the success of GHalton, as well as GFaure, must be sought elsewhere, for instance in specific
selections of good scramblings by means of tailor-made permutations. In this paper,we report
on our assertions above and we give some tracks to tentatively remove a partof the mystery of
QMC success.
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1. Introduction

This paper aims to provide some new contributions to the thorny problem of high
dimensional integration. It is well known that the number ofnodesN required to
approximate ans-dimensional integral with accuracyε is exponential ins [17, 27].
For instance, using a cartesian product of trapezoidal rules gives an error inO(N−ε/s),
hence needingN = 10s points if ε = 10−2. This phenomenon is named the “curse
of dimensionality" and for more than fifty years it has been the subject of countless
tentatives to overcome its evil spell.

In short, these tentatives can be divided in two families, both being still unsatisfac-
tory: (1) Monte Carlo (MC) methods seem to give a solution with an approximation in
O(1/

√
N), but it is only a probabilistic error bound still too slow and(2) quasi-Monte

Carlo (QMC) methods do not have this disadvantage, but the deterministic bounds in
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O((logN)s−1/N) that they provide, although asymptotically good, require anumber
of points practically too large to be meaningful. Nevertheless special sets of nodes used
in QMC methods, among the so-calledlow discrepancy point setsto be discussed in
Section 2, give very good results in finance—far better than MCmethods—where in-
tegration problems are often in several hundreds of dimensions, see [16], [20] and [27,
Section 2] where a very interesting “little history" of investigations on that dilemma at
Columbia University is given. How can we explain that? Leaving aside the functional
aspect of this problem based on weighted spaces and tractability, as surveyed in [27],
we have taken in [9] and [14] another direction with the deepening of number theoreti-
cal properties of two main families of low discrepancy sequences, namely generalized
Halton and Faure sequences. In the present study, we report some surprising results of
experiments confirming that our knowledge on irregularities of distribution of multi-
dimensional sequences is still poor in spite of remarkable results obtained in the last
three decades. Its main lack is that theoretical bounds ignore the fundamental impor-
tance of permutations in the behavior of scrambled multidimensional sequences. Even
for the modified Halton sequences studied by Atanassov [1], we will see that good
asymptotic bounds depending on a clever choice of permutations are in fact deceiving.

On the other hand, in one dimension there are precise studies[4, 7, 8] that yield
families of permutations with a tight control on the discrepancy of the resulting scram-
bled sequences. Using such scrambled one-dimensional sequences as coordinates of
generalized Halton or generalized Faure sequences gives very good results in experi-
ments with high dimensional integrals [9, 14], as good as Sobol’ sequences with well-
chosen direction numbers. Moreover, it is easy to choose which coordinates have to be
scrambled or not in relation with the presumed importance ofsuch coordinates for the
problem at hand. In this way, its effective dimension could be checked experimentally
by comparing the results for different, more or less numerous, scrambled coordinates.

The paper is organized as follows. Bounds for the discrepancy of Halton sequences
are recalled in Section 3, with the required background definitions given in Section 2.
Similar bounds but for the class of digital(t, s)-sequences are given in Section 4, and
allow us, in Section 5, to establish comparisons between these sequences and Halton
sequences with respect to the asymptotic behavior of their discrepancy bounds. In Sec-
tion 6, we focus instead on the behavior of the bounds in the non-asymptotic regime,
thus unveiling the huge gap between the behavior in these tworegimes, in particular
with respect to the prominent example ofmodified Halton sequencesderived from the
remarkable theoretical work of Atanassov [1]. We provide inSection 7 a discussion of
digit permutations and their effect on the discrepancy in these two regimes, and then
conclude the paper in Section 8.
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2. Definitions

2.1. Halton and Faure sequences

Halton sequences ares-dimensional sequences, with values in the hybercubeIs =
[0, 1)s. They are obtained using one-dimensional van der Corput sequences in baseb
for each coordinate, but in order to have good distribution properties, it is necessary
to choose pairwise coprime bases, the simplest choice beingto take the firsts primes.
So, let us first recall the definition of avan der Corput sequencein baseb, denotedSb:
Its nth term (n ≥ 1) is defined as

Sb(n) =
∞
∑

r=0

ar(n)

br+1 , (2.1)

wherear(n) is ther-th digit of theb-adic expansion of

n − 1 =

∞
∑

r=0

ar(n) br.

An s-dimensionalHalton sequence[11] X1, X2, . . . in Is is defined as

Xn = (Sb1(n), . . . , Sbs
(n)), (2.2)

where thebj ’s, for j = 1, . . . , s, are pairwise coprime.
A one-dimensionalgeneralized van der Corput sequence[4] is obtained first by

choosing a sequenceΣ = (σr)r≥0 of permutations ofZb = {0, 1, . . . , b−1}; then, the
nth term of the sequence is defined as

SΣ
b (n) =

∞
∑

r=0

σr

(

ar(n)
)

br+1 . (2.3)

If the same permutationσ is used for all digits, (i.e., ifσr = σ for all r ≥ 0), then
we use the notationSσ

b to denoteSΣ
b . The van der Corput sequence in baseb defined

in (2.1) is obtained by takingσr = id for all r ≥ 0, whereid stands for the identity
permutation overZb.

A generalized Halton sequence[6] is defined by choosings sequences of permuta-
tionsΣj = (σj,r)r≥0, j = 1, . . . , s, and then by defining thenth pointXn ∈ Is of the
sequence as

Xn = (SΣ1
b1

(n), . . . , SΣs

bs
(n)), n ≥ 1, (2.4)

where thebj ’s are pairwise coprime bases. In applications, thesebj ’s are usually cho-
sen as the firsts prime numbers. In this case, we denote thejth base aspj .

Another way of enriching the van der Corput sequence is by applying a linear trans-
formation to the digitsa0(n), a1(n), . . . before outputting a number between 0 and 1.
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We call this alinearly scrambledvan der Corput sequence. For a prime baseb, it is
obtained by choosing an∞ × ∞ matrix C = (Cr,l) with elements inZb, and then
defining thenth term of this sequence as

SC
b (n) =

∞
∑

r=0

∞
∑

l=0

Cr+1,l+1al(n)b−(r+1).

A generalized Faure sequence in baseb (whereb is prime) has itsnth pointXn ∈ Is

defined as

Xn = (SC1
b , . . . , SCs

b ), n ≥ 1, (2.5)

whereCj = AjPj , with Pj the (upper triangular) Pascal matrix inZb raised to the
powerj − 1, andAj a nonsingular lower triangular matrix [24]. The original Faure
sequences from [5] amounts to takeAj as the identity matrix. We recall these defini-
tions of(0, s)−sequences because we will point out some interesting connections with
generalized Halton sequences in Section 7.

2.2. Discrepancy

Irregularities of distribution of sequences are measured with the concept ofdiscrep-
ancy. Various notions exist but, for short, here we only considerthe so-calledextreme
discrepancy, which corresponds to the worst case error in the domain of complexity
of multivariate problems. Let be given a point setPN = {X1, . . . , XN} ⊆ Is and an
intervalJ of Is of the formJ =

∏s
j=1[yj , zj), where 0≤ yj < zj ≤ 1. Then the

discrepancy functionof PN onJ is the difference

E(J ; N) = A(J ; N) − NV (J),

whereA(J ; N) = #{n; 1 ≤ n ≤ N, Xn ∈ J} is the number of points inPN that fall
in the subintervalJ , andV (J) =

∏s
j=1(zj − yj) is the volume ofJ .

Let us denote byJ∗ subintervals of the formJ∗ =
∏s

j=1[0, zj), where 0≤ zj ≤ 1.
Then, thestar (extreme) discrepancyD∗ and the(extreme) discrepancyD of PN are
defined by

D∗(PN ) = supJ∗ |E(J∗; N)| and D(PN ) = supJ |E(J ; N)|.

It is well known thatD∗(PN ) ≤ D(PN ) ≤ 2sD∗(PN ). For an infinite sequenceX,
we denote byD(N, X) andD∗(N, X) the discrepancies of its firstN points. Note
that several authors have a 1/N factor when defining the above quantities.

A sequence satisfyingD∗(N, X) ∈ O((logN)s) is typically considered to be a
low-discrepancy sequence(according to the present knowledge on irregularities of
distribution). But the constant hidden in theO notation needs to be made explicit
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to make comparisons possible across sequences. This is achieved in many papers with
an inequality of the form

D∗(N, X) ≤ cs(logN)s + O((logN)s−1).

Implicit in that inequality is a bound of the form (for some integerN0)

D∗(N, X) ≤ cs(logN)s + ds(logN)s−1, for all N ≥ N0. (2.6)

Then a common approach to compare low-discrepancy sequences is to assume the
second term above can be neglected and to study the behavior of cs as a function ofs,
i.e., people consider the asymptotic behavior of the sequence asN goes to infinity.

But in applications, the numberN of sample points used is limited and seldom goes
beyond 105 or 106. On the other hand, for the second term to be neglected, we should
have, for example,

ds(logN)s−1 ≤ cs(logN)s,

which holds if and only if logN > (ds/cs), i.e., N ≥ N1 ≡ eds/cs . It means that
N might have to be huge beforecs can be a meaningful way of comparing sequences,
makingcs completely useless as a quality measure for common ranges ofexperiments
in QMC methods. Hence, it is important to take into account thecomparative values of
cs andds if we want to give more realistic comparisons of low discrepancy sequences.
Moreover, in the Koksma-Hlawka inequality, for high dimensional numerical integra-
tion, dividing (2.6) byN does not help because the term(logN)s/N remains promi-
nent, regardless of how small the leading constantcs is. Such a behavior was already
noted, especially by Morokoff and Caflisch [16] and Kocis and Whiten [12]. See also
Section 2 in the remarkable survey of Woźniakowski [27], who gives an account of the
origin of research on tractability problems in relation with the surprising performance
of QMC methods in finance.

3. Discrepancy bounds for Halton sequences

This subsection describes results that have been established since the introduction of
Halton sequences in 1960 and that deal with the discrepancy of generalized Halton
sequences. In order to avoid confusion, we will denote the original Halton sequences
as in (2.1) byH, the generalized Halton sequences as in (2.4) byGH and the so-called
modified Halton sequencesconstructed by Atanassov asHA (see (3.7) below). Note
that theseHA sequences are a special case ofGH sequences.

It was first Meijer [15] who improved a loose bound of Halton [11] to inequality

D∗(N, H) ≤
s
∏

j=1

bj − 1
ln bj

(logN)s + O((logN)s−1).
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Next, Faure [5, 3] further improved the bound to

D∗(N, H) ≤
s
∏

j=1

bj − 1
2 lnbj

(logN)s + O((logN)s−1), (3.1)

rewritten with another proof by Niederreiter [17, p. 29] as (with the samecs)

D∗(N, H) <
s
∏

j=1

(

bj − 1
2 logbj

logN +
bj + 1

2

)

+ s. (3.2)

Next, Faure [6] remarked that his proof in [3] extends easilyto GH sequences. But
the major theoretical improvement goes back to Atanassov [1, Theorem 2.1], with a
completely different proof using an argument of diophantine geometry:

D∗(N, H) ≤ 1
s!

s
∏

j=1

(

(bj − 1) ln N

2 lnbj
+ s

)

+

s−1
∑

k=0

bk+1

k!

k
∏

j=1

(⌊

bj

2

⌋

ln N

ln bj
+ k

)

+ u,

(3.3)
whereu is 0 when all numbersbj are odd, and

u =
bj

2(s − 1)!

∏

1≤i≤s,i 6=j

(

(bi − 1) ln N

2 lnbi
+ s − 1

)

if bj is the even number among them. Therefore estimate (2.6) holds with constant

cs =
1
s!

s
∏

j=1

bj − 1
2 lnbj

. (3.4)

By making the constantcs smaller by a factors!, it is now going to 0 ass goes to
infinity, whereas previously it was tending to infinity super-exponentially! Moreover,
as for the preceding bounds, it is easy to extend this last result to generalized Halton
sequencesGH. Therefore, in the comparisons to be made in Sections 5 and 6,we use
the value ofcs given by (3.4) forGH sequences and denote itcs(GH).

But in the same paper, when the bases are distinct primes, Atanassov was able to
make the constantcs even smaller in two cases. In the following, we deal only with
the most interesting of these cases for applications. We need a definition before we
can state the result.

Definition. Let p1, . . . , ps bes distinct primes. The integersk1, . . . , ks are called
admissiblefor them, if pj 6 |kj and for each set of integersb1, . . . , bs, pj 6 |bj , there
exists a set of integersα1, . . . , αs, satisfying the congruences

k
αj

j

∏

1≤i≤s,i 6=j

pαi

i ≡ bj (mod pj), j = 1, . . . , s. (3.5)
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Finding sets of admissible integers is not a difficult task and amounts to solving inte-
ger linear systems. Many choices are possible and lists have been provided, see for
instance [2] and [25].

With the help of admissible integers, Atanassov defines his modified Halton se-
quenceHA as follows: For each coordinatej (1 ≤ j ≤ s), let Tj = (τj,r)r≥0 be the
sequence of permutations ofZpj

defined by

τj,r(x) = kr
jx (mod pj), r ≥ 0, (3.6)

wherek1, . . . , ks are admissible integers for the prime numbersp1, . . . , ps. Then, the
modified Halton sequenceHA associated with admissible integersk1, . . . , ks is the
generalized Halton sequence (as defined in (2.4)):

HA = (ST1
p1

, . . . , STs
ps

). (3.7)

This special choice of permutationsTj leads to the best bounds found until now for
generalized Halton sequences (whereK =

∏s
j=1(pj − 1)):

D∗(N, HA) ≤





1
s!

s
∏

j=1

(

logN

K logpj
+ s

)



 · Ks·


1 +

s
∑

j=1

logpj

s
∏

j=1

pj

pj − 1



−1 +

s
∏

j=1

(1 + logpj)









+

s−1
∑

k=0

pk+1

k!

k
∏

j=1

(⌊

pj

2

⌋

logN

logpj
+ k

)

+
s
∑

j=1

1
(s − 1)!

s
∏

k=1
k 6=j

(

pk

2
logN

logpk
+ s − 1

)

,

(3.8)

The proof of this result is very long and difficult to follow. In the technical report
[26], we checked carefully each step of the proof and provided three alternative proofs
for an important intermediary result (Prop. 4.1 in [1]) whose proof contains a little
inaccuracy in [1].

After rewriting, Atanassov took out the leading constantcs as in (2.6), everything
else being rejected in the complementary termO((logN)s−1) = ds(logN)s−1, thus
getting:

cs(HA) =
1
s!

s
∑

j=1

logpj

s
∏

j=1

pj(1 + logpj)

(pj − 1) logpj
. (3.9)

4. Discrepancy bounds for(t, s)−sequences

Before proceeding with comparisons between these various bounds for generalized
Halton sequences, we briefly recall the main bounds corresponding to the other family
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of low discrepancy sequences, namely the(t, s)−sequences. By doing so, we will
be able to establish further comparisons in the next section, which hopefully will be
useful to QMC practitioners.

For(0, s)−sequences in prime baseb ≥ s, in other words Faure sequences, denoted
F , we have an explicit bound deduced from [5, Section 6.4]: forall N ≥ 1

D∗(N, F ) ≤
(

b − 1
2

)s 1
(s − 1)!

n
∑

m=0

(m + s)s−1, (4.1)

where the integern satisfies(logN + log 2)/ logb − 1 ≤ n ≤ (logN + log 2)/ logb.
From this bound, we get after some calculations that the constant cs in (2.6) for

Faure sequences is

cs =
1
s!

(

b − 1
2 logb

)s

. (4.2)

The bound in (4.1) and constantcs in (4.2) remain valid for generalized Faure se-
quences as defined in (2.5). In the following sections, we usethat value ofcs given in
(4.2) forcs(GF ).

For (t, s)−sequences, e.g., Niederreiter sequences (and Sobol’ sequences in base
2), it is proved (see for instance [17]) that

cs =
bt

s!
b − 1

2⌊ b
2⌋

(

⌊ b
2⌋

logb

)s

. (4.3)

As for Faure sequences, this constant is also valid if the coordinates are scrambled
by permutations of the digits. Note that in these constructions, the baseb and the
dimensions can be chosen independently from each other, but the qualityparametert
depends onb ands. While t ∈ O(s logs) for the Sobol’ and Niederreiter sequences
in a given baseb, t ∈ O(s) for the Niederreiter-Xing sequences studied in [18]. Note
that Kritzer [13] recently improved the constantscs in (4.2) and (4.3) by a factor 1/2
for odd b ≥ 3 ands ≥ 2, and by a factor 1/3 for b = 2 ands ≥ 5 (a similar result
holds for evenb).

Finally, while (4.3) only gives the constantcs, Niederreiter also obtains explicit
upper bounds for(t, s)−sequences (see, for instance, [17, Theorem 4.12]). However,
since these bounds are valid for integersN ≥ bt, they are useless for usual ranges of
samples in high dimensional integration, therefore we do not present them and refer
the interested reader to [17].

5. Asymptotic comparisons

The results in this section come from computations done in [9]. We report them for
sake of completeness and to enlighten our goal. They concernthe constantscs in the
leading term of the upper bound (2.6). Such comparisons are amatter of Number
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Theory competition, where the most tiny improvement in a direction can have a great
importance, especially if people tried for a long time to progress in that direction.
But regarding our present goal of practical implementations for MC and QMC users,
asymptotic results that require astronomical and even cosmological numbers of trials
to become relevant seem of little interest. Nevertheless, we think it is worthwhile to
present them, because it can help clarify different points of view.

There are two possibilities for comparing the quantitiescs given in Sections 3 and 4:
searching for asymptotic estimates ass grows to infinity or computingcs for different
values of the dimensions.

In the first approach, it is easier to compare the logarithms,using Stirling formula
and results from Number Theory. We refer to our paper [9] and Section B of its online
appendix for details. The estimates are as follows, wherecs(NX) is the value of the
constantcs given in (4.3), but in the special case of Niederreiter-Xingsequences, for
which t ∈ O(s) as mentioned above:

−s log(1.5) < log(cs(GH)) < − logs + O(1),

−s logs < log(cs(HA)) < −s logs + O(s),

−s log logs < log(cs(GF )) < −s log logs + O(s),

−s logs < log(cs(NX)) < −s logs + O(s),

Therefore, from the point of view of asymptotic upper bounds, the best sequences
are Halton-Atanassov and Niederreiter-Xing sequences, with order−s logs, followed
by Faure(0, s)−sequences, with order−s log logs and Halton sequences, with order
− logs. Hence, this shows that modified Halton sequencesHA can have bounds on
their discrepancy that are asymptotically as good as the Niederreiter-Xing sequences,
which as mentioned before, are designed so that the quality parametert behaves opti-
mally as a function ofs. By constrast, the value ofcs given in (3.1)—so what was the
best bound prior to the work of Atanassov—is such that logcs ∈ O(s logs).

As a last comment for this first approach, we note that for Sobol’ sequences, logcs

is bounded from above bys log logs+O(s), whatever the direction numbers are. This
fact is a firstsurprisesince Sobol’ sequences with carefully chosen direction numbers
are among the best in numerical experiments.

Next, for the second approach, we give in Table 1 the values ofcs for Halton, Faure,
Niederreiter-Xing and Halton-Atanassov sequences, for values ofs ranging between
10 and 50. We have kept the values computed withD (instead ofD∗) in [9], hence
the corrective factor 2s for the leading constants in Table 1. The valuests for the
Niederreiter-Xing sequences were obtained using the databaseMinT [21]. That is, for
eachs we searched for the pair(b, t) that was yielding the smallest value forcs in (4.3)
and we used the small improvement by Kritzer for (4.3).

These results show that for smaller values ofs, the Niederreiter-Xing sequences
have the smallest constant, but arounds = 30, the Halton-Atanassov sequences start to
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s Halton Faure Nied-Xing Halton-Atan

2scs(GH) 2scs(GF ) 2scs(NX) 2scs(HA)

10 2.18e-01 2.19e-01 4.46e-03 2.82e+00

20 2.85e-02 1.72e-02 1.75e-08 1.44e-07

30 3.53e-03 3.27e-05 1.40e-16 1.91e-17

40 5.78e-04 1.20e-07 1.07e-24 6.17e-29

50 9.50e-05 1.19e-09 7.56e-35 1.34e-41

Table 1. Values of constants in the discrepancy bounds for each sequence and different
dimensionss.

have a better constant, hence suggesting an advantage in favor of the Halton-Atanassov
sequences inside the “−s logs” order. Here is a secondsurprisesince well chosen
generalized Halton sequences and generalized Faure sequences (see Faure–Lemieux
digital scramblings in [9] and [14]) perform as well as Sobol’ sequences in applications
whereas Halton–Atanassov sequences as defined in [1] behavequite badly (see [25]
and [9, Section 3 (2) and Appendix (Section H)] .

6. Comparisons in the non-asymptotic regime

While we tried to understand the different steps of the proofof Theorem 2.3 [1, Section
4], which asserts that inequality (2.6) holds with leading constant (3.9), our attention
focused on a quantity introduced in the final step, the constant K =

∏s
j=1(pj − 1).

This constant, which is already big (recall thatp1, . . . , ps are distinct primes, hence at
least the firsts primes), appears in the first line of (3.8) at the powers. Of course, it
is compensated in the leading term because of the division byK, but a bit of rewriting
shows that the termKs, which is multiplieds times, remains in the complementary
termds(logN)s−1 of (2.6). This causes the bound (3.8) to be overall extremelylarge.
This is a thirdsurprisesince nobody before paid attention to this complementary term
when comparing the merits of low discrepancy sequences, neither for Halton nor for
(t, s)−sequences.

In order to have a concrete idea of the importance of the complementary term in
comparison with the leading one, we have computed the bounds(3.2) and (3.3) for
generalized Halton sequencesGH (with the firsts prime numbers, excluding prime
2 in (3.3)) and the bound (3.8) for modified Halton sequencesHA, but without the
two last lines (so as to lighten the computation) as in Atanassov’s paper [1, p. 31].
We report these results in Tables 2, 3, 4. As a matter of fact, since the Koksma-
Hlawka inequality involves the ratioD∗(N, X)/N and since numbers occuring in the
results are very huge, we have actually computed the bounds of D∗(N, X)/N and
cs(logN)s/N . And finally, since the bounds ofD∗(N, X)/N were still too large, we
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N bounds c5 log

(

bd
D∗(N)

N

)

c5(logN)5/N
c5(logN)5

bdD∗(N)

104 (3.2) GH 2.62e+00 4.03 1.74e+01 3.10e-01

(3.3) GH 7.09e-02 1.09 4.70e-01 1.59e-01

(3.8) HA 5.04e+00 33.07 3.34e+01 1.45e-13

105 (3.2) GH 2.62e+00 2.63 5.31e+00 3.84e-01

(3.3) GH 7.09e-02 -0.45 1.43e-01 2.24e-01

(3.8) HA 5.04e+00 30.77 1.02e+01 4.41e-13

106 (3.2) GH 2.62e+00 1.09 1.32e+00 4.45e-01

(3.3) GH 7.09e-02 -2.08 3.57e-02 2.85e-01

(3.8) HA 5.04e+00 28.47 2.54e+00 1.09e-12

1010 (3.2) GH 2.62e+00 -5.88 1.70e-03 6.05e-01

(3.3) GH 7.09e-02 -9.23 4.59e-05 4.68e-01

(3.8) HA 5.04e+00 19.28 3.26e-03 1.38e-11

Table 2. Computations of bounds (3.2), (3.3) and (3.8) in dimension 5.

decided to show their logarithm. The results have been rounded to two decimals.
To sum up, in the first column we give the value ofcs, in the second one the value of

log(bound(D∗(N, X)/N)), in the third one the value ofcs(logN)s/N and in the last
one the ratiocs(logN)s/bound(D∗(N, X)). Hence, a small ratio means the comple-
mentary termds(logN)s−1 in (2.6) is largely dominating the leading termcs(logN)s.

In light of these results, it is obvious that a bound in whichcs behaves extremely
well does not necessarily mean that overall the bound is better. Namely, although
modified Halton sequencesHA have the constantcs with the best behavior, we can
see that whens is small,cs(HA) is actually larger thancs(GH) for generalized Halton
sequences; and whens is large, the good behavior ofcs(HA) would require astronom-
ical values ofN in order to provide smaller discrepancy bounds. In addition, it should
be pointed out that except forGH whens = 5, all the above bounds are still bigger
than 1, while from the definitions it is clear thatD∗(N, X)/N ≤ 1 . . . These experi-
ments dramatically show that the good behavior ofcs is obtained at the expense ofds

for HA sequences.

7. Primordial importance of permutations

A remarkable characteristic of bounds on the discrepancy ofHalton and(t, s)−se-
quences listed in Sections 3–4 and compared in Sections 5–6 is that they are valid
for their generalizations with sequences of permutations,whatever these sequences of
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N sequence c10 log

(

bd
D∗(N)

N

)

c10(logN)10/N
c10(logN)10

bdD∗(N)

104 (3.2) GH 7.72e+02 22.34 3.39e+08 6.73e-02

(3.3) GH 1.29e-03 11.09 5.66e+02 8.68e-03

(3.8) HA 2.76e-03 222.53 1.21e+03 2.74e-94

105 (3.2) GH 7.72e+02 21.79 3.16e+08 1.09e-01

(3.3) GH 1.29e-03 10.19 5.27e+02 1.98e-02

(3.8) HA 2.76e-03 220.23 1.13e+03 2.55e-93

106 (3.2) GH 7.72e+02 20.97 1.96e+08 1.53e-01

(3.3) GH 1.29e-03 9.12 3.27e+02 3.57e-02

(3.8) HA 2.76e-03 217.93 6.98e+02 1.58e-92

1010 (3.2) GH 7.72e+02 16.16 3.24e+06 3.10e-01

(3.3) GH 1.29e-03 3.76 5.40e+00 1.26e-01

(3.8) HA 2.76e-03 208.72 1.15e+01 2.61e-90

Table 3. Computations of bounds (3.2), (3.3) and (3.8) in dimension 10.

N sequence c50 log

(

bd
D∗(N)

N

)

c50(logN)50/N
c50(logN)50

bdD∗(N)

104 (3.2) GH 2.57e+45 225.77 4.20e+89 3.72e-09

(3.3) GH 2.49e-18 91.34 4.07e+26 8.73e-14

(3.8) HA 1.19e-56 10521 1.95e-12 0

105 (3.2) GH 2.57e+45 231.32 2.94e+93 1.02e-07

(3.3) GH 2.49e-18 95.79 2.85e+30 7.17e-12

(3.8) HA 1.19e-56 10519 1.36e-08 0

106 (3.2) GH 2.57e+45 235.79 2.68e+96 1.06e-06

(3.3) GH 2.49e-18 99.37 2.60e+33 1.82e-10

(3.8) HA 1.19e-56 10517 1.24e-05 0

1010 (3.2) GH 2.57e+45 247.08 3.31e+103 1.64e-04

(3.3) GH 2.49e-18 108.3 3.21e+40 3.07e-07

(3.8) HA 1.19e-56 10507 1.54e+02 0

Table 4. Computations of bounds (3.2), (3.3) and (3.8) in dimension 50.
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permutations are, either the identity or sophisticated ones.
As we saw in Section 3, there is an exception to this, which arethe Halton–Ata-

nassov sequences tailored with sequences of permutations obtained from admissible
integers. But in this case, there still exists many possibilities for the choice of ad-
missible integers (see our comment after (3.5)) and once again many sequences of
permutations give the same bound. But there is more: in the definition of sequences
Tj of permutations in [1], recalled in (3.6), the first permutation for each coordinate
τj,0 is equal to the identityid and therefore, the first digit of each coordinate is never
scrambled whatever the admissible integers are.

However, there is no need to begin withr = 0 to define the sequences of permu-
tationsTj . In [2] Atanassov and Durchova suggest, “because it is intuitively better",
to changeτj,r in (3.6) for τj,r(x) = kr+1

j x + bj,r (mod pj) with r ≥ 0 and with ar-
bitrary integersbj,r which, moreover, does not change the bound (3.8). The proof of
that assertion, outlined in [2], can be extended to permutationsτj,r(x) = k

r+aj

j x+bj,r

(mod pj) with arbitrary integersaj and even in a more general setting involving ma-
trices, as discussed in [10].

Our implementations of Halton–Atanassov sequences, namedAD in [9], using
power r + 1 (instead ofr) perform well in various experiments and are compara-
ble to our own scrambled Halton sequences, named FL in [9], themselves comparable
to GSobol’ and GFaure sequences as shown in [14]. But on the contrary, Halton–
Atanassov sequences are hardly distinguishable from original Halton sequences H
when using powerr. This fact has already been noted by Vandewoestyne and Cools
[25] and is quite prominent in examples shown in Figures 1 and3 where “HApowr"
stands forHA sequences with powerr in (3.6). With such examples, we hope it is
now clear for the reader that using the identity for the first digit only is the cause of a
dramatic damage.

The same situation prevails for implementations of GFaure sequences. That is,
generalized Faure sequences whose first digit is not permuted do not perform much
better than the original Faure sequences. This is illustrated on Figures 2 and 3, where
GF is obtained from the first construction in [14, Section 4] and GFunperm is the
version of GF where the first digit of each coordinate is not permuted, while F is the
original Faure sequence.

All these observations confirm the primordial importance ofpermutations in the use
of low discrepancy sequences for QMC methods, in spite of the theory of irregular-
ities of distribution which, until now, provides only upperbounds that are unable to
discriminate the identity among other permutations. The only exception isdimension
onefor which several theoretical and practical results exist showing the gap between
the identity and well chosen permutations. To end this section, we give below a short
excerpt of these results (from [4] and [8]) to further emphasize the crucial role of per-
mutations for readers of the MCM community.

We only consider sequencesSσ
b := SΣ

b from (2.3) whereσr = σ for all r ≥ 0 and
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0 1
0

1

Figure 1. 1000 first points of HApowr (left) and H (right), dimensions 39 and 40

we give results forD only because they are easier to state, but analog formulas also
exist for D∗. For such sequences, there exists effectively computable constantsασ

b ,
which here depend on the permutationσ, such that for allN ≥ 1

D(N, Sσ
b ) ≤ ασ

b

logb
logN + ασ

b + 2 and lim sup
N→∞

D(N, Sσ
b )

logN
=

ασ
b

logb
. (7.1)

It is important to point out that these formulas directly give both the asymptotic and
the non-asymptotic regimes.

For largeb, computingασ
b is a difficult task, but it has a good approximation by

means of another quantity which is easy to compute: setZσ
b =

(σ(0)

b
, · · · ,

σ(b − 1)

b

)

and definedσ
b := max

1≤k≤b
max

0≤h′<h<b

∣

∣

∣

∣

E

([

h′

b
,
h

b

[

; k; Zσ
b

)∣

∣

∣

∣

, the so-calleddiscrete dis-

crepancyof the two-dimensional net
{(

k−1
b , Zσ

b (k)
)

; 1 ≤ k ≤ b
}

). Thendσ
b − 1 ≤

ασ
b ≤ dσ

b .
First of all, we recall formulas for the original van der Corput sequencesSid

b : for
b = 2, did

2 = 1/2 andαid
2 = 1/3. Then for oddb ≥ 3 (analogs exist for evenb)

did
b =

b − 1
4

+
b − 1

4b
and αid

b =
b − 1

4
.

For instance, with the least prime base larger or equal to 360, we obtaindid
367 =

33672/367≈ 91.75 andαid
367 = 366/4 = 91.5.

Let us now introduce a new definition, which we restrict to a prime baseb for
simplicity: a linear digit scramblingis a permutationπ of the setZb of the form
π(k) = fk + g (mod b), wheref 6= 0 andg are given inZb. If g = 0, we obtain



Improved Halton sequences and discrepancy bounds 15

0 1
0

1

0 1
0

1

Figure 2. 1000 first points of GFunperm (left) and F (right), dimensions 39 and 40

the so-calledmultipliersf of our preceding papers [9], [14]. The additive factorg is
a translation usually calleddigital shift. In base 367, with one of the best multipliers,
f = 97, we get (π is identified tof ) d97

367 = 1088/367 ≈ 2.96 whiledid
367 ≈ 91.75,

more than 30 times bigger!
Among all prime bases up tob = 1301, the best leading constant in (7.1), that is

ασ
b / logb, is obtained with base 233 withα89

233/ log 233≈ 0.44. Among the 212 prime
numbers we have considered, few such constants are above 0.52, mainly for smallb.
Recall thatαid

2 = 1/3 andαid
3 = 1/2 so thatαid

2 / log 2≈ 0.48 andαid
3 / log 3≈ 0.45.

Good multipliers in any base often give bounds close to theseexact values, whereas
without scrambling, we would haveαI

b/ logb = (b − 1)/4 logb, a quantity increasing
to infinity with b.

8. Conclusion

In this paper we have reviewed discrepancy bounds for Haltonsequences and their
generalizations. We have provided numerical evidence demonstrating that the im-
plied constant in these bounds—while being a useful tool to make comparisons in the
asymptotic regime—could dramatically misrepresent the behavior of the bounds in
the non-asymptotic regime. We also discussed the primordial importance of permuta-
tions, whose effect on the quality of a sequence is well understood theoretically in one
dimension, but less so in higher dimensions.

In view of all this, we are seemlingly left with no good answerto the question:
how should one choose permutations and/or scrambling matrices to construct “good”
generalized Halton or Faure sequences?On one hand, as we have seen in the previous
sections, there is a huge gap between what appears to be a goodsequence depending



16 Henri Faure and Christiane Lemieux

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−3

10
−2

10
−1

10
0

10
1

N=number of points

ab
s.

 e
rr

or

 

 
H
HA
HApowr
F
GF
GFunperm
MC

Figure 3. Absolute error for digital option problem (see [14] for moredetails) with
s = 75: H and HApowr are indistinguishable

on whether we consider the asymptotic or non-asymptotic regime; on the other hand,
tight theoretical results are only known for one-dimensional sequences. In an attempt
to best take into account these two realities, the approach we adopted in the two recent
papers [9, 14] is to make use of the better knowledge for one-dimensional sequences
as a primary criterion for building sequences, while also looking at the discrepancy
of low-dimensional projections in the non-asymptotic regime as a secondary criterion.
This approach automatically avoids using the identity to permute the first digit, because
as we just saw the identity yields a large discrepancy in one dimension. In the case
of GF sequences though, not only the identity should be avoided, but also using the
same permutations for different coordinates should be avoided as much as possible, as
this causes the corresponding projections to be almost the same as if the identity had
been used on each of them. We are working to overcome such difficulties with the use
of larger bases, around 2s, instead of the least prime base greater thans. We plan to
report on this later in another paper.

To conclude the present study, we want to emphasize that likemany people do, we
think the superiority of QMC methods over MC for high dimensional integration, as
in finance, comes from the fact that these problems involve only a reasonable set of
“nevralgic" coordinates. Finding such sets (even roughly)could be helpful to remove
a part of the mystery evoqued by Woźniakowski in his paper [27] at the end of Sec-
tions 3, 4 and, last but not least, 10. The remarks on effective dimension given in the
introduction suggest directions for future research. We will pursue our efforts in these
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directions in the near future.
Finally, recall that the great open conjecture in irregularities of distribution, i.e.,

the exact order for the extreme discrepancy ofs-dimensional sequences is(logN)s,
already starts with dimensions = 2. Hence it is quite hopeless to wait for theoretical
results able to distinguish between permutations in dimensions greater than one and so
empirical studies like [9] and [14] currently seem the only way to improve scramblings
of quasi-random sequences.
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