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Halton sequences have always been quite popular with practitioners, in part because of their
intuitive definition and ease of implementation. However, in their original form, these sequences
have also been known for their inadequacy to integrate functions in moderate to large dimensions,
in which case (t, s)-sequences such as the Sobol’ sequence are usually preferred. To overcome this
problem, one possible approach is to include permutations in the definition of Halton sequences—
thereby obtaining generalized Halton sequences—an idea that goes back to almost thirty years
ago, and that has been studied by many researchers in the last few years. In parallel to these
efforts, an important improvement in the upper bounds for the discrepancy of Halton sequences
has been made by Atanassov in 2004. Together, these two lines of research have revived the
interest in Halton sequences. In this paper, we review different generalized Halton sequences that
have been proposed recently, and compare them by means of numerical experiments. We also
propose a new generalized Halton sequence which, we believe, offers a practical advantage over
the surveyed constructions, and that should be of interest to practitioners.

Categories and Subject Descriptors: F.2.1 [Numerical Algorithms and Problems]: Number-
theoretic computations; G.1.4 [Quadrature and Numerical Differentiation]: Multidimen-
sional (multiple) quadrature

General Terms: Algorithms,Theory, Performance
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1. INTRODUCTION

Halton sequences [Halton 1960] are the oldest multidimensional quasi-random se-
quences. They have always been popular with practitioners, mainly because their
definition is simple, and they are easy to implement. However, it is also well-known
that their behavior starts to deteriorate quickly in higher dimensions, which makes
them useless for typical real-life problems.

For a long time, the theoretical behavior of these sequences, as measured by

Authors’ address: C. Lemieux, Department of Statistics and Actuarial Science, University of
Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada. H. Faure, Institut
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the concept of discrepancy, was also thought to be quite bad in large dimensions.
More precisely, for a while the best known upper bounds on the component cs of the
discrepancy bound that is independent of the number of points was increasing expo-
nentially fast with the dimension s for Halton sequences. By contrast, other types
of quasi-random sequences, such as the constructions proposed in Faure [1982],
Niederreiter [1988], and Niederreiter and Xing [1996], are such that this quantity
cs goes to 0 exponentially fast with the dimension s.

In an effort to improve the behavior of Halton sequences, several researchers have
studied various ways of generalizing their definition by including permutations,
chosen either deterministically or randomly. This idea goes back to about thirty
years ago [Braaten and Weller 1979; Faure 1978], and has been studied by several
authors since then. In parallel to these efforts, Atanassov [2004] has provided
a significant improvement on the discrepancy upper bounds of the original Halton
sequence, making cs go to 0 with the dimension s rather than growing exponentially
fast with s. Moreover, in the same paper, Atanassov produced generalized Halton
sequences (by means of the so-called “admissible integers”) for which the component
cs of the discrepancy bounds has an even better asymptotic behavior than the one
for the original Halton sequences.

Together, these two lines of research have revived the interest in Halton sequences
and their generalizations. The goal of this paper is two-fold. First, given all the
recent work done in this area by various authors, we believe an up-to-date survey
of the most recent generalized Halton sequences available to practitioners is in
order. We provide this along with an extensive numerical study comparing these
different constructions on several problems. Second, while studying the available
constructions, it appeared to us that there was room for improvement. Namely,
we think it would be useful to practitioners to have access to a generalized Halton
sequence that is (i) based on sound theoretical justifications; (ii) based on an explicit
method to choose the required parameters; and (iii) whose performance is as good
as—or even better than—the other available generalized Halton sequences. In an
effort to fulfill this need, we also provide a new construction that satisfies these
requirements, and whose usefulness in practice thus appears to be promising.

The rest of the paper is organized as follows: in Section 2, we provide the re-
quired background on Halton sequences, their generalizations, define the different
concepts of discrepancy used in our work, make some comparisons with the so-
called (t, s)-sequences, and review the special class of permutations used in our new
construction. In Section 3, we describe several generalized Halton sequences that
have been proposed over the last few years. Our new construction is described in
Section 4, along with its parameters for the first 50 dimensions. Section 5 describes
the performance measures that we chose to use to compare the different construc-
tions. In particular, we discuss the use of randomizations to estimate the error and
variance of an approximation, in the context of quasi-Monte Carlo integration. The
description of our numerical experiments is given in Section 6, along with an excerpt
of representative graphs illustrating the performance of the different constructions.
The online appendix contains the entire set of graphs for all the experiments that
we conducted, and also the list of parameters required to implement our new se-
quence up to 360 dimensions. We conclude in Section 7 with a summary of our
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findings and some recommendations.

2. BACKGROUND INFORMATION

We start with a review of Halton sequences and their generalizations, which con-
stitute one type of quasi-random sequences. Generally speaking, quasi-random
sequences are formed by points in the s-dimensional hybercube Is = [0, 1)s, and
are designed to achieve a high level of uniformity, as measured by the concept of
discrepancy, which we discuss next. Quasi-random (or low-discrepancy) sequences
can then be used for numerical tasks such as integration, and can thus provide an
alternative to the random sampling used by Monte Carlo methods. In that con-
text, using such sequences is referred to as quasi-Monte Carlo (QMC). As we will
see later in our numerical experiments, carefully constructed generalized Halton
sequences can provide more accurate approximations than Monte Carlo for several
types of integration problems.

2.1 Halton sequences and their generalizations

The definition of the Halton sequence makes use of the van der Corput sequence in
base b, denoted Sb, which has its nth term (n ≥ 1) defined as

Sb(n) =

∞
∑

r=0

ar(n)

br+1
, (1)

where ar(n) is the r-th digit of the b-adic expansion of

n − 1 =

∞
∑

r=0

ar(n) br.

The Halton sequence is an s-dimensional sequence X1, X2, . . . in Is defined as

Xn = (Sb1(n), . . . , Sbs
(n)), (2)

where the bj’s, for j = 1, . . . , s, are pairwise coprime. That is, the jth coordinate is
defined using Sbj

, the van der Corput sequence in base bj. So, for instance, with s =
2 the Halton sequence with b1 = 2 and b2 = 3 starts as (0, 0), (1/2, 1/3), (1/4, 2/3),
(3/4, 1/9), (1/8, 4/9) and so on. Closely connected to Halton sequences are the
Hammersley point sets, which are sets of size N defined as

PN =

{(

n − 1

N
, Sb1(n), . . . , Sbs−1

(n)

)

, n = 1, . . . , N

}

.

A generalized van der Corput sequence is obtained by choosing a sequence Σ =
(σr)r≥0 of permutations of Zb = {0, 1, . . . , b − 1}. Then, the nth term of the
sequence is defined as

SΣ
b (n) =

∞
∑

r=0

σr

(

ar(n)
)

br+1
. (3)

If the same permutation σ is used for all digits, (i.e., if σr = σ for all r ≥ 0),
then we use the notation Sσ

b to denote SΣ
b . The van der Corput sequence in base

b defined in (1) is obtained by taking σr = I for all r ≥ 0, where I stands for the
identity permutation over Zb.
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A generalized Halton sequence is defined by choosing s sequences of permutations
Σj = (σj,r)r≥0, j = 1, . . . , s, and then by defining the nth point Xn ∈ Is of the
sequence as

Xn = (SΣ1

b1
(n), . . . , SΣs

bs
(n)), n ≥ 1, (4)

where the bj ’s are pairwise coprime bases. These bj’s are typically chosen as the
first s prime numbers. In this case, we denote the jth base as pj .

2.2 Discrepancy

To measure the quality of the above constructions, the concept of discrepancy is
often used. The discrepancy of a point set PN = {X1, . . . , XN} ⊆ Is measures
by how much the empirical distribution induced by PN deviates from the uniform
distribution over [0, 1)s. As a building block for this measure, we consider for a
subinterval of Is of the form J =

∏s
j=1[yj, zj), where 0 ≤ yj < zj ≤ 1, the difference

E(J ; N) = A(J ; N) − NV (J),

where A(J ; N) = #{n; 1 ≤ n ≤ N, Xn ∈ J} is the number of points in PN that fall
in the subinterval J , and V (J) =

∏s
j=1(zj − yj) is the volume of J . We use the

notation J∗ to denote subintervals J that have a corner at the origin. That is, J∗

is of the form J∗ =
∏s

j=1[0, zj), where 0 ≤ zj ≤ 1.
Then, the star (extreme) discrepancy D∗ and the (extreme) discrepancy D of PN

are defined by

D∗(PN ) = supJ∗ |E(J∗; N)| and D(PN ) = supJ |E(J ; N)|.
Note that several authors have a 1/N factor when defining the above quantities,
for instance Niederreiter [1992].

Since the extreme discrepancy D(PN ) measures the same thing as the star dis-
crepancy D∗(PN ) but over more subintervals J , it is clear that we always have
D(PN ) ≥ D∗(PN ). It is well known that D(PN ) ≤ 2sD∗(PN ) (see for instance
Niederreiter [1992]). For an infinite sequence X , we denote by D(N, X) and
D∗(N, X) the discrepancies of its first N points. A sequence satisfying D∗(N, X) ∈
O((log N)s) is typically considered to be of low-discrepancy. Relations between
sequences and point sets can be found in Niederreiter [1992, Lemma 3.7] and Faure
[1986, Section III], but will not be discussed in this paper.

Computing D(PN ) and D∗(PN ) for dimensions s > 2 is usually not feasible
in practice. Instead, one can look at the asymptotic behavior—both as N and
s increases—of upper bounds on these quantities to assess the quality of a given
construction. This will be done in the next two subsections. In addition, the
star-discrepancy shows up in upper bounds for the error of the approximation

QN =
1

N

N
∑

i=1

g(Xi)

for the integral I(g) =
∫

Is g(x)dx of a function g : Is → R whose variation in the
sense of Hardy and Krause, denoted V (g), is bounded [Niederreiter 1992]. Namely,
the Koksma-Hlawka inequality gives the following upper bound on the error of QN :

EN = |QN − I(g)| ≤ 1

N
D∗(PN )V (g),
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when V (g) < ∞. Hence a low-discrepancy sequence provides an approximation QN

for I(g) whose error EN is in O(N−1(log N)s) for functions of bounded variation.
Going back to the definition of discrepancy, it turns out that if we replace the

sup norm by the L2-norm in the star and extreme discrepancy, we obtain dis-
crepancy measures that can be computed in practice. More precisely, let the star
L2–discrepancy T ∗(PN ) be defined as

T ∗(PN ) =
(

∫

Is

(

E(
∏s

j=1[0, yj); N)
)2

dy1 . . . dys

)
1
2

,

and the L2–discrepancy T (PN ) be defined as

T (PN ) =
(

∫

{(y,z)∈I2s; yj<zj}

(

E(
∏s

j=1[yj , zj); N)
)2

dy1dz1 . . . dysdzs

)
1
2

.

A formula to compute T ∗(PN ) is given in Warnock [1972], while T (PN) was in-
troduced in Morokoff and Caflisch [1994], where a formula is also given. Since the
L2-discrepancy measure is used in the construction of our new generalized Halton
sequence, we give their formula below (for the square T 2(PN ) of T (PN )), where
Xi,k denote the kth coordinate of the ith point Xi ∈ Is of PN :

T 2(PN ) =

N
∑

i=1

N
∑

j=1

s
∏

k=1

(1 − max(Xi,k, Xj,k))min(Xi,k, Xj,k)

−N2−s+1
N
∑

i=1

s
∏

k=1

Xi,k(1 − Xi,k) + N212−s. (5)

Hence T (PN) can be computed in O(N2s).
As we mentioned in the introduction, the discrepancy of Halton sequences was

thought for a long time to behave quite badly in large dimensions. In our discussion
of this topic, we will look at bounds of the form

D(N, X) ≤ cs(log N)s + O((log N)s−1) (6)

for low-discrepancy sequences. In what follows, we discuss the progress made on
understanding the behavior of cs for Halton sequences.

First, in Faure [1982], it was proved that for the original Halton sequence X =
(Xn)n≥1 as defined in (2), the bound (6) holds with

cs =

s
∏

j=1

bj − 1

log bj
. (7)

This improved the original (loose) bound found by Halton [1960], and then Meijer
in 1968. For a generalized Halton sequence X , the same bound was shown to hold
in Faure [1986, Section 5.4]. Then, Atanassov [2004] improved this result to

cs =
1

s!

s
∏

j=1

bj − 1

log bj
=: eλs , (8)

for the original Halton sequence, where we introduced the quantity λs so that later,
we can use log cs when comparing different constructions. With the additional
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term s! in the denominator, cs now goes to 0 as s → ∞. Also, it is quite obvious
from the proof given in Atanassov [2004, Lemma 3.1, p.19] that this result also
holds for generalized Halton sequences built with arbitrary sequences of permuta-
tions. Furthermore, in the same paper, Atanassov showed that for a generalized
Halton sequence defined by taking the bj’s to be the first s prime numbers, and by
defining the sequence of permutations Σj = (σj,r)r≥0 using the so-called admissible
integers—which we will define in more detail in Section 3—then an improved value
for cs holds in (6), and is given by

cs =
2s

s!





s
∑

j=1

log pj





s
∏

j=1

pj(1 + log pj)

(pj − 1) log pj
=: eµs , (9)

where, as stated at the end of Section 2.1, we use the notation pj to denote the jth
base, which is given by the jth prime number in this case. In the next subsection,
we refer to the construction that satisfies this as the Halton-Atanassov sequence.

2.3 Comparison with (t, s)-sequences

Digital (t, s)-sequences are another family of low-discrepancy sequences that in-
clude the well-known Sobol’, Faure, and Niederreiter sequences. Niederreiter [1987]
developed the general theory of (t, s)-sequences in arbitrary base b, including the
original Sobol’ and Faure sequences, and he achieved with Xing the best order of
magnitude for the quality parameter t with respect to the dimension (t = O(s), see
Niederreiter and Xing [1996]). These sequences also use van der Corput sequences
as a building block, but with the same base b for each coordinate. Transformations
are then performed by means of well-chosen generating matrices.

Since we do not include these sequences in our numerical comparisons given in
Section 6, we will not give more details about how they are constructed. However,
we believe it is of interest to compare the behavior of the discrepancy bounds of
these two families in light of the recent results of Atanassov [2004], just so that the
reader can understand how these results have revived the interest for the family
of Halton sequences, and allowed them to not be ruled out because of what was
thought to be a suboptimal behavior for their discrepancy. Furthermore, since all
these sequences can be categorized as “low-discrepancy sequences”, i.e., they satisfy
D∗(N, X) ∈ O((log N)s), one way to compare them is to look at the behavior of
the quantity cs in the bound (6) as the dimension s increases.

First, for the Sobol’ sequences [Sobol’ 1967], which are (t, s)-sequences in base 2,

cs =
2t

s!

( 2

log 2

)s

=: eτs . (10)

Next, for the (0, s)-sequences in prime bases b ≥ s proposed by Faure, it is shown
in Faure [1982] that

cs =
1

s!

(b − 1

log b

)s

=: eρs . (11)

This result also applies to Faure sequences whose coordinates are “scrambled” by
permutations of the digits in the b−adic expansion on N , in a similar fashion to
those used to define the generalized van der Corput sequence (3).
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Next, for (t, s)-sequences in arbitrary bases b (hence for Niederreiter sequences),
it is proved that [Niederreiter 1988]

cs =
bt

s!

b − 1

2⌊ b
2⌋

(

2⌊ b
2⌋

log b

)s

=: eνs . (12)

When b ≥ s is an odd prime, in which case t can be minimal (t = 0), Equation (12)
reduces to (11). But when b = 2, (12) improves (10) by a factor 1

2 . Slightly better
constants hold for 2 ≤ s ≤ 4 (see Niederreiter [1988]). As it was the case for (11),
(12) also applies to variants of these constructions in which the coordinates have
been scrambled by permutations of the digits (see Niederreiter [1992], Niederreiter
and Xing [1996], Owen [1995], Tezuka [1993], Tezuka [1995]). Note also that in these
constructions, the base b and the dimension s can be chosen independently from
each other, but the parameter t depends on b and s. While t ∈ O(s log s) for the
Sobol’ and Niederreiter sequences in a given base b, t ∈ O(s) for the Niederreiter-
Xing sequences studied in Niederreiter and Xing [1996]. For the Faure sequence,
t = 0, but we must have b ≥ s, and thus the base b depends on the dimension s.
In what follows, when looking at the behavior of νs we will assume that we are
working with Niederreiter-Xing sequences.

Finally, Kritzer [2006] recently improved the constants cs in (11) and (12) by a
factor 1/2 for odd b ≥ 3 and s ≥ 2, and by a factor 1/3 for b = 2 and s ≥ 5 (a
similar result holds for even b). Table I takes into account these new values when
computing the constants cs.

There are two possibilities for comparing the quantities cs given in Sections 2.2
and 2.3 and denoted eλs , eµs , eτs , eρs , eνs for the different low-discrepancy sequences
of interest: computing cs for different values of the dimension s, or search for
asymptotic estimates as s grows to infinity.

For this second approach, using number-theoretic arguments that we shall not
develop here due to space constraints (see the online appendix), one can show that

−s log(1.5) < λs < − log s + O(1), (13)

−s log s < µs < −s log s + O(s), (14)

−s log log s < ρs < −s log log s + O(s), (15)

τs < s log log s + O(s), (16)

−s log s < νs < −s log s + O(s). (17)

Therefore, from the point of view of asymptotic upper bounds for log cs, the
best sequences are Halton-Atanassov and Niederreiter-Xing sequences, with or-
der −s log s, followed by Faure (0, s)-sequences, with order −s log log s, Halton se-
quences, with order − log s, and finally the Sobol’ sequences, with order s log log s.
Hence, this shows that generalized Halton sequences can have bounds on their dis-
crepancy that are asymptotically as good as the Niederreiter-Xing sequences, which
as mentioned before, are designed so that the quality parameter t behaves optimally
as a function of s. By constrast, the value of cs given in (7)—so what was the best
bound prior to the work of Atanassov—is such that log cs ∈ O(s log s).

Next, we give in Table I the values of cs for Halton, Faure, Niederreiter-Xing and
Halton-Atanassov, for values of s ranging between 10 and 50. The values ts for the
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Table I. Values of the constants in the discrepancy bounds for each sequence
and different dimensions s

s Halton (eλs) Faure (eρs) Nied-Xing (eνs ) Halton-Atan (eµs )

10 2.18e-01 2.19e-01 4.46e-03 2.82e+00
20 2.85e-02 1.72e-02 1.75e-08 1.44e-07
30 3.53e-03 3.27e-05 1.40e-16 1.91e-17
40 5.78e-04 1.20e-07 1.07e-24 6.17e-29
50 9.50e-05 1.19e-09 7.56e-35 1.34e-41

Niederreiter-Xing sequences were obtained using the database MinT [Schürer and
Schmid 2006]. That is, for each s we searched for the pair (b, t) that was yielding
the smallest value for cs in (12). These results show that for smaller values of s,
the Niederreiter-Xing sequences have the smallest constant, but around s = 30, the
Halton-Atanassov sequences start to have a better constant, hence suggesting an
advantage in favor of the Halton-Atanassov sequences inside the “−s log s” order.
Recall however that these are only part of upper bounds on the discrepancy. Ob-
viously, the sequences might be ranked differently based on the actual discrepancy
(if we were able to compute it). Also, such comparisons do not take into account
the O((log N)s−1) term in the bound (6), which for reasonable values of N might
completely dominate the first term in that bound. Moreover, in the first compo-
nent of (6) there is the prominent term (log N)s which becomes very large as s and
N increase, and for such large values the ranking of the constants cs may become
irrelevant. Finally, this classification might change with new possible improvements
on the discrepancy bounds of some sequences, especially the Sobol’ ones, because
although they appear to be the “worst” according to the above ranking, they have
been found by several authors to perform very well in practice.

2.4 Linear Scramblings

We end this section by a discussion of a class of permutations that is often used to
define generalized Halton sequences. In particular, our new construction described
in Section 4 makes use of this type of permutations called linear scramblings.

These scramblings are a special class of permutations introduced in Matousěk
[1998] in his attempt to classify more general scramblings of (t, s)-sequences pro-
posed by Owen [1995]. A special sub-class was first considered by Tezuka [1995]
with very successful implementations in finance (see also the GFaure sequences in
the software Finder discussed in Paskov and Traub [1995]). Of course such scram-
blings can also apply to Halton sequences. That is, they can be used to define the
permutations σj,r used in (4) to alter the digits a0 = a0(n), a1 = a1(n), . . . defining
the coordinates of the sequence.

A linear digit scrambling corresponds to using permutations of the form

σj,r(ar) = fj,rar + gj,r (mod bj) for 0 ≤ ar ≤ bj − 1, (18)

in (4), for j = 1, . . . , s, r ≥ 0, and where fj,r 6= 0 and gj,r are in Zbj
, with fj,r and

bj coprime.
If gj,r = 0, we obtain the so-called multipliers f studied in Atanassov [2004],Chi

et al. [2005] and Faure [2006]. The additive factor gj,r is a translation also called
digital shift. Also, for a fixed j, the multipliers fj,r are often chosen to be the same
for all r ≥ 0. That is, we have fj,r = fj for all r ≥ 0.

ACM Journal Name, Vol. V, No. N, October 2008.
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More generally, a linear scrambling is a permutation of the digits ar in the set
Zb depending also on the preceding digits ac for 0 ≤ c ≤ r − 1. It is of the form

σj;a0,...,ar−1
(ar) =

r
∑

c=0

fj,r,cac + gj,r (mod bj), (19)

for j = 1, . . . , s, r ≥ 0, and where fj,r,c, gj,r ∈ Zbj
, with fj,r,r 6= 0 and fj,r,c and

bj coprime. The transformations proposed in Tezuka [1995] correspond to the case
gj,r = 0. Because of the dependence on the previous digits, this type of permutation
is more general than the one used in our definition of generalized Halton sequence.

For our new construction, we use deterministic linear digit scramblings that are
homogeneous (i.e., gj,r = 0), and with fj,r = fj for r ≥ 0. We also use random
digital shifts for the purpose of variance estimation, as explained in Section 5. This
amounts to setting fj,r = 1 and taking random independent gj,r’s in (18).

3. OVERVIEW OF PROPOSED GENERALIZED HALTON SEQUENCES

The idea of using permutations—or scramblings—to improve the quality of Hal-
ton sequences goes back to Faure [1978], and Braaten and Weller [1979]. Since
then, several other authors have proposed different ways of choosing these permu-
tations [Atanassov 2004; Atanassov and Durchova 2003; Chi et al. 2005; Faure 1992;
2006; Kocis and Whiten 1997; Mascagni and Chi 2004; Tuffin 1998; Warnock 1995;
2002]. Among those proposals, we have selected four to be tested in our numerical
experiments, which are the most recent ones. In addition, we also consider the
“randomized Halton sequence” proposed by Wang and Hickernell [2000]. It is not a
generalized Halton sequence based on deterministic permutations, but it improves
the Halton sequence via a certain type of randomization, and can therefore fit in
another category with the randomization proposed in Morokoff and Caflisch [1994].
Hence, with our new scrambling and the original Halton sequence—labeled H in
what follows—we have tested seven sequences. We now describe the four chosen
generalized Halton sequences, and provide the key ideas and a detailed analysis for
each. Following that, we briefly discuss the randomized Halton sequence of Wang
and Hickernell [2000], labeled WH in what follows. Note that although the permu-
tations found in Tuffin [1998] for s ≤ 16 appear to do well on the problems tested in
that paper, they are only given up to s ≤ 16 (in his Ph.D. thesis), and were found
by a random search in a space whose size grows exponentially fast with s. Getting
good permutations in this way would require too much computation time for the
dimensions considered here, which is why we have not selected this approach.

(1) KW [Kocis and Whiten 1997]: The first few papers describing scrambling
schemes for Halton sequences were based on the idea of using one permutation σj

for each base bj (1 ≤ j ≤ s), and then apply it to each digit in order to break
the correlations observed on many two-dimensional projections of the sequence.
In these early papers, no restriction was imposed on the choice of permutations.
The choices presented in Braaten and Weller [1979] and Tuffin [1998] are based
on computer searches that can be rather intensive for a large dimension s. As
an alternative to computer searches, Kocis and Whiten [1997] suggest a choice
of permutations that can be easily determined for any choice of s. Note that
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Faure [1992] also proposes permutations that can be determined easily for any
base. Preliminary experiments suggested that these permutations were not as good
for high-dimensional problems as those from Kocis and Whiten [1997], which is why
they were not considered further.

The following presentation differs from the one given in Kocis and Whiten [1997],
who simply use small examples to describe their idea. Instead, we use a general
description based on the van der Corput sequence, which goes as follows. Let
ns = ⌈log bs/ log 2⌉. Define the permutation π of Z2ns by π(k) = 2nsS2(k + 1) for
0 ≤ k < 2ns , where S2(k + 1) is the (k + 1)th term of the van der Corput sequence
in base 2. Then, the s permutations σ1, . . . , σs of the Kocis–Whiten’s scrambling
are derived from π through the formula

σj(h) = π(kh) for 0 ≤ h ≤ bj − 1, j = 1, . . . , s,

in which k0 < k1 < . . . < kbj−1 is the set {k; 0 ≤ σ(k) ≤ bj−1} numbered from 0 to
bj−1. In other words, the permutation σj is obtained by skipping the values greater
than or equal to bj in π. For instance, take s = 3. Then n3 = ⌈log 5/ log 2⌉ = 3
and so σ corresponds to the permutation [0, 4, 2, 6, 1, 3, 5, 7]. Hence σ1 corresponds
to [0, 1], σ2 to [0, 2, 1] and σ3 to [0, 4, 2, 1, 3].

There is no theoretical motivation for this choice: the authors speak of “a question
of art”, arguing that “there is no recipe which leads to optimal permutations of
coefficients”. Our description based on the van der Corput sequence suggests that
one could as well choose another sequence Sτ

b to define π (e.g., SI
3 , which has a

smaller discrepancy than SI
2 ). We refer to this sequence as KW in our experiments.

In the same paper, another method is introduced to break the correlations, and
consists in leaps of length equal to a prime number L, different of the pj ’s, for
each of the one-dimensional sequences {Spj

(n), n ≥ 1}, j = 1, . . . , s. These leaped
Halton sequences often give better numerical results than the permuted ones, but
the leaps they use are tailor-made for 5 of the 9 test-functions of the paper. More
generally, such leaps can be applied to any scrambling and to any sequence.

Finally, Kocis and Whiten also perform computations with Sobol’ and Faure
leaped sequences, with improvements on the original ones. Their conclusion is
that detailed investigations should be completed for these sequences to assess the
method (see Kocis and Whiten [1997, Section 3.2] ).

(2) AD [Atanassov and Durchova 2003; Atanassov 2004]: The next se-
quence is the Halton-Atanassov sequence, which improves the behavior of cs in the
discrepancy bound of Halton sequences, as discussed in Section 2. Its generation
and testing can be found in Atanassov and Durchova [2003], which is why we label
this sequence as AD in what follows. Actually, the result of Atanassov has been
known for some years before being published, therefore the apparent shift between
the two papers. The proofs in Atanassov [2004] involve a deep knowledge of Halton
sequences and cannot be even surveyed here.

So for this sequence, the permutations σj,r in (4) make use of the “admissible
integers” mj introduced in Atanassov [2004]. More precisely, they are linear digit
scramblings of the form

σjr(ar) = mr
j ar (mod pj), r ≥ 0 (20)
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for the rth digit in dimension j = 1, . . . , s. The integers m1, . . . , ms are said to be
admissible integers for p1, . . . , ps if (i) for each j = 1, . . . , s, pj does not divide mj ;
(ii) for any set of integers d1, . . . , ds such that pj does not divide dj , there exist
integers α1, . . . , αs satisfying the congruences

m
αj

j

∏

1≤l≤s,l 6=j

pαl

l ≡ dj (mod pj), j = 1, . . . , s. (21)

For instance, consider the case where s = 3. Then p1 = 2, p2 = 3, p3 = 5, and
{m1 = 1, m2 = 2, m3 = 3} are admissible integers, since (i) mj is not a multiple of
pj ; (ii) the congruence (21) is solved with α2 = α3 = 1 for any d1 not a multiple of
p1 = 2 (i.e., for any odd d1); it is solved with α1 = 0, α2 = α3 = 1 for d2 ≡ 1 mod 3
and with α1 = α2 = α3 = 1 for d2 ≡ 2 mod 3; solutions for the four cases d3 ≡
i mod 5, i = 1, . . . , 4 can also be easily found.

The admissible integers used in the experiments of Section 6 are given in the file
haltondat.h available at parallel.bas.bg/~emanouil/sequences.html. Clearly,
other admissible integers could be chosen. For example, Vandewoestyne and Cools
[2006] list their own choice for s up to 30.

In Atanassov and Durchova [2003], the authors claim that if the power r in (20)
is increased to r + 1 and an additive (random) digital shift is added in this type
of permutation, then one can carry through the proof for the improved behavior
of the constant cs given in Atanassov [2004] for a deterministic generalized Halton
sequence based on (20). As they point out, using powers r+1 should be intuitively
better than using r, the latter implying that the first digit of each coordinate in
this type of generalized Halton sequence is the same as that in the original Halton
sequence. The online appendix shows a few numerical results suggesting that the
obtained sequence—using powers r—gives results that can hardly be distinguished
from the original Halton sequence. This has also been observed in Vandewoestyne
and Cools [2006], who established comparisons with the Halton-Atanassov method,
but using the powers r instead of r + 1. In our experiments, we have used the
powers r + 1 both for the deterministic version of the AD sequence, and the one
randomized with an additive digital shift.

(3) CMW [Chi et al. 2005]: More recently, new linear digit scrambling schemes
(without digital shifts and with the same multiplier fj,r = fj for each digit in di-
mension j) have been proposed to improve Halton sequences, first by Mascagni and
Chi [2004], Chi et al. [2005] and then Vandewoestyne and Cools [2006] (construction
(4), to be discussed next). In Mascagni and Chi [2004], an interesting analysis of
the correlations that occur in the original Halton sequence is done. The multiplier
fj applied to each digit in dimension j (for 1 ≤ j ≤ s) is then obtained by means
of a criterion which involves the serial test for two-dimensional sequences produced
by Linear Congruential Pseudorandom Number Generator (LCPRN). In fact, the
authors use an upper bound given in Niederreiter [1978, p. 1025]) for the two-
dimensional extreme discrepancy D—not L2, as they claim —without mentioning
what is the sequence involved in the formula, and refer to Niederreiter [1978] with-
out any more precision. In Chi et al. [2005], this criterion is recalled and blended
with an added feature derived from earlier work in Warnock [1995; 2002] involving
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the Weyl sequences, which are another type of quasi-random sequences that make
use of irrationals

√
pj . Such a mixture obtained from two sequences—LCPRN and

Weyl—having no connection with van der Corput–Halton sequences nevertheless
gives good results in our tests until dimension 50 (the multipliers are not available
beyond that). The corresponding sequence is denoted CMW in what follows.

(4) VC [Vandewoestyne and Cools 2006]: Vandewoestyne and Cools [2006]
give a good survey of generalized Halton sequences, including Chi et al. [2005],
and then define their own scrambling which, in fact, reduces to the linear digit
scrambling (18) with fj,r = fj = bj − 1 for all r ≥ 0. Their tests based on
computations of T ∗ and T show a clear advantage for this choice of multipliers,
but only for a small number of points (1 to 103 or 104). However, computations
of D and T done in Faure [2006] for one-dimensional van der Corput sequences
scrambled with σ(k) = fk, 1 ≤ f ≤ b − 1, show that using f = b − 1 or f = 1 give
the same result. From this point of view, the one-dimensional projections of this
construction are not better than for the Halton sequence.

As we can see in Figure 2, this construction fails to break the correlations present
in the original Halton sequence. Our tests also confirm that such a scrambling is
close to the identity permutation. Maybe the only difference is that the first point
after the origin is close to (1, . . . 1) (see Vandewoestyne and Cools [2006], end of
Section 4.8). In that context, we must recall the very pertinent observation of
Matousěk [1998] on T ∗: “nearly the lowest possible L2-discrepancy is attained by
a pathological point set if the number of points is not large enough in terms of the
dimension, for instance a dimension around 30 and a number of points less than
104”. This sequence is labeled VC in our experiments.

Finally, and as mentioned at the beginning of this section, we also tested the
WH sequence proposed in Wang and Hickernell [2000] in our experiments, which
makes use of ideas discussed in Pagès [1992] and Struckmeier [1995] to define what is
called by Struckmeier a “generalized Halton sequence”. As explained in Wang and
Hickernell [2000], it can be described as follows: the first point X1 of the sequence
is randomly and uniformly generated in [0, 1)s, and written as

X1,j =

kj
∑

r=0

x1,j,rb
−r−1
j .

Then define the jth coordinate of the nth term of this sequence as

Xn,j = Sbj
(n + m

(j)
0 ), where m

(j)
0 =

kj
∑

r=0

x1,j,rb
r
j ,

for j = 1, . . . , s and n ≥ 2. In other words, the obtained sequence is made up of
van der Corput sequences that each start at a different index, determined by X1.
It is not hard to see that this is in fact very similar to performing a random digital
shift—described in detail in Section 5—on the original Halton sequence, with slight
differences only arising from the fact that in WH, additions are not done modulo
bj . That is, if, say bj = 23, n = 7 and X1,j = 16/23+4/232+17/233+12/234, then
in WH, we would have X7,j = 5/232 + 17/233 + 12/234, while if we use X1 as a
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random digital shift for the Halton sequence, then X7,j = 4/232 +17/233 +12/234.

As it turns out, the WH sequence performs very similarly to the randomly dig-
itally shifted Halton sequence in our experiments. This is also consistent with
remarks in Chi et al. [2005] and Vandewoestyne and Cools [2006] to the effect that
this method does not break the two-dimensional correlations that are known to
cause problems to the original Halton sequence in large dimensions.

4. A NEW CONSTRUCTION

While reviewing constructions that have been proposed to improve Halton se-
quences, it appeared to us that it would be useful for practitioners to have access
to a generalized Halton sequence satisfying the following requirements. First, we
think it is preferable to try to achieve an improvement in a deterministic way, rather
than relying on random choices, as in the WH sequence. Second, we believe it is
important to come up with a systematic way of choosing the parameters required
to define such sequences. Note that this is not the case for Halton-Atanassov se-
quences, where one must still choose admissible integers among the (possibly large)
set of possible choices. Third, it seems imperative that the criterion used to drive
this systematic search should have good theoretical foundations. The AD sequence
clearly satisfies this requirement, at least asymptotically, but the same cannot be
said of the KW and CMW sequences. Finally, it is obvious that the newly proposed
sequence should be competitive with others that have been proposed. Our sequence
has been designed to fulfill these requirements, and is described next.

The theoretical foundation of our sequence lies in the study described in Faure
[2005] and its application to QMC methods in Faure [2006]. In this work, the se-
lection of multipliers fj,r for linear digit scramblings of the form (18) was made
for (0, s)-sequences generated by nonsingular upper triangular matrices (see Faure
[2006, corollary 2, p.118]), using the extreme discrepancy D or the diaphony F :=
2πT in one dimension. But since these multipliers give very good discrepancy or di-
aphony for the resulting scrambled van der Corput sequences (in one dimension), it
is natural to use them also for Halton sequences, whose one-dimensional projections
are precisely van der Corput sequences.

Also, these “good” multipliers are about the same whether we use the criterion
based on D or T . In what follows, we chose to work with T , because in dimension
s > 1, the extreme discrepancy D is difficult to compute, while T can be computed
in O(N2s), as discussed in Section 2. Since our search method attempts to not only
look at one-dimensional projections but also two-dimensional ones, working with T
instead of D is a reasonable choice.

We now describe how we chose the multipliers f1, . . . , fs used to define our new
generalized Halton sequence, based on linear digit scramblings of the form (18) with
fj,r = fj for r ≥ 0. In what follows, we work with prime bases, and let Sf

p be the
generalized van der Corput sequence in base p in which the permutations σr are
given by σr(k) = fk (mod p). First, for each prime base p among the first s prime
numbers, we sort the set {1, . . . , p − 1} of potential multipliers f according to the
criterion θf

p (1)/ log p described in Faure [2006], which is related to a bound on the
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Fig. 1. Hammersley point sets with N = 1000 based on generalized van der Corput sequence in
base 1987, using multiplier f = 1 (left), corresponding to H; f = 1986 (middle), corresponding to
VC; and f = 555 (right), corresponding to FL with a single element in the short list

L2-discrepancy of Sf
p . More precisely, θf

p (1) is defined as [Faure 2006, Prop. 2]

θf
p (1) = max

1≤N≤p

(

T 2(N, Sf
p ) − N2

12p2

)

,

and is such that if Σ = (σr)r≥0 satisfies σr(k) = frk mod p with fr such that
θfr

p (1) ≤ θf
p (1), then for all N ≥ 1 we have

T 2(N, SΣ
p ) ≤

θf
p (1)

log p
log N + θf

p (1) +
1

12
.

Hence the multiplier f that minimizes θf
p (1) is such that the corresponding se-

quence Sf
p has the smallest bound on its L2-discrepancy, among all van der Corput

sequences in base p permuted by an homogeneous linear digit scrambling. The
second multiplier f on the list is such that Sf

p has the second smallest bound, and
so on. Our short list thus retains the multipliers with the smallest upper bound on
the L2-discrepancy of the corresponding sequence Sf

p .

The motivation for this criterion is as follows. First, θf
p (1) can be computed

relatively fast. For instance, for the 300th prime p300 = 1987, the list of all 1986
multipliers between 1 and 1986 can be sorted according to θf

1987(1)/ log 1987 in
just a few seconds. Second, this bound on the discrepancy can be thought of as
a way of measuring how good is the multiplier f at improving the “space-filling”
property of the van der Corput sequence in base p, which is quite bad for large
bases p. Figure 1 shows the first 1000 points of the two-dimensional Hammersley
point set based on S1

p , Sp−1
p and Sf∗

p , where f∗ = 555 is the factor with the smallest

value of θf
1987(1) for the base p = 1987. That is, we plot {((n − 1)/1000, xn), n =

1, . . . , 1000}, with xn the nth point of the sequence under study. These plots offer
a two-dimensional depiction of the space-filling properties of the sequence {xn}n≥1.
For instance, if x1 < . . . < x1000—which is not a good way of filling the space—then
the corresponding two-dimensional Hammersley point set lies on a straight line, as
we can see for S1

p on Figure 1. Note that S1
p and Sp−1

p correspond to the 300th
coordinate of the Halton and VC sequence, respectively. It is clear from these plots
that the factor f∗ chosen according to θf

p (1)/ log p manages to greatly improve the
space-filling property of the van der Corput sequence.
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At this point, one possible approach would be to simply choose, for each di-
mension and corresponding prime pj , the best factor f according to θf

pj
(1). While

this would surely provide an s-dimensional generalized Halton sequence with good
one-dimensional projections, it is not clear that the higher-dimensional projections
would also be good. For instance, if we are unlucky, we could end up choosing for
two successive dimensions, j and j + 1, factors fj and fj+1 that give rise to strong

correlations between the one-dimensional sequence S
fj

pj and S
fj+1

pj+1
, which is one of

the main problems that the original Halton sequence has. (This behavior can also
be observed on the plot of the VC sequence in Figure 2 (top middle).) Our approach
to avoid this is to also make sure that two-dimensional projections for coordinates
j and k that are nearby are also of a good quality. Search criteria that consider
projections of nearby indices are also discussed in Cheng and Druzdzel [2000] and
L’Ecuyer and Lemieux [2002], for other types of quasi-random sequences.

More precisely, once the multipliers are sorted according to θf
p (1)/ log p for a

given base p, we keep a “short list” of at most 32 potential candidates. Also, we
only keep the multipliers for which θf

p (1)/ log p ≤ 0.1, and for p > 3 we never keep 1
or p−1. The purpose of the short list is to make sure we have good one-dimensional
projections. Once we have a short list for each prime base, we select multipliers
using a step-by-step approach based on the criterion

τW,M
j (f1, . . . , fj−1, f) = max

1≤l≤W
T (M, (S

fj−l
pj−l

, Sf
pj

)), (22)

where T (M, X) represents the L2-discrepancy of the first M points of a sequence X
and W is a positive integer to be chosen, which determines how many bidimensional
projections will be assessed. More precisely, to select a multiplier fj for the jth
coordinate, for each candidate f in the short list for pj , we compute the value T of
the L2-discrepancy for the M first points of the two-dimensional sequence based on
the (j− l)th and jth coordinates (using the multipliers fj−l chosen for the (j− l)th
coordinate, and the candidate f under study, respectively), for l = 1, . . . , W , where
W is the “window” size of the criterion. Then we keep the worst (largest) of these
W values of T as our quality measure for f . The multiplier for pj is chosen as the

one that minimizes τW,M
j (f1, . . . , fj−1, f) among all candidates in the short list.

Summing up, our construction combines an approach for building the short list
that rests on a solid theoretical foundation with a more pragmatic method to select a
multiplier from this list, using the criterion (22). This ensures that special attention
is paid to bidimensional projections, hence avoiding the most well-known defect of
the original Halton sequences.

Table II lists the multipliers used to define our new generalized Halton sequence—
labeled FL from now on—up to dimension 50. The complete list up to dimension
360 is available in the online appendix. We used M = 2500 and a window size given
by W = min(7, j − 1) to obtain these parameters. Before we explain this choice of
M = 2500, first note that the construction of the short list of multipliers is done
independently of the value of M , because it is based on the criterion θf

p (1), which
provides a bound on the discrepancy for all N . To assess the two-dimensional
projections, we chose M = 2500 so that M was at least as large as the largest
base p360 = 2423 considered. In our experience, a relatively small initial sample
often gives a good idea of the behavior of the sequence. This is in line with a
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Table II. List of the first 50 multipliers for the FL sequence

j fj j fj j fj j fj j fj

1 1 11 18 21 43 31 92 41 104
2 1 12 8 22 61 32 47 42 126
3 3 13 13 23 60 33 29 43 50
4 3 14 31 24 56 34 61 44 80
5 4 15 9 25 26 35 57 45 55
6 9 16 19 26 71 36 69 46 152
7 7 17 36 27 32 37 115 47 114
8 5 18 33 28 77 38 63 48 80
9 9 19 21 29 26 39 92 49 83
10 18 20 44 30 95 40 31 50 97
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Fig. 2. Projection of the first N = 1000 points of different sequences over the 49th and 50th
coordinates: CMW (top left), VC (top middle), AD (top right) and FL (bottom left), WH (bottom
middle) and KW (bottom right)

common practice used by several authors, which is to use two-dimensional figures
showing the first few thousand points of a sequence to illustrate their good or bad
quality (see, e.g., Morokoff and Caflisch [1994]). On the other hand, theoretically
speaking, we should use M = pipj points when measuring the discrepancy of the
projection over the ith and jth coordinates. But this would require M ≈ 6 × 106

when i and j are close to 360. Instead, taking M = 2500 appears to be a good
compromise that allows the search to be performed in a reasonable time. As for
W , we experimented with a few other window sizes without noticing significant
changes in the performance of the sequence.
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5. PERFORMANCE MEASURES

To compare the different generalized Halton sequences studied in this paper, we per-
form empirical comparisons based on different types of integrands and assessment
methods. By doing so, we wish to recognize the two main approaches that can be
found in the literature for assessing the performance of low-discrepancy sequences.
First, one can use test-functions g where the integral

I(g) =

∫

[0,1)s

g(x)dx

can be computed exactly, and therefore (deterministic) low-discrepancy sequences
X1, X2, . . . can be compared by looking at the behavior of the absolute error
EN = |I(g) − QN | where QN =

∑N
i=1 g(Xi)/N (the relative error EN/I(g) can

also be used) as the number of function evaluations N increases. We can then
adjust different features of the integrand g (e.g., related to the concept of effec-
tive dimension, to be defined in Section 6.1) by choosing appropriate parameters.
Examples will be given in Section 6.

Test-functions may be considered somewhat artificial, and for this reason, in-
tegrands arising from more practical problems—such as the evaluation of finan-
cial products of various types—are often used to assess the performance of low-
discrepancy sequences. For such problems, the exact value of I(g) is typically
unknown. Hence in this case, if one still wants to use the absolute error EN to as-
sess the accuracy of QN , first an approximation for I(g) based on a very large value
of N (e.g., in the order of 219, as in Caflisch et al. [1997], or one million in Ninomiya
and Tezuka [1996]) must be performed. Although this approach is acceptable from
an academic point of view, practitioners faced with the problem of estimating I(g)
cannot realistically be expected to perform such a large a priori estimation for I(g)
in order to obtain some kind of accuracy measure for the approximation QN . A
more pragmatic approach is then to randomize the low-discrepancy sequence so
that a variance estimator and/or a confidence interval can be computed.

Several randomization techniques are available for generalized Halton sequences.
Most of them amount to apply randomly chosen permutations to the digits defining
the coordinates of the underlying deterministic sequence. Restrictions on the kind
of permutations used can be imposed. For instance, a random linear scrambling
means randomly chosen permutations of the form (19) are applied, independently
for each digit r ≥ 0 and dimension j = 1, . . . , s. A random digital shift is obtained
by setting fj,r = 1 and randomly choosing gj,r ∈ Zbj

in (18), again for each digit
r ≥ 0 and dimension j = 1, . . . , s. Compared to more general randomizations,
the random digital shift has the advantage of making a smaller perturbation to
the deterministic structure of the underlying quasi-random sequence. In particular,
the unanchored discrepancy D and T are invariant under a random digital shift for
one-dimensional generalized van der Corput sequences [Faure 2005].

Now, recall that our goal is to compare deterministic scramblings for the Halton
sequence. Hence, it makes sense for us to use the randomization that has as little
randomness as possible. In this way, we can make sure that comparisons based on
variance estimates will be as consistent as possible with the ones that could have
been made based on the absolute error of the underlying deterministic sequences,
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if I(g) had been known. To summarize, the three following assessment methods
will be used to compare sequences in Section 6: (i) the absolute error EN of the
deterministic sequences; (ii) the average absolute error over m randomizations of
the sequences, and (iii) the estimated variance of the randomized sequences. More
precisely, let

µ̂N,l =
1

N

N
∑

i=1

g(Xi ⊕ Vl), (23)

where ⊕ is a component-by-component digital addition performed in base bj for
the jth component, and V1, . . . , Vm are independent randomly chosen shifts. Then
the average absolute error is

1

m

m
∑

l=1

|µ̂N,l − I(g)| and σ̂2
N =

1

(m − 1)

m
∑

l=1

(µ̂N,l − µ̃N )2 (24)

is an unbiased estimator for the variance of µ̂N,l, where µ̃N = (
∑m

l=1 µ̂N,l)/m.

6. NUMERICAL EXPERIMENTS

As mentioned before, two main types of integrands will be tested. First, we con-
sider different test-functions that have been used in previous studies to assess the
performance of various constructions. Second, we look at integrands arising from
practical problems in financial mathematics. This section presents the integrands
used within these two categories.

6.1 Test-functions

There is a large number of test-functions that have been used by different authors
in comparative studies involving QMC methods. A very useful description of these
different functions can be found in Owen [2003]. We have chosen three such func-
tions, which allow us to test different aspects of the constructions under study.
These three functions are:

g1(x) =
s
∏

j=1

|4xj − 2| + αj

1 + αj
g2(x) =

s
∏

j=1

1 + c(xj − 0.5),

g3(x) = αsπ
−s/2 cos





√

√

√

√

1

2

s
∑

j=1

[Φ−1(xj)]2



 ,

where Φ−1(·) is the inverse cumulative distribution function of a standard normal
random variable, and x = (x1, . . . , xs). Note that g1 and g2 integrate to 1. For g3,
the constant αs is determined numerically so that g3 also integrates to 1.

The first function was proposed in Radovic et al. [1996] and is also used, e.g.,
in Wang and Hickernell [2000]. Here we consider the same choices that have been
studied in these two papers, that is (i) αj = 0.01, (ii) αj = 1; (iii) αj = j, and (iv)
αj = j2, for 1 ≤ j ≤ s.

As we go from (i) to (iv), the effective dimension (in the truncation sense) of
the function g1 decreases. The concept of effective dimension is defined precisely

ACM Journal Name, Vol. V, No. N, October 2008.



Generalized Halton Sequence in 2008: a Comparative Study · 19

in Caflisch et al. [1997]. Without going into the details, we say that g has an
effective dimension dT in the truncation sense if it can be well approximated by
a function that depends only on the first dT variables x1, . . . , xdT

. If g can be
well approximated by a sum of functions depending each on no more than dS of
the variables x1, . . . , xs, then we say g has an effective dimension of dS in the
superposition sense.

Functions with a small effective dimension dT are easy to integrate as long as
the point set used has good properties for its projections over the first dT coor-
dinates. The original Halton sequence should be quite sensitive to the effective
dimension dT , since we know its projections deteriorate quickly as the dimension
increases. A well-chosen generalized Halton sequence should be less sensitive, be-
cause the permutations should attenuate the bad behavior of the van der Corput
sequence in large bases. Hence this function allows us to test how sensitive the
different constructions are to the effective dimension (in the truncation sense) of
the integrand.

In order to better assess the overall quality of the tested sequences, we also studied
the choice αj = (s− j + 1)2 for 1 ≤ j ≤ s, which can be seen as the same choice as
(iv), but where we reverse the order of the coordinates of each point. We denote
this choice as (v). This means the effective dimension dT becomes large (probably
equal to the nominal dimension s), since now the most important variables are the
last ones xs, xs−1, and so on. We expect all sequences to have more difficulty with
this function, especially those who are not designed to break the bad behavior of
the van der Corput sequence in large bases. The idea of testing the sensitivity of a
sequence in this way has been used in Ninomiya and Tezuka [1996].

In our experiments, we tested the three dimensions s = 20, 50 and 150 for all
five cases (i) to (v). We excluded the origin when evaluating g1 as g1(0, . . . , 0) =
(2.01/1.01)s is very large for the case (i). Everywhere else, we include the origin.

The function g2 has been used in Sobol’ and Asotsky [2003]. The effective dimen-
sion of this function can also be adjusted, this time by choosing c appropriately.
Note that g2 is defined in a symmetric way, i.e., all variables xj contribute to g2

in the same way. Hence for this function, it makes more sense to use the effec-
tive dimension in the superposition sense in order to measure its difficulty. In our
experiments, we selected the same combinations (c, s) as in Sobol’ and Asotsky
[2003]: (0.1, 120), (0.25, 96), and (1, 150). For these three choices, we computed
the effective dimension in the superposition sense and found it was equal to 4, 6,
and 20, respectively (we used a threshold of 0.99 in the precise definition of dS given
in Caflisch et al. [1997]). This indicates that, for instance when (c, s) = (0.1, 120),
a point set with good projections over four-dimensional subspaces or less should
perform well to integrate this function, but the quality of the projections should
not deteriorate as the bases increase. Hence we expect the original Halton sequence
to have problems with g2 for all three choices of parameters. We also expect all
sequences to have problems integrating g2 when (c, s) = (1, 150), because of the
large peak at (1, . . . , 1).

By constrast with g1 and g2, the function g3 is not defined as a product. It is
instead part of a family of isotropic integrals, and was used in Papageorgiou and
Traub [1997] to demonstrate the superiority of QMC over Monte Carlo for this
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type of problems. This function is known to have a small effective dimension in the
superposition sense. For instance, in Owen [2003] it is shown that for s = 25, dS is
about 3. In our experiments, we tried s = 20, 50, and 120 for this function.

Summing up, in total we have tested 21 different test-functions (5 types of g1

with three dimensions each; three types of g2 and three dimensions for g3).

6.2 Integrands from finance

The first problem considered here is an option pricing problem. More precisely, we
wish to estimate the value at time 0 of an Asian call option on an underlying asset
that follows a lognormal distribution. Formally, the value at time 0 of this option
is given by the expectation

C0 = E



e−rU





1

s

s
∑

j=1

S(uj) − K





+

 (25)

where U is the expiration time of the contract, K is the strike price (also defined
in the option contract), S(u) is the price of the underlying asset at time u, and
0 < u1 < . . . < us = U are s times at which the asset price is observed in order
to compute the average used in (25), and r is the risk-free rate. The notation
x+ means max(0, x). The lognormal model means we assume S(u) is of the form

S(u) = S(0)e(µ−σ2/2)u+σ
√

uZ , where Z ∼ N(0, 1) is a standard Gaussian random
variable, and µ is the return rate on the asset. In the expectation (25) though, µ is
taken to be equal to r, based on risk-neutral pricing arguments. Hence the quantity
C0 can be written as an s-dimensional integral of the form

C0 = e−rU

∫

[0,1)s





1

s

s
∑

j=1

S(0)e(r−σ2/2)uj+σ
∑

j

l=1

√
∆lΦ

−1(xl) − K





+

dx1 . . . dxs,

where Φ−1 denote the inverse of the CDF of a N(0, 1), and ∆l = ul − ul−1. In our
experiments, we used S(0) = 50, U = 1 year, r = 0.05, σ = 0.3, uj = j/s, and two
choices of dimension: s = 40 and s = 75. We consider three choices for the strike
price: K ∈ {45, 50, 55}.

Several authors have studied the effective dimension for this type of problem
[Wang and Sloan 2005; Lemieux and Owen 2001]. A common conclusion is that
the effective dimension in the superposition sense is usually much smaller than s,
especially when K is small.

The second problem has been widely used in the quasi-Monte Carlo literature
[Paskov and Traub 1995; Ninomiya and Tezuka 1996; Caflisch et al. 1997]. The
following description follows Caflisch et al. [1997]. The goal here is to estimate the
value at time 0 of a financial instrument called a mortgage-backed security (MBS),

which is given by M0 = E
(

∑s
j=1 vjcj

)

, where vj is the discount rate for month j,

and cj is the cash-flow for month j. Both vj and cj are random quantities that can
be written as functions of the stochastic interest rate process {i0, i1, . . . , is}, and
that are determined by five parameters denoted K1, K2, K3, K4 and σ, in addition
to the initial rate i0. (Details are given in the online appendix.) The value for
s is chosen to be 360, since the contracts under study are 30-year long, and the
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Table III. Labels used for the tested sequences

MC H KW WH

Monte Carlo Halton Koc.-Whit. Wang-Hick.
1949 1960 1997 2000

det. perm. randomization

AD CMW VC FL

Atan.-Durch. Chi-Masc.-Warn. Vand.-Cools Fau.-Lem.
2003 2005 2006 2008
admissible int. select “good” fj fj = pj − 1 select “good” fj

quantities mentioned above are monitored monthly. In Caflisch et al. [1997], two
choices of parameters are used. The first one—which we denote linear below—
yields a 360-dimensional integrand that is nearly linear. By contrast, the second
one yields a function referred to as non-linear by Caflisch et al., although, as they
explain, it still has a large linear component, but not as extreme as in the “nearly
linear” case. In our experiments, we also report results based on the parameters
used in Ninomiya and Tezuka [1996], and refer to those as “Nin-Tez”.

These two problems have no analytical solutions. Hence, when we look at the
deterministic error, we use “benchmark prices” as given in Caflisch et al. [1997] and
Ninomiya and Tezuka [1996] for the MBS problem. For the Asian option problem,
we used a Sobol’ sequence with 2.5 × 106 points to determine those prices.

Summing up, in total we have tested nine different finance problems. Before
presenting the results, we recall in Table III the labels used for each construction.

6.3 Results

We have produced three figures for each of the 30 functions described in the previous
sub-sections: one showing the deterministic error EN for each construction, for
values of N going from 2000 to 100,000, increasing by 2000 each time; the second
shows the average error over 25 independent copies of the randomized estimators
(all using a digital shift) at the same values of N as for the deterministic error;
the third one shows the estimated variance σ̂2

N as given in (24), again for values of
N ranging between 2000 and 100,000. For all functions, as in Sobol’ and Asotsky
[2003], we give as a reference on the error plots the median error for the Monte
Carlo (MC) estimator based on N points, which is given by 0.6745σ/

√
N , where σ2

is the variance of the function g. For the variance plots, we show the MC variance
σ2/N . For the financial problems, we replace (the unknown) σ2 by an estimate
based on N = 100, 000 simulations.

For problems with dimension s ≤ 50, we do not show VC among the randomized
constructions; when s > 50, since parameters for CMW are not available, then we
show VC so that with the randomized constructions, we always compare a total of
six methods in addition to MC. We chose to drop VC because it was very similar
to Halton in most cases.

The 90 figures for these 30 functions are all given in the online appendix, with
one page for each function. (In the online appendix, we have also added the case
K = 60 and s = 40 for the Asian option, and results for N up to 106 for g1, case (i)
with s = 50, and the Asian option with K = 55 and s = 75.) Here, we summarize
the results in three tables: Table IV is for g1, Table V is for g2 and g3, and Table
VI is for the financial problems. In these tables, the notation “A>B” means the
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Table IV. Summary of the results for g1 for (i) αj = 0.01; (ii) αj = 1; (iii) αj = j; (iv) αj = j2;
and (v) αj = (s − j + 1)2; the notation A > B means A did worse than B

g1 (i) s = 20 s = 50 s = 150

Det. H, VC > MC H, VC >> MC H, VC, KW > MC
KW > MC

Rand.: Best are FL, KW All have jumps All have jumps

This is a difficult function, and already with s = 50 we observe jumps in the error due
to function evaluation in the problematic region near (1, . . . , 1). H, VC and KW get huge
deterministic errors with s ≥ 50. FL behaves well.

(ii) s = 20 s = 50 s = 150

Det.: All good H, VC >> MC H, VC >> MC
KW > MC KW > MC

Rand.: FL best H, WH > MC All have jumps
FL and CMW best FL, WH and AD best

KW does not do well on this function.

(iii) s = 20 s = 50 s = 150

Det.: All good All good VC a bit worse
Rand.: All good Clear separ. Clear separ.

H, WH > H, WH, VC >

AD, FL, KW, CMW AD, FL, KW

Here we see the separation H,WH,VC vs AD,FL,CMW,KW that appears elsewhere.

(iv) s = 20 s = 50 s = 150
Det.: All good All good All good
Rand.: All good All good All good, FL seems

slightly better

This function is easy and does not allow to distinguish the constructions.

(v) s = 20 s = 50 s = 150
Det.: All good H, VC > AD,FL,KW,CMW H, VC > MC
Rand.: Clear separ. Clear separ. Clear separ.

H, WH > H, WH > H, VC, WH >

AD, KW > FL, CMW AD, KW > FL, CMW KW > AD, FL

Inversing the order is especially bad for H, VC and WH. All constructions show cyclical
behavior in error. FL always among the best (not true for AD and KW).

sequence “A” is worse than “B”.

We also give an excerpt of the most representative results obtained.

For the function g1, in some cases we get an easy integrand for which all con-
structions work well: the most obvious example is the case (iv), which has a very
small effective dimension in the truncation sense. The cases (i) and (ii) turn out
to be quite challenging, causing H, WH and VC to sometimes be much worse than
MC—especially without a randomization—as shown on Figures 3 and 4. As we see
there, the randomization significantly improves H.

Looking at what happens when the order of the variables is reversed—correspon-
ding to (v)— is quite interesting: while with the original order—corresponding to
(iv)—all sequences are very good, with the order reversed, the sequences do not
behave as well, especially H, WH and VC, which are worse than MC for s = 150.
The better constructions, although they still behave better than MC, surely have
less uniformity in those high dimensions than in the earlier ones, thereby their
associated error for this type of function is larger than it was for the case (iv), and
can exhibit a cyclical behavior, as seen on Figure 5.

Both g2 and g3 have an effective dimension in the superposition sense smaller than

ACM Journal Name, Vol. V, No. N, October 2008.



Generalized Halton Sequence in 2008: a Comparative Study · 23

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

N=number of points

ab
so

lu
te

 e
rr

or

 

 
FL
AD
KW
H
VC
CMW
MC

Fig. 3. Deterministic error for g1, case (ii) with s = 50: H and VC are much worse than MC
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Fig. 4. Average absolute error for g1, case (ii) with s = 50: although the random digital shift
helps H, it is still worse than MC
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Fig. 5. Estimated variance for g1, case (v) with s = 50: FL seems the best; H and WH barely
improve upon MC

Table V. Summary of the results for g2 and g3; A > B means A did worse than B

g2 (c, s) (0.1,120) (0.25, 96) (1,150)

Det.: H,VC > MC H,VC > MC H,VC,KW > MC
Rand.: Clear separ. Clear separ. Jumps due to

H,WH,VC > H,WH,VC > problematic
AD,FL,KW AD,FL,KW region

g3 s 20 50 120

Det.: H close to MC H, VC> MC H, VC > MC
Rand.: All good Clear separ. Clear separ.

H, WH slightly worse than H,WH,VC > H,WH,VC >

FL, CMW, AD and KW AD,FL,KW AD,FL,KW

s. However, since the truncation effective dimension is not small, these functions
can still be challenging for sequences whose quality deteriorate in the higher-valued
indices. In Figures 6 and 7, we show the average error for g2 with (c, s) = (0.25, 96),
and the estimated variance for g3 when s = 120, respectively. In both cases, we see
a clear separation between H, WH and VC versus AD, FL and KW. With g2, the
group H–WH–VC is worse than MC for small values of N .

For the Asian option problem, in dimension 40 there was not such a clear dif-
ference between the different constructions, but when we increased to s = 75, then
it became clear that AD, FL, and KW were superior to H,WH and VC. As an
illustration, Figure 8 shows the estimated variance when s = 75 and K = 50.

For the mortgage-backed security, the “Nin-Tez” set of parameters was such
that all functions performed well. According to some preliminary tests we did, it
seems like this particular choice of parameters causes the effective dimension in the
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Fig. 6. Average error for g2 with (c, s) = (0.25,96): H, WH and VC are barely better than MC
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Fig. 7. Estimated variance for g3 with s = 120: the group FL-AD-KW does clearly better than
H-WH-VC
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Table VI. Summary of the results for financial problems; A > B means A did worse
than B

As. opt. s = 40 K = 45 K = 50 K = 55

Det.: H,VC> MC H,VC> MC H,VC > MC
CMW > AD,FL,KW

Rand.: H,WH,AD > H worse All good, FL slightly
FL,KW,CMW better

As. opt. s = 75 K = 45 K = 50 K = 55

Det.: H,VC > MC H,VC > MC H,VC > MC
Rand.: Clear separ. Clear separ. Clear separ.

H,WH,VC > H,WH,VC > H,WH,VC >

AD,FL,KW AD,FL,KW AD,FL,KW

MBS type nearly lin. non-lin. Nin-Tez

Det.: H,VC > MC H > MC H worse but
AD > FL, KW VC erratic better than MC

Rand.: Clear separ. Clear separ. All good
H,WH,VC > H,WH,VC >

AD > FL, KW AD,FL,KW
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Fig. 8. Estimated variance for Asian option with s = 75 and K = 50: here also, the group
FL-AD-KW is clearly better than H-WH-VC

truncation sense to be quite small (around 20 or so). We think this might be the
explanation for the behavior observed. With the two other sets of parameters, there
was once again a clear distinction between H, WH, VC and AD, FL, KW. However,
with the “nearly linear” set of parameters, AD was not performing as well as FL
and KW. Figure 9 illustrates this.
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Fig. 9. Average error for mortgage-backed security, nearly linear case: FL and KW are best,
followed by AD, then H-WH-VC

7. CONCLUSION

In this paper, we reviewed recent results on generalized Halton sequences, and
proposed a new sequence (FL) whose parameters have been found by a computer
search where the quality of one and two-dimensional projections is assessed via
the L2-discrepancy. Our numerical results indicate that deterministic generalized
Halton sequences based on non-trivial permutations such as ours outperform the
original Halton sequence and modifications (WH, VC) that retain some of the inher-
ent problems of the Halton sequence, in particular with respect to bi-dimensional
correlations. We think these constructions should be avoided, especially the deter-
ministic versions (H,VC).

Among the remaining tested sequences, CMW has the disadvantage that factors
only up to dimension 50 have been published. While this could presumably be
extended, it does not seem obvious that the somewhat loose arguments used to
find these factors would provide a good construction in higher dimensions. AD
rests on a strong theoretical background, but the issue concerning the powers of
the admissible integers—starting at 0 or 1—shows a gap between the underlying
theoretical results of this construction and its quality in practice. Furthermore,
it is quite possible that another choice of admissible integers would have given
significantly different results, which would imply that one needs a complementary
method for choosing “good” admissible integers. KW appears to perform relatively
well, although there were some cases in our numerical experiments where it was
doing worse than Monte Carlo. We thus think it cannot be safely recommended.
It also requires much more memory to store the parameters and time to generate
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the sequence.
Based on this, we think the FL sequence is a generalized Halton sequence with

good properties that can be recommended to practitioners. Our numerical experi-
ments indicate that it is always among the group of best constructions, and never
does worse than Monte Carlo. This suggests that it can be used safely for a variety
of problems. Furthermore, our approach for finding multipliers for the FL sequence
could easily be adjusted to take into account specific information one might have
on the functions to be integrated, by simply adjusting the search criterion (22) to
another one that measures properties that are relevant for the problem at hand (for
instance, higher-dimensional projections). We should also point out that our kind
of search for “good” multipliers can be done relatively quickly on a computer, since
we only search one integer per dimension, and do so among a short list of candi-
dates, which themselves can be obtained very quickly with an effective theoretical
support in one dimension. This is much faster than having to search among all
possible permutations, in which case one has to rely on a random search in order
to keep the computation time reasonably low, as done in Tuffin [1998].

Another point to discuss in light of the results presented in the previous section
is the question of whether or not randomizations should be used with generalized
Halton sequences. Given the fact that in no case we observed a deterioration of the
quality of an approximation when performing a random digital shift—and in some
cases, significant improvements were observed by using such shifts—we think it is
generally recommendable to use such randomizations. In addition, as discussed in
Section 5, it has the advantage of providing an error estimate for the approximation.

Finally, in the numerical experiments presented in this paper, we have not com-
pared generalized Halton sequences with other constructions, such as those falling
in the category of (t, s)-sequences. Such comparisons would clearly have to be made
if one was trying to determine which construction works best for a given problem.
Our goal here was instead to focus on generalized Halton sequences and study which
constructions in this group could be recommended to practitioners for a large class
of problems. Based on the knowledge acquired in this paper, we plan to pursue our
study and establish comparisons with several (t, s)-sequences in the near future.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/

journals/jn/2008-V-N/p1-URLend.

ACKNOWLEDGMENTS

We wish to thank Harald Niederreiter for his useful comments on this work. We
also thank Emanouil Atanassov for useful discussions on his modified sequence.
Xiaoheng Wang—while he was an undergraduate student in the Faculty of Math-
ematics at the University of Waterloo—helped improve the running time of some
computations, and we also thank him for useful insight and discussion on this work.
This revised version has greatly benefited from comments of three reviewers. The
second author gratefully acknowledges the financial support of NSERC.

ACM Journal Name, Vol. V, No. N, October 2008.



Generalized Halton Sequence in 2008: a Comparative Study · 29

REFERENCES

Atanassov, E. 2004. On the discrepancy of the Halton sequences. Mathematica Balkanica 18,
15–32.

Atanassov, E. and Durchova, M. 2003. Generating and testing the modified Halton sequences.
In Fifth International Conference on Numerical Methods and Applications, Borovets 2002,
Springer-Verlag, Ed. Lecture Notes in Computer Science, vol. 2542. Berlin, 91–98.

Bach, E. and Shallit, J. 1996. Algorithmic Number Theory. Vol. 1. MIT Press, Cambridge,
MA.

Braaten, E. and Weller, G. 1979. An improved low-discrepancy sequence for multidimensional
quasi-Monte Carlo integration. Journal of Computational Physics 33, 249–258.

Caflisch, R. E., Morokoff, W., and Owen, A. B. 1997. Valuation of mortgage-backed se-
curities using Brownian bridges to reduce effective dimension. The Journal of Computational
Finance 1, 1, 27–46.

Cheng, J. and Druzdzel, M. 2000. Computational investigation of low-discrepancy sequences
in simulation algorithms for bayesian networks. In Uncertainty in Artificial Intelligence Pro-
ceedings 2000. 72–81.

Chi, H., Mascagni, M., and Warnock, T. 2005. On the optimal Halton sequence. Mathematics
and Computers in Simulation 70, 9–21.
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A. LIST OF FACTORS

Table VII gives the first 360 factors for the FL sequence. These multipliers can also
be downloaded from www.math.uwaterloo.ca/~clemieux/FLFactors.html.

B. GETTING ASYMPTOTIC ORDERS FOR CS

Here, we use the following results from number theory [Bach and Shallit 1996]: (i)

for the n-th prime pn (n ≥ 3), we have n log n + 1 < pn < n
3
2 ; (ii) from Stirling

formula, we have that s log s−s < log(s!) < s log s; (iii) below, qs ≥ s represents the
base used in dimension s for the Faure sequence, and we will make use of Bertrand’s
postulate, which says that we can find a prime qs satisfying s ≤ qs ≤ 2s.

Also, it is easier to compare the logarithms, so we will compare the quantities
λs and µs for log cs with cs given by (8) and (9), which are respectively for the
Halton and Halton-Atanassov sequences. Similarly, ρs, τs and νs are used to denote
log cs for the value of cs given in (11), (10), and (12), which are respectively for
(0, s)-sequences in varying base qs, Sobol’ sequences in base 2, and (t, s)-sequences
in a fixed base b.

Hence we get:

λs =
s
∑

j=1

log
(pj − 1

log pj

)

− log(s!)

µs = s log 2 + log
(

s
∑

j=1

log pj

s
∏

j=1

pj(1 + log pj)

(pj − 1) log pj

)

− log(s!)

ρs = s log
(qs − 1

log qs

)

− log(s!)

τs = (ts + s) log 2 − s log log 2 − log(s!),
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Table VII. First 360 factors for the FL sequence
j fj j fj j fj j fj j fj j fj

1 1 46 152 91 269 136 431 181 305 226 1007 271 1075 316 856
2 1 47 114 92 292 137 295 182 460 227 622 272 682 317 1229
3 3 48 80 93 215 138 557 183 599 228 549 273 1245 318 1619
4 3 49 83 94 182 139 172 184 335 229 613 274 401 319 774
5 4 50 97 95 294 140 343 185 258 230 799 275 774 320 1229
6 9 51 95 96 152 141 472 186 649 231 408 276 1026 321 1300
7 7 52 150 97 148 142 604 187 771 232 856 277 499 322 1563
8 5 53 148 98 144 143 297 188 619 233 601 278 1314 323 1551
9 9 54 55 99 382 144 524 189 666 234 1072 279 743 324 1265
10 18 55 80 100 194 145 251 190 669 235 938 280 693 325 905
11 18 56 192 101 346 146 514 191 707 236 322 281 1282 326 1333
12 8 57 71 102 323 147 385 192 737 237 1142 282 1003 327 493
13 13 58 76 103 220 148 531 193 854 238 873 283 1181 328 913
14 31 59 82 104 174 149 663 194 925 239 629 284 1079 329 1397

15 9 60 109 105 133 150 674 195 818 240 1071 285 765 330 1250
16 19 61 105 106 324 151 255 196 424 241 1063 286 815 331 612
17 36 62 173 107 215 152 519 197 493 242 1205 287 1350 332 1251
18 33 63 58 108 246 153 324 198 463 243 596 288 1144 333 1765
19 21 64 143 109 159 154 391 199 535 244 973 289 1449 334 1303
20 44 65 56 110 337 155 394 200 782 245 984 290 718 335 595
21 43 66 177 111 254 156 533 201 476 246 875 291 805 336 981
22 61 67 203 112 423 157 253 202 451 247 918 292 1203 337 671
23 60 68 239 113 484 158 717 203 520 248 1133 293 1173 338 1403
24 56 69 196 114 239 159 651 204 886 249 1223 294 737 339 820
25 26 70 143 115 440 160 399 205 340 250 933 295 562 340 1404
26 71 71 278 116 362 161 596 206 793 251 1110 296 579 341 1661
27 32 72 227 117 464 162 676 207 390 252 1228 297 701 342 973
28 77 73 87 118 376 163 425 208 381 253 1017 298 1104 343 1340
29 26 74 274 119 398 164 261 209 274 254 701 299 1105 344 1015
30 95 75 264 120 174 165 404 210 500 255 480 300 1379 345 1649
31 92 76 84 121 149 166 691 211 581 256 678 301 827 346 855
32 47 77 226 122 418 167 604 212 345 257 1172 302 1256 347 1834
33 29 78 163 123 306 168 274 213 363 258 689 303 759 348 1621
34 61 79 231 124 282 169 627 214 1024 259 1138 304 540 349 1704
35 57 80 177 125 434 170 777 215 514 260 1022 305 1284 350 893
36 69 81 95 126 196 171 269 216 773 261 682 306 1188 351 1033
37 115 82 116 127 458 172 217 217 932 262 613 307 776 352 721
38 63 83 165 128 313 173 599 218 556 263 635 308 853 353 1737
39 92 84 131 129 512 174 447 219 954 264 984 309 1140 354 1507
40 31 85 156 130 450 175 581 220 793 265 526 310 445 355 1851
41 104 86 105 131 161 176 640 221 294 266 1311 311 1265 356 1006
42 126 87 188 132 315 177 666 222 863 267 459 312 802 357 994
43 50 88 142 133 441 178 595 223 393 268 1348 313 932 358 923
44 80 89 105 134 549 179 669 224 827 269 477 314 632 359 872
45 55 90 125 135 555 180 686 225 527 270 716 315 1504 360 1860

and for νs we have (using the bounds of Kritzer [2006] for s ≥ 5)

νs =

{

ts log b + s(log(b − 1) − log log b) − log 2 − log(s!) for b odd
ts log b + s(log b − log log b) + log b−1

2(b+1) − log(s!) for b ≥ 4 even

In the formula for τs, we will use the bound ts ≤ (s log s + s log log s)/ log 2 +
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o(s log log s), while as mentioned before, ts = O(s) in the best constructions of
Niederreiter and Xing.

With the help of our reminders on prime numbers and with s log s−s < log(s!) <
s log s (from Stirling’s formula), we get

−s log(1.5) < λs < − log s + O(1),

−s log s < µs < −s log s + s(2 + log 2) + log log(s!) + log(1.5) = −s log s + O(s),

−s log log s < ρs < −s log log s + s(1 + log(2)) = −s log log s + O(s),

τs < −s log s + ts log 2 + s(1 + log 2) = s log log s + O(s),

−s log s < νs < −s log s + ts log b + s(1 + log b) = −s log s + O(s).

C. EXPERIMENTS ON G1

For the function g1, as mentioned in Section 6 of the paper, the effective dimension
in the truncation sense decreases as we go from case (i) to (iv). Furthermore, case
(v) is the same as (iv) but with the order of the coordinates reversed. Hence (v) has
a truncated effective dimension that is presumably equal to the nominal dimension
s: however the superposed effective dimension is no larger than the truncated
effective dimension of (iv).

What we see for the case (i) is that when s = 20 (Figure 10), some constructions
are already worse than MC: in fact, only FL and KW are always better than MC.
When s = 50 (Figure 11), the deterministic versions of H and VC are quite bad.
When randomized, all methods are usually better than MC, but the large jumps
in the error or variance (due to an evaluation of f in the problematic region near
(1, . . . , 1)) might cause some methods to become worse than MC: it is observed with
the variance of KW. We also show on Figure 12 results for N up to 106. There,
we see that H is still showing jumps in its error around N = 800, 000, while, for
example, FL seems to settle around N = 200, 000. When s = 150, Figure 13 shows
that the deterministic H and VC methods are very bad; KW is worse than MC; FL
and AD are “good”, but what happens here is that the function has such a huge
peak that what seems the best possible behavior is to return an estimate of 0 with
error 1. In fact, all methods end up doing that when randomized.

For the case (ii), with s = 20 (Figure 14) all methods are better than MC, and
FL seems to be the best in the randomized case, at least for larger values of N .
Already when s = 50 (Figure 15), deterministic H and VC are much worse than
MC, and KW is also slightly worse. AD struggles to be better than MC. So here
FL and CMW seem best. With s = 150 (Figure 16), in the deterministic case the
results are similar to case (i), but with the randomization, some methods (WH,
AD, FL, KW) achieve an error of about 0.4 by the time N = 100, 000.

The case (iii) and (iv) with s = 20 are similar (Figures 17 and 20), in that all
methods perform quite well. However for (iii) when s = 50 or s = 150 (Figures
18 and 19), when the methods are randomized there is a clear difference between
the performance of H, WH, and VC compared to FL, AD, KW and CMW (with
s = 50). This does not happen with (iv), where all methods are quite comparable
when s = 50 or s = 150 (Figures 21 and 22).

With (v), already at s = 20 we see on Figure 23 that H, VC, and WH are not
doing as well as FL, AD, KW and CMW. When s = 50 (Figure 24), they are about
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the same as MC, and then when s = 150 (Figure 25) they are much worse than MC.
When s = 50 we see some cycles in H, VC and WH, while when s = 150, it is FL
and AD who have cycles. We think perhaps KW avoid this cyclical behavior for its
error because it uses permutations that are less regular than a simple multiplication
by a factor, the latter being more subject to produce this type of behavior in large
bases.
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Fig. 10. Function g1, case (i) with s = 20; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 11. Function g1, case (i) with s = 50; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 12. Function g1, case (i) with s = 50 and N up to 106; deterministic error (top), average
absolute error (middle), and estimated variance (bottom)
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Fig. 13. Function g1, case (i) with s = 150; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 14. Function g1, case (ii) with s = 20; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 15. Function g1, case (ii) with s = 50; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 16. Function g1, case (ii) with s = 150; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 17. Function g1, case (iii) with s = 20; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 18. Function g1, case (iii) with s = 50; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 19. Function g1, case (iii) with s = 150; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 20. Function g1, case (iv) with s = 20; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 21. Function g1, case (iv) with s = 50; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 22. Function g1, case (iv) with s = 150; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 23. Function g1, case (v) with s = 20; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 24. Function g1, case (v) with s = 50; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 25. Function g1, case (v) with s = 150; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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D. EXPERIMENTS ON G2

For the function g2, although the case (c, s) = (0.1, 120) (Figure 26) has a small
superposed effective dimension, we see that H, VC and WH are significantly less
performing than AD, FL and KW, because the truncated effective dimension of
this function is quite large, and thus poor low-dimensional projections for those
higher indices are causing the approximation to be not so good. The same kind
of behavior is observed in Figure 27, for the case (c, s) = (0.25, 96). There, even
with the randomization, H, VC and WH are worse than MC for smaller values of
N . The (hard) case (c, s) = (1, 150), shown in Figure 28, exhibits behavior similar
to the one seen on the difficult cases (i) and (ii) for g1. It is worth noting that
deterministic KW does quite badly for this problem.

E. EXPERIMENTS ON G3

For the function g3, we see that with s = 20 (Figure 29), all sequences perform well,
although H and WH seem slightly worse in the randomized versions. When s = 50
(Figure 30), H and VC do worse than MC in the deterministic case, and there is a
clear separation between the performance of FL, AD, CMW and KW, versus H and
WH in the randomized case. Similar observations—perhaps just amplified—can be
made when s = 120, as can be seen in Figure 31.

ACM Journal Name, Vol. V, No. N, October 2008.



App–22 · H. Faure and C. Lemieux

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

N=number of points

ab
so

lu
te

 e
rr

or

 

 
FL
AD
KW
H
VC
MC

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

N=number of points

av
er

ag
e 

ab
so

lu
te

 e
rr

or

 

 
FL
AD
KW
H
WH
VC
MC

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

N=number of points

es
t. 

va
ria

nc
e

 

 
FL
AD
KW
H
WH
VC
MC

Fig. 26. Function g2 with c = 0.1 and s = 120; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 27. Function g2 with c = 0.25 and s = 96; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 28. Function g2 with c = 1 and s = 150; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 29. Function g3 with s = 20; deterministic error (top), average absolute error (middle), and
estimated variance (bottom)
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Fig. 30. Function g3 with s = 50; deterministic error (top), average absolute error (middle), and
estimated variance (bottom)
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Fig. 31. Function g3 with s = 120; deterministic error (top), average absolute error (middle), and
estimated variance (bottom)
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F. ASIAN OPTION

For the Asian option, for both s = 40 and s = 75, the deterministic versions of H
and VC are worse than MC for all strike prices (top graph in Figures 32 to 38).
With the randomization, when s = 40 the methods are quite comparable, but H
and WH are a bit worse than the others. When we increase the dimension (Figures
36 to 38), even with the randomization, H, WH and VC are clearly worse than FL,
AD, and KW.

For the last case (K = 55 and s = 75), we have extended the results up to
N = 106, graphing the error and variance at each multiple of 5000. The results are
shown on Figure 39.
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Fig. 32. Asian option with K = 45 and s = 40; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 33. Asian option with K = 50 and s = 40; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 34. Asian option with K = 55 and s = 40; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 35. Asian option with K = 60 and s = 40; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 36. Asian option with K = 45 and s = 75; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 37. Asian option with K = 50 and s = 75; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 38. Asian option with K = 55 and s = 75; deterministic error (top), average absolute error
(middle), and estimated variance (bottom)
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Fig. 39. Asian option with K = 55 and s = 75 for up to N = 106; deterministic error (top),
average absolute error (middle), and estimated variance (bottom)
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G. EXPERIMENTS ON MORTGAGE-BACKED SECURITY

We start by describing the problem in details, following Caflisch et al. [1997]. The
goal here is to estimate an expectation of the form

M0 = E





s
∑

j=1

vjcj



 ,

which represents the time-0 value of this contract. Here vj is the discount factor for
month j, and cj is the cash-flow for month j. Both of these quantities depend on
the interest rate process in the following way: let il be the interest rate for month
l. As in Caflisch et al. [1997], we use the interest-rate model

il = K0e
ξlil−1,

where ξl ∼ N(0, σ2). Then

vl =

l−1
∏

k=0

(1 + ik)−1,

and

cl = crl((1 − wl) + wlαl),

where

c = monthly mortgage payment,

wl = fraction of remaining mortgages prepaying in month l,

= K1 + K2 arctan(K3il + K4),

rl = fraction of remaining mortgages at month l,

=
l−1
∏

k=1

(1 − wl),

αl = (remaining annuity at month l)/c,

=
s−l
∑

k=0

(1 + i0)
−k.

Hence the problem is completely specified by the parameters (i0, K0, σ
2) for the

interest rate model, and (K1, K2, K3, K4) for the prepayment model. As in [Caflisch
et al. 1997], we choose K0 = exp(−σ2/2) so that E(ik) = i0. Hence overall, we need
to specify (K1, K2, K3, K4, σ, i0). In [Caflisch et al. 1997], two sets of parameters
are chosen: the first one is given by

(K1, K2, K3, K4, σ, i0) = (0.01,−0.005, 10, 0.5, 0.02, 0.007),

and is such that the 360-dimensional function g(·) satisfying

M0 =

∫

[0,1)360
g(x)dx,
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where x = (x1, . . . , xs), is almost linear in its 360 inputs x1, . . . , xs. The second
choice

(K1, K2, K3, K4, σ, i0) = (0.04, 0.0222,−1500, 7, 0.02, 0.007)

does not have such a strong linear component. Following [Caflisch et al. 1997], they
are referred to as “almost linear” and “non-linear”, respectively, in what follows.
The other set of parameters that was tested is the one from Ninomiya and Tezuka
[1996], given by

(K1, K2, K3, K4, σ, i0) = (0.24, 0.134,−261.17, 12.72, 0.2, 0.00625).

For the mortgage-backed security, with the nearly linear set of parameters (Figure
40), FL and KW are the best, followed by AD, and then H, WH and VC. Just
like for the Asian option, H and VC are much worse than MC when there is no
randomization (top graph). Similar observations can be made for the non-linear
case (Figure 41), except now AD is as good as FL and KW, and also all deterministic
versions are slightly worse than MC, except for VC which becomes better than MC
after N = 50, 000. All methods do very well with the Nin-Tez set of parameters,
as can be seen in Figure 42. As discussed in the paper, is probably due to the very
low truncated effective dimension of this problem.

H. STUDYING THE ADMISSIBLE INTEGERS’ POWER FOR HALTON-ATANASSOV

As mentioned in the paper, for the deterministic Halton-Atanassov sequence, al-
though the theoretical support via the improved bounds on cs holds for the version
of that sequence where the powers of the admissible integers start at r = 0, starting
the powers at r = 1 is much better in practice. Here, we show on Figure 43 (right)
the 49th and 50th coordinates of the first 1000 points for the Halton-Atanassov
sequence with powers starting at 0. It is practically identical to the plot for the
Halton sequence, shown on the left-hand side.

From Figure 43, one can infer that this “power-0-AD” sequence is unlikely to
perform better than Halton on integration problems where the number of points
N is relatively small. To illustrate this, we chose to show the results obtained by
this (deterministic) sequence on two problems where the AD sequence performed
very well: the function g2 with c = 0.1 and s = 120, and for the Asian call option
with K = 55 and s = 75. Results are shown in Figures 44 and 45, respectively. On
these two figures, for the Halton sequence we only show markers since otherwise,
the (green) line for AD is not visible as it is superimposed onto the line for the
Halton sequence. This suggests that although the “power-0-AD” sequence has
better theoretical asymptotic properties than the Halton sequence, the number of
points required for this advantage to show is much larger than the number of points
N typically used in practical applications.
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Fig. 40. Mortgage-backed security, nearly linear set of parameters; deterministic error (top),
average absolute error (middle), and estimated variance (bottom)
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Fig. 41. Mortgage-backed security, non-linear set of parameters; deterministic error (top), average
absolute error (middle), and estimated variance (bottom)
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Fig. 42. Mortgage-backed security, set of parameters used by Ninomiya and Tezuka; deterministic
error (top), average absolute error (middle), and estimated variance (bottom)
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Fig. 43. 49th and 50th coordinates of the 1000 first points of Halton (left) and AD when the
powers start at r = 0 (right)

Fig. 44. Performance of the power-0-AD sequence on the function g2 with c = 0.1 and s = 120
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Fig. 45. Performance of power-0-AD sequence on the Asian option problem with K = 55 and
s = 75
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