
Optimal Reinsurance with Regulatory Initial Capital

and Default Risk

Jun Cai, Christiane Lemieux, Fangda Liu

Department of Statistics and Actuarial Science

University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

Abstract

In a reinsurance contract, a reinsurer promises to pay the part of the loss faced by an

insurer in exchange for receiving a reinsurance premium from the insurer. However, the rein-

surer may fail to pay the promised amount when the promised amount exceeds the reinsurer’s

solvency. As a seller of a reinsurance contract, the initial capital or reserve of a reinsurer

should meet some regulatory requirements. We assume that the initial capital or reserve

of a reinsurer is regulated by the value-at-risk (VaR) of its promised indemnity. When the

promised indemnity exceeds the total of the reinsurer’s initial capital and the reinsurance

premium, the reinsurer may fail to pay the promised amount or default may occur. In the

presence of the regulatory initial capital and the counterparty default risk, we investigate

optimal reinsurance designs from an insurer’s point of view and derive optimal reinsurance

strategies that maximize the expected utility of an insurer’s terminal wealth or minimize the

VaR of an insurer’s total retained risk. It turns out that optimal reinsurance strategies in the

presence of the regulatory initial capital and the counterparty default risk are different both

from optimal reinsurance strategies in the absence of the counterparty default risk and from

optimal reinsurance strategies in the presence of the counterparty default risk but without

the regulatory initial capital.

Keywords: Optimal Reinsurance, Reinsurance Premium, Value-at-Risk, Counterparty De-

fault Risk, Utility Function, Convex Order.
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1 Introduction

Reinsurance is an important risk management tool for an insurer and has been an interesting

research topic in actuarial science. In a static reinsurance model or one-period reinsurance

model, one assumes that the underlying (aggregate) loss faced by an insurer in a fixed time

period is a non-negative random variable X with survival function SX(x) = Pr{X > x} =

1 − FX(x). In a reinsurance contract, a reinsurer agrees to pay the part of the loss X,

denoted by I(X), to the insurer at the end of the contract term, while the insurer will pay

a reinsurance premium, denoted by PI , to the reinsurer when the contract is signed, where

the function I(x) is called ceded loss function or indemnification function. Thus, under the

reinsurance contract I, the retained loss for the insurer is R(X) = X − I(X), where the

function R(x) = x− I(x) is called retained loss function. In order to avoid any moral issue,

a feasible reinsurance contract I should satisfy the following two conditions:

(1) I : [0,∞)→ [0,∞) such that I(0) = 0 and I is non-decreasing;

(2) I(y)− I(x) ≤ y − x, for any 0 ≤ x ≤ y.

These two conditions imply that both I(x) and R(x) are continuous and non-decreasing on

[0,∞). The first condition means that the larger is the incurred loss by an insurer, the larger

is the covered loss by a reinsurer. The second condition implies that the growth rate of the

covered loss by a reinsurer should not be faster than the growth rate of the underlying loss

faced by an insurer.

Throughout this paper, we denote the set of all feasible reinsurance contracts satisfying

conditions (1) and (2) by I and define (a)+ = max{a, 0}, a ∧ b = min{a, b}, and a ∨ b =

max{a, b}. In addition, we interpret the term “increasing” to mean “non-decreasing”, while

“decreasing” means “non-increasing”.

The purpose of optimal reinsurance design is to find ceded loss functions I∗, which are

optimal under certain optimization criteria. Optimal reinsurance from an insurer’s point

of view has been studied extensively in the literature. Two commonly used optimization

criteria are maximizing the expected utility of an insurer’s terminal wealth and minimizing

the risk measure of an insurer’s total retained risk. Some recent references on optimal

reinsurance under different risk measures include Balbás et al. (2009), Asimit, Badescu and

Verdoncj (2013), Cai et al. (2008), Cheung (2010), Chi (2012), Chi and Tan (2011), and so

on. In addition, the one-period reinsurance model with one loss variable has been extended

to models with more insurance lines of business or to models that discuss the interests of

both insurers and reinsurers. Recent references on these issues can be found in Cai and Wei

(2012), Cai et al. (2013), Cheung et al. (2013), Hürlimann (2011), and references therein.
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In most studies on optimal reinsurance, one assumes that a reinsurer will pay the promised

loss I(X) regardless of its solvency or equivalently, one ignores the potential default by a

reinsurer. Indeed, default risk can be reduced if a reinsurer has a sufficiently large initial

capital or reserve. However, default might occur even if the initial capital of a reinsurer is

very large. In a reinsurance contract I, a reinsurer may fail to pay the promised amount

I(X) or a reinsurer may default due to different reasons. One of the main reasons could be

that the promised amount I(X) exceeds the reinsurer’s solvency. The larger is the initial

reserve of a reinsurer, the smaller is the likelihood that default will occur. This is why the

initial capital of a seller (reinsurer) of a reinsurance contract should meet some requirements

by regulations to reduce default risk.

Recently, counterparty default risks in reinsurance designs or other related studies have

been discussed in Asimit, Badescu, and Cheung (2013), Bernard and Ludkovski (2012),

Burren (2013), Cummins et al. (2002), Dana and Scarsini (2007), Menegatti (2009), and

references therein. Several models with default risks have been proposed in these references.

However, in the references for reinsurance designs with default risks such as Asimit, Badescu,

and Cheung (2013), Bernard and Ludkovski (2012), and so on, they assume a constant initial

capital or reserve for a reinsurer regardless of how large a reinsurer’s promised amount I(X)

is, or they do not consider the influence of a reinsurer’s initial reserve on optimal reinsurance

strategies. Indeed, a reasonable requirement on a reinsurer could be that the larger is the

promised indemnity of a reinsurer, the larger the initial reserve of a reinsurer should be.

In this paper, we propose a reinsurance model with regulatory initial capital and default

risk. We assume that the initial capital or reserve of a seller (reinsurer) of a reinsurance

contract I is determined through regulation by the value-at-risk (VaR) of its promised in-

demnity I(X), and denote the initial capital of the reinsurer by ωI = VaRα(I(X)), where

VaRα(Z) = inf{z : Pr{Z > z} ≤ α} is the VaR of a random variable Z and 0 < α < 1 is

called the risk level. Usually, α is a small value such as α = 0.01 or 0.05. We assume that

the reinsurer charges a reinsurance premium PI based on the promised indemnity I(X).

The insurer is aware of the potential default by the reinsurer but the worst case for the

insurer is that the reinsurer only pays ωI + PI if I(X) > ωI + PI . Thus, when the insurer

is seeking for optimal reinsurance strategies and taking account of the potential default by

the reinsurer, the insurer assumes the worst indemnity I(X)∧ (ωI + PI) from the reinsurer.

Indeed, when ωI = VaRα(I(X)), we know Pr{I(X) > ωI + PI} ≤ α or the probability of

default by the reinsurer is not greater than the value α, which could be an acceptable risk

level for the insurer. Hence, under the proposed reinsurance model, the total retained risk

or cost of the insurer is X − I(X) ∧ (ωI + PI) + PI and the insurer’s terminal wealth is
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w0 −X + I(X) ∧ (ωI + PI)− PI , where w0 is the initial capital of the insurer.

We point out that in the above proposed model, the minimum or guaranteed available

capital of the reinsurer at the end of the contract is the (regulatory) initial reserve plus

the reinsurance premium. However, the actual available capital of the reinsurer at the

end of the contract may be different from the initial reserve plus the reinsurance premium.

For example, the actual available capital of the reinsurer may be higher than the initial

reserve plus the reinsurance premium if the reinsurer can use the capitals or reserves from

its other portfolios or if the reinsurer has investment profits on the initial reserve and/or

the reinsurance premium or if the reinsurer has other assets. On the other hand, the actual

available capital of the reinsurer may be lower than the initial reserve plus the reinsurance

premium if the reinsurer spends some of the initial reserve and/or the reinsurance premium or

if the reinsurer has investment losses on the initial reserve and/or the reinsurance premium.

Each of these scenarios may result in different reinsurance models. Indeed, our proposed

model is just one of many possible mathematical models for reinsurance designs. In our

proposed model, we emphasize that the initial reserve of the reinsurer is determined by

the VaR of the reinsurer’s promised indemnity due to regulatory requirements, the insurer

believes that the guaranteed or minimum available capital of the reinsurer at the end of the

contract is the initial reserve plus the reinsurance premium, and the probability of default

by the reinsurer is not greater than the risk level of the VaR.

In the first part of the paper, we assume that the insurer wants to determine an optimal

reinsurance strategy I∗ that maximizes the expected utility of its terminal wealth of w0 −
X + I(X)∧ (ωI +PI)−PI under an increasing concave utility function v. That is, we study

the following optimization problem:

max
I∈I

E [v (w0 −X + I(X) ∧ (ωI + PI)− PI)] (1.1)

such that PI = (1 + θ)E[I(X)] = p,

where 0 < p ≤ (1 + θ)E(X) is a given reinsurance premium budget for the insurer. This

optimal reinsurance problem can be viewed as the extension of the classical optimal rein-

surance problem without default risk, which was first studied by Arrow (1963) and Borch

(1960). As illustrated later in the paper, as α→ 0, Problem (1.1) is reduced to the classical

optimal reinsurance problem without default risk studied by Arrow (1963) and Borch (1960).

We can also recover the solutions of Arrow (1963) and Borch (1960) from our solution to

Problem (1.1).

In the second part of the paper, we assume that the insurer wants to use VaR at a risk

level 0 < β < 1 to control its total retained risk of X − I(X) ∧ (ωI + PI) + PI and then
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seeks an optimal reinsurance strategy I∗ that minimizes this VaR. That is, we consider the

following optimization problem:

min
I∈I

VaRβ (X − I(X) ∧ (ωI + PI) + PI) . (1.2)

This problem is an extension of recent studies on optimal reinsurance under risk measures

without default risk such as Balbás et al. (2009), Asimit, Badescu and Verdoncj (2013), Cai

et al. (2008), Cheung (2010), Chi (2012), Chi and Tan (2011), and references therein. In

particular, and as will be shown later, when α ≤ β, Problem (1.2) reduces to the problem

without default risk, which was studied by Cheung et al. (2014).

As illustrated in the paper, the solutions to Problems (1.1) and (1.2) are more complicated

than those without default risk. Furthermore, the optimal reinsurance strategies in the

presence of regulatory initial capital and the counterparty default risk are different both

from the optimal reinsurance strategies in the absence of the counterparty default risk and

from the optimal reinsurance strategies in the presence of the counterparty default risk but

without the regulatory initial capital.

To avoid tedious discussions and arguments, in this paper, we simply assume that the

survival function SX(x) of the underlying loss random variable X is continuous and strictly

decreasing on (0,∞) with 0 < SX(0) ≤ 1 or equivalently 0 ≤ FX(0) < 1. The assumption

that the distribution function FX(x) has a possible jump at zero means it is possible that

there are no claims from the insurer. Furthermore, we assume that PI = (1 + θ)E[I(X)],

i.e., the reinsurance premium is determined by the expected value principle, where θ > 0.

The rest of the paper is organized as follows. In Section 2, we study Problem (1.1) and

derive the optimal reinsurance strategy that maximizes the expected utility of an insurer’s

terminal wealth. In Section 3, we consider Problem (1.2) and present the optimal reinsurance

strategy that minimizes the VaR of an insurer’s total retained risk. In Section 4, we illustrate

the results derived in Sections 2 and 3 by numerical examples and discuss the influence of the

risk level α and the distribution of the underlying loss on the optimal strategies. Concluding

remarks are given in Section 5. The proofs of all the results derived in this paper are given

in the appendix.
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2 Optimal reinsurance maximizing the expected utility

of an insurer’s terminal wealth

In this section, we study Problem (1.1). First, we point out that by taking u(x) = −v(w0 −
p− x), Problem (1.1) is equivalent to the following minimization problem:

min
I∈I

E
[
u
(
X − I(X) ∧ (ωI + PI)

)]
(2.1)

such that PI = (1 + θ)E[I(X)] = p,

where u is an increasing convex function. Throughout this section, we assume E|u(k)(X)| <
∞ for k = 0, 1, 2 and denote the density function of FX(x) on (0,∞) by fX(x) or fX(x) =

F ′X(x) = −S ′X(x) for x ∈ (0,∞).

Second, we notice that for any I ∈ I, the function I(x) is continuous on [0,∞). In

addition, for any 0 ≤ x < y, if I(y) = I(x) + y−x, then I(t) = t− (x− I(x)) on the interval

[x, y].

For any fixed premium budget 0 < p ≤ (1 + θ)E[X], we denote the set of all feasible

contracts with the given reinsurance premium p by

Ip = {I ∈ I : PI = (1 + θ)E[I(X)] = p} .

Note that if p = (1 + θ)E[X], then Ip = {I(x) ≡ x}, which contains only one reinsurance

contract I(x) ≡ x, and thus Problem (2.1) reduces to the trivial case. Hence, throughout

this section, we assume p ∈
(
0, (1 + θ)E[X]

)
. Then Problem (2.1) can be written as

min
I∈Ip

E
[
u
(
X − I(X) ∧ (ωI + PI)

)]
= min

I∈Ip
H(I), (2.2)

where

H(I) = E
[
u
(
X − I(X) ∧ (ωI + PI)

)]
.

To solve the infinite-dimensional optimization Problem (2.2), we first show that for any

given reinsurance contract I ∈ Ip, there exists a contract kI ∈ Ip such thatH(kI) ≤ H(I) and

kI is determined by four variables. Thus, we can reduce the infinite-dimensional optimization

Problem (2.2) to a finite-dimensional optimization problem. To do so, we recall the definition

of convex order.

Definition 2.1. A random variable X is said to be smaller than random variable Y in

convex order, denoted as X 4cx Y , if E[g(X)] ≤ E[g(Y )] for any convex function g such that

the expectations exist.
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The following lemma was given by Ohlin (1969) and it provides a useful criterion for the

convex order.

Lemma 2.1. Let X be a random variable, h1 and h2 be increasing functions such that

E [h1(X)] ≤ E [h2(X)]. If there exists x0 ∈ R∪{+∞} such that h1(x) ≥ h2(x) for all x < x0

and h1(x) ≤ h2(x) for all x > x0, then h1(X) 4cx h2(X).

The following theorem shows that for any given reinsurance contract I ∈ Ip, there exists

a contract kI ∈ Ip such that H(kI) ≤ H(I). The proof of the theorem is given in the

appendix.

Theorem 2.1. Denote a = VaRα(X). For any I ∈ Ip, there exists kI ∈ Ip such that

H(kI) ≤ H(I) and kI is defined as

kI(x) = (x− d1)+ − (x− (d1 + I(a)))+ + (x− d2)+ − (x− (d2 + p))+ + (x− d3)+

=



0, for 0 ≤ x < d1,

x− d1, for d1 ≤ x < d1 + I(a),

I(a), for d1 + I(a) ≤ x < d2,

I(a) + x− d2, for d2 ≤ x < d2 + p,

I(a) + p, for d2 + p ≤ x < d3,

I(a) + p+ x− d3, for d3 ≤ x,

(2.3)

for some (d1, d2, d3) satisfies 0 ≤ d1 ≤ d1 + I(a) ≤ a ≤ d2 < d2 + p ≤ d3 ≤ ∞.

Remark 2.1. We point out that for any I ∈ I, I is continuous and non-decreasing. Thus,

ωI = VaRα(I(X)) = I(VaRα(X)) = I(a). As α → 0 or a → ∞, we have I(a) → I(∞) and

hence I ∧ (ωI + PI) = I. In other words, as α → 0 or a → ∞, Problem (2.1) is reduced to

the following classical problem without the default risk:

min
I∈I

E [u (X − I(X))] (2.4)

such that PI = (1 + θ)E[I(X)] = p.

The optimal solution to Problem 2.4, given in Arrow (1963) or Borch (1960), is a stop-loss

reinsurance I∗0 (x) = (x− d∗)+, where d∗ is uniquely determined by the premium condition.

This classical result can also be recovered from our Theorem 2.1. Indeed, as a → ∞, the

ceded loss function kI in (2.3) is reduced to the form

kI(x) = (x− d1)+ − (x− d1 − I(∞))+,

for some 0 ≤ d1 ≤ ∞ determined by the premium condition (1 + θ)E[kI(X)] = p. If

I(∞) = ∞, then kI(x) = (x − d∗)+. If I(∞) < ∞, it is easy to see that d1 < d∗ and
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x− (x− d∗)+ crosses x− kI(x) at most once from above on [0,∞). Thus, by Lemma 2.1, we

have X − (X − d∗)+ 4cx X − kI(X). Thus, E [u (X − (X − d∗)+)] ≤ E [u (X − kI(X))] for

any kI with I(∞) <∞. Therefore, in either I(∞) =∞ or I(∞) <∞, X − (X − d∗)+ 4cx
X − kI(X) 4cx X − I(X). Thus, (x− d∗)+ is the optimal solution to Problem (2.4).

In the rest of this paper, we assume 0 < α < SX(0) and thus 0 < a <∞. Otherwise, all

the VaRs considered in the paper at the risk level α ∈ [SX(0), 1) are equal to zero, which

are trivial cases. Theorem 2.1 reduces the infinite-dimensional optimization Problem (2.2)

to a finite-dimensional optimization problem. To see that, we denote

Ip,0 = {I ∈ Ip and I has the expression (2.3)} .

Then, thanks to Theorem 2.1, we see that Problem (2.2) is equivalent to the following

minimization problem

min
I∈Ip,0

E
[
u
(
X − I(X) ∧ (ωI + PI)

)]
= min

I∈Ip,0
H(I). (2.5)

It is still not easy to solve Problem (2.5) since it involves four variables of d1, d2, d3 and

I(a). To solve Problem (2.5), we first need to discuss the properties of the set Ip,0. We say

that two contracts I1 and I2 in Ip,0 are the same if they are equal almost everywhere with

respect to Lebesgue’s measure. Suppose I1(a) 6= I2(a), since both contracts are continuous

at point a, there exists δ ∈ (0, a) such that I1(x) 6= I2(x) on the open interval (a− δ, a+ δ)

and thus I1 and I2 are not the same. Therefore, for ξ1 6= ξ2,{
I ∈ Ip,0 : I(a) = ξ1

}⋂{
I ∈ Ip,0 : I(a) = ξ2

}
= ∅.

For any given ξ ∈ [0, a], define contract I0,ξ ∈ I as

I0,ξ(x) = (x− a+ ξ)+ − (x− a)+ =


0, for 0 ≤ x < a− ξ,
x− a+ ξ, for a− ξ ≤ x < a,

ξ, for a ≤ x <∞,
(2.6)

and denote the reinsurance premium based on I0,ξ by p0,ξ or

p0,ξ = (1 + θ)E [I0,ξ(X)] = (1 + θ)

∫ a

a−ξ
SX(x)dx. (2.7)

Furthermore, define contract IM,ξ ∈ I as

IM,ξ(x) = x− (x− ξ)+ + (x− a)+ =


x, for 0 ≤ x < ξ,

ξ, for ξ ≤ x < a,

ξ + x− a, for a ≤ x < a+ p,

(2.8)
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and denote the reinsurance premium based on IM,ξ by pM,ξ or

pM,ξ = (1 + θ)E [IM,ξ(X)] = (1 + θ)

(∫ ξ

0

+

∫ ∞
a

)
SX(x)dx. (2.9)

It is easy to check that I0,ξ, IM,ξ ∈ I and that for any I ∈ Ip,0 satisfying I(a) = ξ,

the following inequalities hold: I0,ξ(x) ≤ I(x) ≤ IM,ξ(x) for all x ≥ 0. Thus, when p0,ξ ≤
p ≤ pM,ξ, the set {I ∈ Ip,0 : I(a) = ξ} is not empty. In order to identify all valid ξ so that

{I ∈ Ip,0 : I(a) = ξ} 6= ∅, throughout this paper, we denote

ξ0 = inf {ξ ∈ [0, a] such that pM,ξ ≥ p} (2.10)

and

ξM = sup
{
ξ ∈ [0, a] such that p0,ξ ≤ p

}
. (2.11)

It is easy to see that 0 ≤ ξ0 < a, 0 < ξM ≤ a, 0 ≤ ξ0 ≤ ξM ≤ a and that the set

{I ∈ Ip,0 : I(a) = ξ} 6= ∅ if and only if ξ ∈ [ξ0, ξM ]. Hence, we can write Ip,0 as the union

of disjoint non-empty sets, namely

Ip,0 =
⋃

ξ0≤ξ≤ξM

{I ∈ Ip,0 : I(a) = ξ} .

It will be proved in Theorem 2.2 that Problem (2.5) is equivalent to the following two-step

minimization problem:

min
0≤ξ≤a

min
I∈Ip,0, I(a)=ξ

H(I) = min
ξ0≤ξ≤ξM

min
I∈Ip,0, I(a)=ξ

H(I) = min
ξ0≤ξ≤ξM

H(I∗ξ ), (2.12)

where H(I∗ξ ) = min
I∈Ip,0, I(a)=ξ

H(I) and I∗ξ is the minimizer that solves the inner minimization

problem min
I∈Ip,0, I(a)=ξ

H(I) for any given ξ ∈ [ξ0, ξM ].

To derive the expression of the minimizer I∗ξ of (2.12), we define contract I1,ξ(x) ∈ I as

I1,ξ(x) = (x− a+ ξ)+ − (x− a− p)+ =


0, for 0 ≤ x < a− ξ,
x− a+ ξ, for a− ξ ≤ x < a+ p,

ξ + p, for a+ p ≤ x <∞,
(2.13)

and denote the reinsurance premium based on I1,ξ by p1,ξ or

p1,ξ = (1 + θ)E [I1,ξ(X)] = (1 + θ)

∫ a+p

a−ξ
SX(x)dx. (2.14)
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Furthermore, we define contract I2,ξ(x) ∈ I as

I2,ξ(x) = x− (x− ξ)+ + (x− a)+ − (x− a− p)+

=


x, for 0 ≤ x < ξ,

ξ, for ξ ≤ x < a,

ξ + x− a, for a ≤ x < a+ p,

ξ + p, for a+ p ≤ x <∞,

(2.15)

and denote the reinsurance premium based on I2,ξ by p2,ξ or

p2,ξ = (1 + θ)E [I2,ξ(X)] = (1 + θ)

(∫ ξ

0

+

∫ a+p

a

)
SX(x)dx. (2.16)

In addition, throughout this paper, we denote

ξ1 =

{
sup {ξ ∈ [ξ0, ξM ] : p2,ξ < p} , if p2,ξ0 < p,

ξ0, if p2,ξ0 ≥ p,
(2.17)

and

ξ2 =

{
inf {ξ ∈ [ξ0, ξM ] : p1,ξ > p} , if p1,ξM > p,

ξM , if p1,ξM ≤ p.
(2.18)

It is not hard to check by the definitions of ξ1 and ξ2 that ξ0 ≤ ξ1 ≤ ξ2 ≤ ξM and that

at least one of the three inequalities is strict. Furthermore, we can verify that (1) ξ0 = ξ1

implies ξ0 = ξ1 = ξ2 = 0 < ξM ; (2) ξ2 = ξM implies ξ0 < ξ1 = ξ2 = ξM = a; and (3)

ξ1 = ξ2 implies ξ0 = ξ1 or ξ2 = ξM . Therefore, the set [ξ0, ξM ] has only the following three

possible partitions: (1) [ξ0, ξM ] = [0, ξM ] if ξ0 = ξ1; (2) [ξ0, ξM ] = [ξ0, a] if ξ2 = ξM ; and (3)

[ξ0, ξM ] = [ξ0, ξ1] ∪ [ξ1, ξ2] ∪ [ξ2, ξM ] if ξ0 < ξ1 < ξ2 < ξM .

Now, in the following lemma, for any given ξ ∈ [ξ0, ξM ], we solve the inner minimization

problem min
I∈Ip,0, I(a)=ξ

H(I) of (2.12). The proof of the lemma is given in the appendix.

Lemma 2.2. For a given ξ ∈ [ξ0, ξM ], let I∗ξ be the optimal solution to the minimization

problem min
I∈Ip,0, I(a)=ξ

H(I). Then, I∗ξ can be summarized as follows.

(1) If ξ0 ≤ ξ ≤ ξ1 and ξ0 < ξ1, then

I∗ξ (x) = x− (x− ξ)+ + (x− a)+ − (x− a− p)+ + (x− d3,ξ)+

=



x, for 0 ≤ x < ξ,

ξ, for ξ ≤ x < a,

ξ + x− a, for a ≤ x < a+ p,

ξ + p, for a+ p ≤ x < d3,ξ,

ξ + p+ x− d3,ξ, for d3,ξ ≤ x,
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where d3,ξ is determined by (1 + θ)E
[
I∗ξ (X)

]
= p.

(2) If ξ1 ≤ ξ ≤ ξ2 and ξ1 < ξ2, then

I∗ξ (x) = (x− d1,ξ)+ − (x− d1,ξ − ξ)+ + (x− a)+ − (x− a− p)+

=



0, for 0 ≤ x < d1,ξ,

x− d1,ξ, for d1,ξ ≤ x < d1,ξ + ξ,

ξ, for d1,ξ + ξ ≤ x < a,

ξ + x− a, for a ≤ x < a+ p,

ξ + p, for a+ p ≤ x <∞,

where d1,ξ is determined by (1 + θ)E
[
I∗ξ (X)

]
= p.

(3) If ξ2 ≤ ξ ≤ ξM and ξ2 < ξM , then

I∗ξ (x) = (x− a+ ξ)+ − (x− a)+ + (x− d2,ξ)+ − (x− d2,ξ − p)+

=



0, for 0 ≤ x < a− ξ,
x− a+ ξ, for a− ξ ≤ x < a,

ξ, for a ≤ x < d2,ξ,

ξ + x− d2,ξ, for d2,ξ ≤ x < d2,ξ + p,

ξ + p, for d2,ξ + p ≤ x <∞,

where d2,ξ is determined by (1 + θ)E
[
I∗ξ (X)

]
= p.

For any given ξ ∈ [ξ0, ξM ] and the corresponding optimal ceded loss function I∗ξ given in

Lemma 2.2, we define the function h of ξ as

h(ξ) = H(I∗ξ ). (2.19)

Thus, Lemma 2.2 implies that min
I∈Ip,0, I(a)=ξ

H(I) = H(I∗ξ ) = h(ξ).

Now, using Lemma 2.2, we obtain the optimal solution to Problem (2.2) in the following

theorem. The proof of the theorem is given in the appendix.

Theorem 2.2. Assume 0 < p < (1 + θ)E[X]. Then Problem (2.2) is equivalent to Problem

(2.12) and the optimal solution to Problem (2.2), denoted by I∗, is summarized as follows.

(1) If ξ1 = a, the optimal solution is

I∗(x) = x− (x− a− p)+ + (x− d3,a)+ =


x, for 0 ≤ x < a+ p,

a+ p, for a+ p ≤ x < d3,a,

a+ p+ x− d3,a, for d3,a ≤ x,

where d3,a is determined by (1 + θ)E [I∗(X)] = p.
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(2) If ξ1 < a and h′(ξM) ≤ 0, then ξM = a and the optimal solution is

I∗(x) = x− (x− a)+ + (x− d2,a)+ − (x− d2,a − p)+ =


x, if 0 ≤ x < a,

a, if a ≤ x < d2,a,

a+ x− d2,a, if d2,a ≤ x < d2,a + p,

a+ p, if d2,a + p ≤ x <∞,

where d2,a is determined by (1 + θ)E [I∗(X)] = p.

(3) If ξ1 < a and h′(ξM) > 0, then there exists ξ∗ ∈ [ξ2, ξM ] such that h′(ξ∗) = 0 and the

optimal solution is

I∗(x) = (x− a+ ξ∗)+ − (x− a)+ + (x− d2,ξ∗)+ − (x− d2,ξ∗ − p)+

=



0, for 0 ≤ x < a− ξ∗,
x− a+ ξ∗, for a− ξ∗ ≤ x < a,

ξ∗, for a ≤ x < d2,ξ∗ ,

ξ∗ + x− d2,ξ∗ , for d2,ξ∗ ≤ x < d2,ξ∗ + p,

ξ∗ + p, for d2,ξ∗ + p ≤ x <∞,

where d2,ξ∗ is determined by (1 + θ)E [I∗(X)] = p.

Remark 2.2. It is easy to see that the optimal solution I∗ in all three cases of Theorem 2.2

can be expressed using a unified formula as

I∗(x) = (x− d∗1)− (x− a)+ + (x− d∗2)+ − (x− d∗2 − p)+ + (x− d∗3)+

=



0, for 0 ≤ x < d∗1,

x− d∗1, for d∗1 ≤ x < a,

a− d∗1, for a ≤ x < d∗2,

a− d∗1 + x− d∗2, for d∗2 ≤ x < d∗2 + p,

a− d∗1 + p, for d∗2 + p ≤ x < d∗3,

a− d∗1 + p+ x− d∗3, for d∗3 ≤ x,

(2.20)

where

(d∗1, d
∗
2, d

∗
3) =


(0, a, d3,a), if ξ1 = a,

(0, d2,a, +∞), if ξ1 ≤ a and h′(ξM) ≤ 0,

(a− ξ∗, d2,ξ∗ , +∞), if ξ1 < a and h′(ξM) > 0.

Remark 2.3. We point out that for a feasible contract I ∈ Ip, if I(x) ≤ ωI + PI = I(a) + p

for all x ≥ 0, then the contract is a default risk-free contact, i.e., the insurer will not face

default risk with this contract.
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In (1) of Theorem 2.2, which corresponds to the case where ξ1 = a, if p2,a = p, where

p2,ξ is defined in (2.16), then d3,a = ∞ and the optimal contract I∗ is reduced to I∗(x) =

x− (x− a− p)+ = I∗(x)∧ (I∗(a) + p) ≤ I∗(a) + p, namely the optimal contract is a default

risk-free contract. However, if p2,a < p, then there does not exist a default risk-free contract

in Ip. Indeed, suppose that I ∈ Ip is a default risk-free contract, then I(x) ≤ I2,ξ(x) for all

x ≥ 0, where I2,ξ is defined by (2.15) and ξ = I(a). Since ξ1 = a, by the definition of ξ1

given in (2.17), we have PI ≤ p2,ξ < p. Thus, I /∈ Ip.
In (2) and (3) of Theorem 2.2, which correspond to the case where ξ1 < a, it is obvious

that the optimal solution I∗ in both cases satisfy I∗(x) ≤ I∗(a) + p, namely the insurer will

not face default risk with the two optimal contracts.

In summary, Theorem 2.2 suggests that, in order to lower default risk, an insurer should

choose a contract without default risk as long as this kind of contract is available. This leads

to limits for indemnities on the tails of the optimal contracts.

In addition, it has been mentioned that I∗0 = (x − d∗)+ is the optimal solution to the

classical Problem (2.4) in the absence of default risk. Note that I∗0 ∈ Ip. It is easy to

check that in all three cases of Theorem 2.2, the optimal contract I∗ of Theorem 2.2 satisfies

ωI∗ = I∗(a) > ωI∗0 = I∗0 (a) = (a− d∗)+, which means that the reinsurer will set up a higher

initial reserve if the insurer chooses the optimal contract I∗ of Theorem 2.2 than if the insurer

chooses I∗0 . In this way, the insurer can reduce the default risk.

3 Optimal reinsurance minimizing the VaR of an in-

surer’s total retained risk

In this section, we study Problem (1.2). To do so, for any I ∈ I, we denote

V (I) = VaRβ

(
X − I(X) ∧ (ωI + PI) + PI

)
,

where 0 < β < SX(0) is assumed throughout this section .

Thus Problem (1.2) is reformulated as

min
I∈I

V (I). (3.1)

Throughout this section, we denote a = VaRα(X) and b = VaRβ(X). For any I ∈ I,

we see that the function x − I(x) ∧ (ωI + PI) is continuous and non-decreasing on [0,∞).

Thus, due to the translation invariance and preservation of VaR under continuous and non-

decreasing functions, the objective function V (I) can be expressed as

V (I) = b− I(b) ∧ (I(a) + PI) + PI .
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Again, we can reduce the infinite-dimensional optimization Problem (3.1) to a finite-

dimensional optimization problem. In doing so, we first give the following lemma. The proof

of the lemma is given in the appendix.

Lemma 3.1. For any I1, I2 ∈ I, if I1(a) = I2(a), I1(b) = I2(b), and PI1 ≤ PI2, then

V (I1) ≤ V (I2).

Using this lemma, we can show in the following theorem that for any I ∈ I, there exists

mI ∈ I such that V (mI) ≤ V (I). The proof of the theorem is given in the appendix.

Theorem 3.1. For any I ∈ I, there exists mI ∈ I satisfying V (mI) ≤ V (I) and mI is

defined as

mI(x) = (x− d1)+ − (x− a ∧ b)+ + (x− d2)+ − (x− a ∨ b)+

=



0, for 0 ≤ x < d1,

x− d1, for d1 ≤ x < a ∧ b,
a ∧ b− d1, for a ∧ b ≤ x < d2,

a ∧ b− d1 + x− d2, for d2 ≤ x < a ∨ b,
a+ b− d1 − d2, for a ∨ b ≤ x <∞,

(3.2)

where d1 = a∧ b− I(a∧ b) and d2 = a∨ b− (I(a ∨ b)− I(a ∧ b)) satisfying 0 ≤ d1 ≤ a∧ b ≤
d2 ≤ a ∨ b.

For any (d1, d2) ∈ [0, a ∧ b]× [a ∧ b, a ∨ b], we define

Id1,d2 = {I ∈ I : I has the expression (3.2)} .

Then, for I ∈ Id1,d2 , define the function

v(d1, d2) = V (I) = b− I(b) ∧ (I(a) + PI) + PI .

Thus, by Theorem 3.1, we see that Problem (3.1) is equivalent to the following optimization

problem:

min
I∈Id1, d2

V (I) = min
(d1, d2)∈[0, a∧b]×[a∧b, a∨b]

v(d1, d2), (3.3)

which is a finite-dimensional optimization problem.

By solving Problem (3.3), we obtain the optimal solution to Problem (3.1) in the following

theorem. The proof of the theorem is given in the appendix.
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Theorem 3.2. Let I∗ be the optimal solution to Problem (3.1).

(1) If α ≤ β, then

I∗(x) = (x− b ∧ VaR 1
1+θ

(X))+ − (x− b)+

=


0, for 0 ≤ x < b ∧ VaR 1

1+θ
(X),

x− b ∧ VaR 1
1+θ

(X), for b ∧ VaR 1
1+θ

(X) ≤ x < b,

b− b ∧ VaR 1
1+θ

(X), for b ≤ x <∞.

(2) If α > β and α ≤ 1
1+θ

, there exists d0 ∈ R satisfying

(1 + θ)

∫ b

d0

SX(x)dx = b− a. (3.4)

Then

I∗(x) = (x−max{0, d0 ∧ VaR 1
1+θ

(X)})+ − (x− b)+

=


0, for 0 ≤ x < max{0, d0 ∧ VaR 1

1+θ
(X)},

x−max{0, d0 ∧ VaR 1
1+θ

(X)}, for max{0, d0 ∧ VaR 1
1+θ

(X)} ≤ x < b,

b−max{0, d0 ∧ VaR 1
1+θ

(X)}, for b ≤ x <∞,

Remark 3.1. The optimal solution I∗ in the two cases of Theorem 3.2 can be expressed in a

unified formula as

I∗(x) = (x− d∗)+ − (x− b)+,

where d∗ = b∧VaR 1
1+θ

(X) if α ≤ β and d∗ = max{0, d0∧VaR 1
1+θ

(X)} if α > β and α ≤ 1
1+θ

.

When α ≤ β, which means the reinsurer is more conservative than the insurer, we have

I(b) ≤ I(a), thus Problem (1.2) is reduced to the following model without default risk:

min
I∈I

VaRβ(X − I(X) + PI), (3.5)

which was studied by Cheung et al. (2014).

Since the insurer measures its risk, based on VaR, at a higher risk level β ≥ α, the initial

reserve ωI = VaRα(I(X)) set by the reinsurer at a lower risk level α is high enough to ensure

that default will not occur.

On the other hand, if the insurer is more conservative than the reinsurer or α > β, in

order to reduce the default risk, the insurer should require a lower deductible or ask the

reinsurer to cover more loss, to force the reinsurer to set up a higher initial reserve. For the

case where α > 1/(1 + θ), the optimal solution I∗ has no closed form and the case is not

interesting since in practice, α is a small value and usually α < 1/(1 + θ) holds.
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4 Numerical Examples

In this section, we use numerical examples to illustrate the optimal solutions derived in

Sections 2 and 3. We assume the underlying loss faced by the insurer has an exponential

distribution or a Pareto distribution. Thus, in one case, the loss is light-tailed, and in the

other case, the loss is heavy-tailed. We will calculate the optimal forms under the two

loss distributions and consider the influence of the distribution, the risk level α, and the

reinsurance premium budget p on the optimal reinsurance contracts.

Suppose random variables X and Y have exponential and Pareto distributions, respec-

tively. Assume their survival functions are SX(x) = e−x/µ and SY (x) =
(

λ
x+λ

)γ
for any

x ≥ 0, respectively. All numerical results are given under the setting of θ = 0.1, µ = 100,

λ = 200 and γ = 3. Under this setting, X and Y have the same mean 100, and the fixed

premium budget p ∈ (0, 110).

Example 4.1. (Numerical results for the optimal reinsurance maximizing the expected util-

ity) In this case, we know that the optimal contract can be expressed as the unified formula

given by (2.20) as

I∗(x) = (x− d∗1)− (x− a)+ + (x− d∗2)+ − (x− d∗2 − p)+ + (x− d∗3)+.

We take the convex function u(x) = x2, which means that the insurer would like to

minimize the variance of its retained loss. We first consider the exponential underlying loss

X with survival distribution SX(x) = e−x/100 for any x ≥ 0 for the insurer. In this case,

a = VaRα(X) = − ln(1−α)
100

. We obtain the optimal contract under α = 0.01, α = 0.05, and

different premium budget values of p. The numerical results are given in Tables 1 and 2.

Table 1: Exponential Risk X with α = 0.01

p d∗1 d∗2 d∗3

80.000 31.225 461.168 ∞
99.200 9.921 460.940 ∞
105.880 3.456 460.806 ∞
108.100 1.396 460.809 ∞
109.631 0 460.811 ∞
109.800 0 460.517 649.089

Next, we consider the Pareto underlying loss Y with survival distribution SY (y) =(
200
y+200

)3
for y ≥ 0 for the insurer. In this case, VaRα(Y ) = 200(α−1/3 − 1). The nu-
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Table 2: Exponential Risk X with α = 0.05

p d∗1 d∗2 d∗3

80.000 28.691 302.681 ∞
99.200 8.229 301.653 ∞
105.880 1.971 301.407 ∞
108.100 0 301.332 ∞
109.631 0 299.573 431.620

109.800 0 299.573 420.917

merical results for (d∗1, d
∗
2, d
∗
3) when α = 0.01, α = 0.05, and different premium budget values

of p are summarized in Tables 3 and 4.

Table 3: Pareto Risk Y with α = 0.01

p d∗1 d∗2 d∗3

80.000 28.405 734.196 ∞
99.200 6.305 732.488 ∞
105.880 0 732.107 ∞
108.100 0 728.318 1215.400

109.631 0 728.300 888.275

109.800 0 728.300 864.518

Table 4: Pareto Risk Y with α = 0.05

p d∗1 d∗2 d∗3

80.000 19.200 356.748 ∞
99.200 0 352.764 ∞
105.880 0 342.900 633.469

108.100 0 342.884 520.208

109.631 0 342.884 464.486

109.800 0 342.884 459.096

It is easy to see from Tables 1-4 that when the risk level α is fixed, the optimal ceded

loss function I∗(x) associated with a higher reinsurance premium is larger than the optimal

ceded loss function I∗(x) with a lower reinsurance premium, which means that the larger is

the premium charged by the reinsurer, the larger is the loss that the reinsurer should cover.

Furthermore, Tables 1-4 suggest that when the reinsurance premium p is fixed, the higher is
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the risk level α, the lower are the deductible levels d∗i for i = 1, 2, 3, which means that the

smaller is the reinsurer’s initial reserve, the larger is the loss that the insurer should cover.

Moreover, Tables 1-4 imply that when both the reinsurance premium p and risk level α are

fixed, the optimal ceded loss function I∗(x) for Pareto loss Y is larger than the optimal ceded

loss function I∗(x) for exponential loss X, which means that the insurer should cede more

loss to the reinsurer for a heavy tailed loss or a riskier loss. �

Example 4.2. (Numerical results for the optimal reinsurance minimizing the VaR of its

retained risk) In this case, denote the optimal reinsurance contract for X and Y by I∗X and

I∗Y , respectively. Denote d0,X and d0,Y be the solutions to the equation (3.4) for X and Y ,

respectively. According to Theorem 3.2, we have

I∗X(x) = (x− d∗X)+ − (x− VaRβ(X))+ and I∗Y (y) = (y − d∗Y )+ − (y − VaRβ(Y ))+,

where d∗X = VaRβ(X) ∧VaR 1
1+θ

(X) if α ≤ β and d∗X = max{0, d0,X ∧VaR 1
1+θ

(X)} if α > β

and α ≤ 1
1+θ

, and d∗Y has a similar expression as d∗X .

Using Theorem 3.2, we obtain the optimal values of d∗X and d∗Y for different risk levels of

(α, β) in Table 5. Table 5 suggests that a Pareto loss Y will result in lower deductible levels

than an exponential loss X. These numerical results are consistent with those in Example

4.1 �

Table 5: Deductible Values

(α, β) d∗X V aRβ(X) d∗Y V aRβ(Y )

(0.0100, 0.0500) 9.531 299.573 6.456 342.884

(0.0100, 0.0280) 9.531 357.555 6.456 458.634

(0.0185, 0.0150) 9.531 419.971 6.456 610.960

(0.0500, 0.0100) 0 460.517 0 728.318

(0.0280, 0.0100) 5.549 460.517 0 728.318

(0.0280, 0.0185) 9.531 398.999 4.448 556.205

(0.0150, 0.0185) 9.531 398.999 6.456 556.205

5 Concluding remarks

In this paper, we propose a reinsurance risk model that incorporates the regulatory require-

ments on the initial reserve of a reinsurance contract seller (reinsurer) and the possible default

by the seller. Mathematically, the proposed model can be reduced to existing reinsurance
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risk models that do not consider the possible default by a reinsurer. Practically, the proposed

model allows more realistic settings. We derive the optimal reinsurance strategy from the in-

surer’s point of view under the proposed model. The results show that the regulatory initial

reserve and the default risk have a significant impact on the optimal reinsurance strategy.

The optimal reinsurance strategies under the proposed model are more complicated than

those in the existing default risk-free reinsurance risk models. The model proposed in the

paper can be further explored in different ways as well, something we plan to do in future

work.
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Appendix

Throughout the appendix, for any I ∈ I, we denote Ĩ(x) = I(x)∧ (ωI +PI) = I(x)∧ (I(a) +

PI). Thus, for any I ∈ Ip, Ĩ(x) = I(x) ∧ (I(a) + p).

Proof of Theorem 2.1. For any I ∈ Ip, we denote xI = sup
{
x ≥ 0 : I(x) < I(a) + p

}
.

Then xI ∈ (a, ∞]. Since I is non-decreasing and continuous on [0,∞), one has ωI =

VaRα(I(X)) = I(VaRα(X)) = I(a). Therefore, for any I ∈ Ip, Ĩ(x) = I(x) ∧ (I(a) + p) for

x ≥ 0. Note that for any I ∈ Ip,

H(I) = E
[
u
(
X − Ĩ(X)

)]
= u(0) + E [u (X − I(X)) | 0 < X < a]P(0 < X < a)

+E [u (X − I(X)) | a ≤ X < xI ]P(a ≤ X < xI) + E [u (X − I(a)− p)]P(X ≥ xI).

Firstly, we construct kI ∈ Ip on the interval [0, a), [a, xI), and [xI ,∞), respectively. Here,

we assume xI <∞. If xI =∞, we only need to consider the intervals of [0, a) and [a, xI).

(1) For 0 ≤ x < a, we define, with respect to each d ∈ [0, a− I(a)],

k1d(x) = max
{

(x− d)+, I(a)
}

=


0, for 0 ≤ x < d,

x− d, for d ≤ x < d+ I(a),

I(a), for d+ I(a) ≤ x < a.

When d = 0, we have k10(x) = x ∧ I(a) and thus k10(x) ≥ I(x) on the interval [0, a) and

E [k10(X)| 0 < X < a] ≥ E [I(X)| 0 < X < a]. When d = a − I(a), we have k1a−I(a)(x) =
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(x − a + I(a))+ and thus k1a−I(a)(x) ≤ I(x) on [0, a) and E
[
k1a−I(a)(X) | 0 < X < a

]
≤

E
[
I(X) | 0 < X < a

]
. It is obvious that E

[
k1d(X) | 0 < X < a

]
is continuous in d. Therefore,

there exists d1 ∈ [0, a − I(a)] such that E
[
k1d1(X)

∣∣ 0 < X < a
]

= E [I(X)| 0 < X < a].

Define kI(x) = k1d1(x) on the interval [0, a).

(2) For a ≤ x < xI , define for each d ∈ [a, xI ],

k2d(x) = max
{
I(a) + (x− d)+, I(a) + p

}
=


I(a), for a ≤ x < d,

I(a) + x− d, for d ≤ x < d+ p,

I(a) + p, for d+ p ≤ x < xI .

Using similar arguments as in (1), there exists d2 ∈ [a, xI ] such that E [I(X)| a ≤ X < xI ] =

E
[
k2d2(X)

∣∣ a ≤ X < xI
]
. Define kI(x) = k2d2(x) on [a, xI).

(3) For x ≥ xI , define for each d ∈ [xI ,∞],

k3d(x) = I(a) + p+ (x− d)+ =

{
I(a) + p, for xI ≤ x < d,

I(a) + p+ x− d, for d ≤ x.

Using similar arguments as in (1), there exists d3 ∈ [xI ,∞] such that E [I(X)|X ≥ xI ] =

E
[
k3d3(X)

∣∣X ≥ xI
]
. Define kI(x) = k3d3(x) for x ≥ xI .

Thus, for any x ≥ 0,

kI(x) =


k1d1(x), for 0 ≤ x < a,

k2d2(x), for a ≤ x < xI ,

k3d3(x), for xI ≤ x <∞.

It is easy to see by the construction of kI that

E
[
kI(X)

]
= E

[
kI(X) | 0 ≤ X < a

]
P(0 ≤ X < a) + E [kI(X)| a ≤ X < xI ]P(a ≤ X < xI)

+E [kI(X)]P(X ≥ xI) = E [I(X)] = p,

and thus kI ∈ Ip.
It remains to show that H(kI) ≤ H(I). Define a random variable X1 with distribution

function F1(x) = FX(x)−FX(0)
FX(a)−FX(0)

for 0 < x < a. Then for any Borel measurable function b(·),
one has

E [b(X)| 0 < X < a] =

∫ a

0

b(x)

FX(a)− FX(0)
dFX(x) =

∫ a

0

b(x)dF1(x) = E [b(X1)] .

Note that, on the interval (0, a), kI(x) = max {(x− d1)+, I(a)}. If d1 = 0 or d1 = a− I(a),

kI(x) = I(x) on [0, a]; otherwise, I(x) crosses kI(x) at most once from above on [0, a], say

crossing at c1 ∈ [0, a). Thus, x − kI(x) ≥ x − I(x) for x < c1 and x − kI(x) ≤ x − I(x)
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for x ≥ c1. Together with E [I(X1)] = E [kI(X1)] and x − kI(x) and x − I(x) are both

continuous and non-decreasing functions, Lemma 2.1 implies X1 − kI(X1) 4cx X1 − I(X1).

Therefore, for any convex function u, E
[
u(X − I(X)) | 0 ≤ X < a

]
= E

[
u(X1 − I(X1))

]
≥

E
[
u(X1 − kI(X1))

]
= E

[
u(X − kI(X)) | 0 < X < a

]
.

Using the same arguments, we see that

E [u (X − I(X))| a ≤ X < xI ] ≥ E [u (X − kI(X))| a ≤ X < xI ]

and E [u (X − I(X))|X ≥ xI ] ≥ E [u (X − kI(X))|X ≥ xI ]. Therefore, we can conclude

that H(I) ≥ H(kI).

Proof of Lemma 2.2. For any I ∈ Ip,0 with I(a) = ξ for some ξ ∈ [ξ0, ξM ], or for any I

that has expression (2.3) for some (d1, d2, d3, ξ), we have

Ĩ(x) = I(x) ∧ (ξ + p) = (x− d1)+ − (x− (d1 + ξ))+ + (x− d2)+ − (x− (d2 + p))+

=



0, for 0 ≤ x < d1,

x− d1, for d1 ≤ x < d1 + ξ,

ξ, for d1 + ξ ≤ x < d2,

ξ + x− d2, for d2 ≤ x < d2 + p,

ξ + p, for d2 + p ≤ x.

Note that Ĩ(x) = I(x) ∧ (ξ + p) = I(x) for 0 ≤ x ≤ d2 + p. Thus, by integration by parts,

we have

H(I) = E
[
u
(
X − Ĩ(X)

)]
=

∫ ∞
0

u(x− Ĩ(x))dFX(x)

= u(0) +

(∫ d1

0

+

∫ d2

d1+ξ

)
SX(x)u′ (x− I(x)) dx+

∫ ∞
d2+p

SX(x)u′ (x− ξ − p) dx, (A.1)

where u(0) is a constant. Note that for any I ∈ Ip,0, the value of H(I) does not depend on

d3. Indeed, the variable d3 is only used to adjust the expectation of I so that

(1 + θ)E [I(X)] = (1 + θ)

(∫ d1+ξ

d1

+

∫ d2+p

d2

+

∫ ∞
d3

)
SX(x)dx = p. (A.2)

Now, we are going to minimize H(I) using the expression (A.1) and the restriction (A.2)

and to find the minimizers of di, denoted by di,ξ, for i = 1, 2, 3.

(1) Suppose ξ0 ≤ ξ ≤ ξ1 (if ξ0 < ξ1) or equivalently p2,ξ ≤ p ≤ pM,ξ. Then, there exists
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a ≤ d3,ξ ≤ ∞ such that

I∗ξ (x) = x− (x− a+ ξ)+ + (x− a)+ − (x− a− p)+ + (x− d3,ξ)+

=



x, for 0 ≤ x < a− ξ,
ξ, for a− ξ ≤ x < a,

ξ + x− a, for a ≤ x < a+ p,

ξ + p, for a+ p ≤ x < d3,ξ,

ξ + p+ x− d3,ξ for d3,ξ ≤ x.

Here d3,ξ is determined by the premium condition (1 + θ)E[I∗ξ (X)] = p. Thus, I∗ξ has form

(2.3) with (d1, d2, d3) = (0, a, d3,ξ). Moreover, I∗ξ is the optimal solution because for any

I ∈ Ip,0 satisfying I(a) = ξ, it is easy to check that for all x ≥ 0, we have

Ĩ∗ξ (x)− Ĩ(x) = I∗ξ (x) ∧ (I∗(a) + p)− Iξ(x) ∧ (I(a) + p)

=
[
x− (x− d1)+

]
+
[
(x− d1 − ξ)+ − (x− a+ ξ)+

]
+
[
(x− a)+ − (x− d2)+

]
+
[
(x− d2 − p)+ − (x− a− p)+

]
≥ 0,

where d1 + ξ ≤ a ≤ d2.

(2) Suppose ξ1 ≤ ξ ≤ ξM (if ξ1 < ξM) or equivalently p0,ξ ≤ p ≤ p2,ξ. In this case, there

exist d1 and d2 such that

I(x) = (x− d1)+ − (x− d1 − ξ)+ + (x− d2)+ − (x− d2 − p)+

=


0, for 0 ≤ x < d1,

ξ, for d1 + ξ ≤ x < d2,

ξ + x− d2, for d2 ≤ x < d2 + p,

ξ + p, for d2 + p ≤ x,

(A.3)

which satisfies the premium condition (1 + θ)E [I(X)] = p. Note that expression (2.3) is

reduced to expression (A.3) when d3 =∞. We claim that the minimizer I∗ξ should have the

form (A.3). This claim can be proved using the following arguments.

For any I ∈ Ip,0 with d3 < ∞, if there exists d̃2 ≥ a such that I1(x) = (x− d1)+ −
(x− d1 − ξ)+ + (x− d̃2)+ − (x− d̃2 − p)+ ∈ Ip,0, then the following equation

0 = E[I1(X)]− E[I(X)] =

∫ d2+p

d2

SX(x+ d̃2 − d2)− SX(x)dx−
∫ ∞
d3

SX(x)dx,

implies that d̃2 < d2 and thus Ĩ1(x) − Ĩ(x) = I1(x) ∧ (I1(a) + p) − I(x) ∧ (I(a) + p) ≥ 0

for all x ≥ 0. If such d̃2 does not exist, then there exists 0 ≤ d̃1 ≤ d1 such that I1(x) =
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(x− d̃1)+− (x− d̃1− ξ)+ + (x−a)+− (x−a− p)+ ∈ Ip,0 and thus Ĩ1(x) ≥ Ĩ(x) for all x ≥ 0.

In short, we can find another contract I1 of the form (A.3) in Ip,0 such that Ĩ1(x) ≥ Ĩ(x)

for all x ≥ 0 and thus H(I1) ≤ H(I). Therefore, the insurer should choose the reinsurance

contract satisfying the form (A.3) or I = Ĩ.

For any contract I ∈ I of the form (A.3), the premium condition

(1 + θ)

(∫ d1+ξ

d1

+

∫ d2+p

d2

)
SX(x)dx = p

implies that d2 can be written as an implicit function of d1 or d2 = d2(d1). It is not hard to

see that d2(d1) is a non-increasing function of d1 and its derivative satisfies

SX(d1 + ξ)− SX(d1) + (SX(d2 + p)− SX(d2)) d
′
2(d1) = 0.

The objective function H(I) given by expression (A.1) now depends on d1 only and thus

denote it as a one-variable function Hξ(d1). Taking the derivative with respect to d1, we

obtain

d

dd1
Hξ(d1) = (u′(d1)− u′(d2 − ξ)) (SX(d1)− SX(d1 + ξ)) ≤ 0.

Therefore, one should choose d1 as large as possible to have the smallest expectation of the

utility.

(2.1) When ξ1 ≤ ξ ≤ ξ2 (if ξ1 < ξ2) or equivalently p1,ξ ≤ p ≤ p2,ξ, the largest possible

value for d1 is d1,ξ which satisfies d2(d1,ξ) = a and the corresponding optimal solution is

I∗ξ (x) = (x− d1,ξ)+ − (x− d1,ξ − ξ)+ + (x− a)+ − (x− a− p)+.

Then I∗ξ is of the form (2.3) with (d1, d2, d3) = (d1,ξ, a,∞) where d1,ξ is determined by the

expectation condition (1 + θ)E
[
I∗ξ (X)

]
= p.

(2.1) When ξ2 ≤ ξ ≤ ξM (if ξ2 < ξM) or equivalently p0,ξ ≤ p ≤ p1,ξ, the largest possible

value for d1 is a− ξ and the corresponding optimal solution is

I∗ξ (x) = (x− a+ ξ)+ − (x− a)+ + (x− d2,ξ)+ − (x− d2,ξ − p)+,

where d2,ξ = d2(a− ξ), namely I∗ξ has form (2.3) with (d1, d2, d3) = (a− ξ, d2,ξ, ∞).

Proof of Theorem 2.2. Define the function h(ξ) on [ξ0, ξM ] as follows:

h(ξ) = min
I∈Ip, I(a)=ξ

E[u(X − I(X) ∧ (ξ + p))] = E[u(X − I∗ξ (X) ∧ (ξ + p))].

From the results of Lemma 2.2, we discuss the following cases.
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(1) When ξ ∈ [ξ0, ξ1] (if ξ0 < ξ1), we see that d3,ξ is an increasing function of ξ and

h(ξ) = u(0) +

∫ a

ξ

SX(x)u′(x− ξ)dx+

∫ ∞
a+p

SX(x)u′(x− ξ − p)dx.

Clearly,

h′(ξ) = −
∫ a

ξ

SX(x)u′′(x− ξ)dx− SX(ξ)u′(0)−
∫ ∞
a+p

SX(x)u′′(x− ξ − p)dx ≤ 0,

because u(x) is an increasing convex function with u′(x) ≥ 0 and u′′(x) ≥ 0.

(2) When ξ ∈ [ξ1, ξ2] (if ξ1 < ξ2), we have

h(ξ) = u(0) +

∫ d1,ξ

0

SX(x)u′(x)dx+

∫ a

d1,ξ+ξ

SX(x)u′(x− ξ)dx+

∫ ∞
a+p

SX(x)u′(x− ξ − p)dx.

The premium condition implies that d1,ξ can be written as an implicit function of ξ using

the equation (1 + θ)
(∫ d1,ξ+ξ

d1,ξ
+
∫ a+p
a

)
SX(x)dx = p. By taking the derivative with respect to

ξ on both sides of the above equation, we get

d

dξ
d1,ξ =

SX (d1,ξ + ξ)

SX(d1,ξ)− SX(d1,ξ + ξ)
≥ 0.

Thus, we obtain

h′(ξ) = −
∫ a

d1,ξ+ξ

SX(x)u′′(x− ξ)dx−
∫ ∞
a+p

SX(x)u′′(x− ξ − p)dx ≤ 0.

(3) When ξ ∈ [ξ2, ξM ] (if ξ2 < ξM), we have

h(ξ) = u(0) +

∫ a−ξ

0

SX(x)u′(x)dx+

∫ d2,ξ

a

SX(x)u′(x− ξ)dx+

∫ ∞
d2,ξ+p

SX(x)u′(x− ξ − p)dx.

The premium condition implies that d2,ξ can be written as an implicit function of ξ by the

equation (1 + θ)
(∫ a

a−ξ +
∫ d2,ξ+p
d2,ξ

)
SX(x)dx = p. By taking the derivative with respect to ξ on

both sides of the above equation, we have

d

dξ
d2,ξ =

SX (a− ξ)
SX(d2,ξ)− SX(d2,ξ + p)

≥ 1.

Thus, we obtain

h′(ξ) = SX(a− ξ)
(
u′(d2,ξ − ξ)− u′(a− ξ)

)
−
∫ d2,ξ

a

SX(x)u′′(x− ξ)dx−
∫ ∞
d2,ξ+p

SX(x)u′′(x− ξ − p)dx.
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Using the above expression of h′(ξ), it is not hard to check that the second derivative of h is

h′′(ξ) = fX(a− ξ) (u′(d2,ξ − ξ)− u′(a− ξ)) + u′′(a− ξ)(SX(a− ξ)− SX(a))

+u′′(d2,ξ − ξ) [SX(a− ξ)− SX(d2,ξ) + SX(d2,ξ + p)]

(
d

dξ
d2,ξ − 1

)
+

∫ d2,ξ

a

u′′(x− ξ)fX(x)dx+

∫ ∞
d2,ξ+p

u′′(x− ξ − p)fX(x)dx ≥ 0,

where h′′(ξ) ≥ 0 is due to the following facts: u is convex; SX(x) is non-increasing; d2,ξ ≥
a ≥ a− ξ; and d

d ξ
d2,ξ− 1 ≥ 0. Therefore, h′ in non-decreasing in ξ. It is easy to see from the

definition of d2,ξ that when ξ = ξ2, we have d2,ξ2 = a and thus h′(ξ2) = −
∫∞
a+p

SX(x)u′′(x−
ξ − p)dx < 0.

Denote

ξ∗ = sup {ξ ∈ [ξ2, ξM ] : h′(ξ) < 0} .

If h′(ξM) ≤ 0, then h′ is always non-positive for any ξ ∈ [ξ2, ξM ] or ξ∗ = ξM ; if h′(ξM) > 0,

then ξ∗ < ξM and h′(ξ∗) = 0.

In summary, h(ξ) is continuous on [0,∞), h′(ξ) ≤ 0 for ξ ∈ [ξ0, ξ
∗], and h′(ξ) ≥ 0 for

ξ ∈ [ξ∗, ξM ]. Therefore, h(ξ) achieves its minimal value at ξ∗ and the reinsurance contract

I∗ξ∗ summarized in the theorem is the optimal solution of the two-step minimization problem

(2.12), namely min
ξ0≤ξ≤ξM

min
I∈Ip,0, I(a)=ξ

H(I) = H(I∗ξ∗).

Since ξ∗ ∈ [ξ0, ξM ], the corresponding contract I∗ξ∗ is in Ip,0. Thus, H(I∗ξ∗) ≥ min
I∈Ip,0

H(I).

Furthermore

min
ξ0≤ξ≤ξM

min
I∈Ip,0, I(a)=ξ

H(I) ≥ min
I∈Ip,0

H(I). (A.4)

On the other hand, for any k ∈ Ip,0,

H(k) ≥ min
I∈Ip,0, I(a)=k(a)

H(I) ≥ min
ξ0≤ξ≤ξM

min
I∈Ip,0, I(a)=ξ

H(I).

Therefore,

min
k∈Ip,0

H(k) ≥ min
ξ0≤ξ≤ξM

min
I∈Ip,0, I(a)=ξ

H(I). (A.5)

Combining inequalities (A.4) and (A.5), we conclude that

min
I∈Ip,0

H(I) = min
ξ0≤ξ≤ξM

min
I∈Ip,0, I(a)=ξ

H(I),

and I∗ξ∗ is also the optimal solution to Problem (2.5).
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Proof of Lemma 3.1. Denote ξa = I1(a) = I2(a) and ξb = I1(b) = I2(b). Then V (Ii) =

b− ξb ∧ (ξa + PIi) + PIi for i = 1, 2.

(1) Suppose α ≤ β (or equivalently b ≤ a). In this case, ξb ≤ ξa ≤ ξa + PIi for i = 1, 2.

Hence, V (I2)− V (I1) = (b− ξb + PI2)− (b− ξb + PI1) = PI2 − PI1 ≥ 0.

(2) Suppose α ≥ β (or equivalently b ≥ a). In this case, we have ξa ≤ ξb and

V (I2)− V (I1) = (b− ξb ∧ (ξa + PI2) + PI2)− (b− ξb ∧ (ξa + PI1) + PI1)

= ξb ∧ (ξa + PI1)− ξb ∧ (ξa + PI2) + PI2 − PI1 .

Furthermore, if ξb ≤ ξa + PI2 ,

V (I2)− V (I1) = ξb ∧ (ξa + PI1)− ξb + PI2 − PI1 =

{
PI2 − PI1 , if ξb ≤ ξa + PI1 ,

PI2 + ξa − ξb, if ξb > ξa + PI1 ,

≥ 0.

If ξb > ξa + PI2 , we have ξa + PI1 ≤ ξa + PI2 < ξb and thus

V (I2)− V (I1) = (ξa + PI1)− (ξa + PI2) + PI2 − PI1 = 0.

In short, when α ≥ β, we have V (I2)−V (I1) ≥ 0. This completes the proof of the lemma.

Proof of Theorem 3.1. For any I ∈ I, for d1 = a ∧ b − I(a ∧ b) and d2 = a ∨ b − (I(a ∨
b) − I(a ∧ b)) and substituting them into expression (3.2), it is not hard to verify that

mI(a) = I(a), mI(b) = I(b) and mI(x) ≤ I(x) for all x ≥ 0. Moreover, PmI ≤ PI . Hence,

we obtain the desired result using Lemma 3.1.

Proof of Theorem 3.2. To solve Problem (3.3), we can rewrite it as a two-step minimiza-

tion problem. For any fixed d1 ∈ [0, a∧ b], if the function v(d1, ·) is continuous on the closed

interval [a ∧ b, a ∨ b], then there exists d∗2(d1) ∈ [a ∧ b, a ∨ b] such that

min
d2∈[a∧b, a∨b]

v(d1, d2) = v(d1, d
∗
2(d1)). (A.6)

Moreover, if v(d1, d
∗
2(d1)) is continuous in d1 ∈ [0, a ∧ b], then there exists d∗1 ∈ [0, a ∧ b]

such that

min
d1∈[0, a∧b]

v(d1, d
∗
2(d1)) = v(d∗1, d

∗
2(d
∗
1)). (A.7)

For any (d1, d2) ∈ [0, a ∧ b]× [a ∧ b, a ∨ b],

v(d1, d2) ≥ min
d2∈[a∧b, a∨b]

v(d1, d2) = v(d1, d
∗
2(d1)) ≥ min

d1∈[0, a∧b]
v(d1, d

∗
2(d1)) = v(d∗1, d

∗
2(d
∗
1)).
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Thus,

min
(d1, d2)∈[0, a∧b]×[a∧b, a∨b]

v(d1, d2) ≥ v(d∗1, d
∗
2(d
∗
1)).

On the other hand, (d∗1, d
∗
2(d
∗
1)) ∈ [0, a ∧ b]× [a ∧ b, a ∨ b] implies

min
(d1, d2)∈[0, a∧b]×[a∧b, a∨b]

v(d1, d2) ≤ v(d∗1, d
∗
2(d
∗
1)).

Therefore,

min
(d1, d2)∈[0, a∧b]×[a∧b, a∨b]

v(d1, d2) = v(d∗1, d
∗
2(d
∗
1)) = min

d1∈[0, a∧b]
min

d2∈[a∧b, a∨b]
v(d1, d2),

which is a two-step minimization problem.

For each d1 ∈ [0, a ∧ b], define vd1(d2) = v(d1, d2) as the function of d2 ∈ [a ∨ b, ∞).

(1) Suppose α ≤ β (or equivalently b ≤ a). In this case, for any fixed d1 ∈ [0, b], and for

any d2 ∈ [b, a] and I given by (3.2), we have

vd1(d2) = v(d1, d2) = V (I) = b− (b− d1) + PI = d1 + (1 + θ)

(∫ b

d1

+

∫ a

d2

)
SX(x)dx.

Clearly, the first derivative of vd1(d2) satisfies

v′d1(d2) =
∂

∂d2
v(d1, d2) = − (1 + θ)SX(d2) < 0.

Thus, for any d1 ∈ [0, b], d∗2(d1) = a is the minimizer to the minimization problem min
d2∈[b,a]

v(d1, d2)

of (A.6). Hence,

min
d1∈[0,b]

min
d2∈[b,a]

v(d1, d2) = min
d1∈[0,b]

v(d1, d
∗
2(d1)) = min

d1∈[0,b]
v(d1, a). (A.8)

Next, we consider the function

v(d1, d
∗
2(d1)) = v(d1, a) = d1 + (1 + θ)

∫ b

d1

SX(x)dx.

If SX(0) ≤ β ≤ 1, then b = 0 and the only possible value for d1 is zero. Assume 0 < β <

SX(0) and thus b > 0. Obviously, the function v(d1, d
∗
2(d1)) is continuous in d1 and its first

derivative is d
dd1
v(d1, d

∗
2(d1)) = 1− (1 + θ)SX(d1). Since

d1 ≤ VaR 1
1+θ

(X)⇔ SX(d1) ≥
1

1 + θ
,

thus, d∗1 = VaR 1
1+θ

(X) ∧ b is the minimizer to the minimization problem min
d1∈[0,b]

v(d1, a)

of (A.8). It follows that the optimal contract I∗ has the form (3.2) with d1 = d∗1 and
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d2 = d∗2 (d∗1) = a. Namely, we have

I∗(x) = (x− VaR 1
1+θ

(X) ∧ b)+ − (x− b)+

=


0, for 0 ≤ x < VaR 1

1+θ
(X) ∧ b,

x− VaR 1
1+θ

(X) ∧ b, for VaR 1
1+θ

(X) ∧ b ≤ x < b,

b− VaR 1
1+θ

(X) ∧ b, for b ≤ x <∞.

(2) Suppose α ≥ β (or equivalently b ≥ a) and α ≤ 1
1+θ

. In this case, for any fixed

d1 ∈ [0, a], we first define vd1(d2) and Gd1(d2) as functions of d2 ∈ [a, b] as

vd1(d2) = v(d1, d2) = V (I) = b− (a− d1 + b− d2) ∧ (a− d1 + PI) + PI

=

{
−a+ d1 + d2 + PI , if b ≤ PI + d2,

−a+ d1 + b, if b > PI + d2,

and

Gd1(d2) = PI − (b− d2) = (1 + θ)

(∫ a

d1

+

∫ b

d2

)
SX(x)dx− b+ d2.

It is not hard to see d
dd2
Gd1(d2) = 1 − (1 + θ)SX(d2) ≥ 0 for any d2 ∈ [a, b] because

α ≤ 1
1+θ

or a ≥ VaR 1
1+θ

(X). Thus, Gd1(d2) is a continuous and non-decreasing function of

d2 on [a, b]. If Gd1(a) ≥ 0, then Gd1(d2) ≥ 0 on the interval [a, b]. If Gd1(a) ≤ 0, there

exists c(d1) ∈ [a, b] such that Gd1(d2) ≤ 0 for any d2 ∈ [a, c(d1)] and Gd1(d2) ≥ 0 for any

d2 ∈ [c(d1), b]. Thus, to determine the optimal solution I∗, we need to consider the following

three cases.

Case 1. Suppose (1 + θ)
∫ b
0
SX(x)dx − b + a ≤ 0. In this case, Gd1(a) ≤ 0 for any

d1 ∈ [0, a]. Thus,

vd1(d2) =

{
−a+ d1 + b, for a ≤ d2 ≤ c(d1),

−a+ d1 + d2 + PI , for c(d1) ≤ d2 ≤ b,

with non-negative first derivative

v′d1(d2) =

{
0, for a ≤ d2 ≤ c(d1),

1− (1 + θ)SX(d2), for c(d1) ≤ d2 ≤ b.

Thus d∗2(d1) = a and then v(d1, d
∗
2(d1)) = v(d1, a) = −a+ d1 + b is a continuous function of

d1. It implies that min
(d1, d2)∈[0, a]×[a, b]

v(d1, d2) = min
d1∈[0,a]

min
d2∈[a,b]

v(d1, d2) = min
d1∈[0,a]

v(d1, d
∗
2(d1)) =

min
d1∈[0,a]

−a+ d1 + b = b− a, namely, the optimal pair is (d∗1, d
∗
2) = (0, a). The corresponding

optimal contract is

I∗(x) = x− (x− b)+ =

{
x, for 0 ≤ x < b;

b, for b ≤ x <∞.
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Case 2. Suppose (1 + θ)
∫ b
a
SX(x)dx − b + a ≥ 0. In this case, Gd1(a) ≥ 0 for any

d1 ∈ [0, a]. Thus vd1(d2) = −a+ d1 + d2 + PI with non-negative first derivative d
dd2
vd1(d2) =

1 − (1 + θ)SX(d2). It implies that d∗2(d1) = a for any d1 ∈ [0, a]. Now, v(d1, d
∗
2(d1)) =

v(d1, a) = d1 + PI is a continuous function of d1, then

min
(d1, d2)∈[0, a]×[a, b]

v(d1, d2) = min
d1∈[0, a]

min
d2∈[a, b]

v(d1, d2) = min
d1∈[0, a]

v(d1, d
∗
2(d1)).

Note that d
dd1
v(d1, d

∗
2(d1)) = 1−(1+θ)SX(d1) ≤ 0⇔ d1 ≤ VaR 1

1+θ
(X) and that VaR 1

1+θ
(X) ≤

a by assumption. Thus, the optimal pair is (d∗1, d
∗
2) = (VaR 1

1+θ
(X), a) and the corresponding

optimal contract is

I∗(x) = (x− VaR 1
1+θ

(X))+ − (x− b)+ =


0, for 0 ≤ x < VaR 1

1+θ
(X),

x− VaR 1
1+θ

(X), for VaR 1
1+θ

(X) ≤ x < b,

VaR 1
1+θ

(X), for b ≤ x <∞.

Case 3. Suppose (1 + θ)
∫ b
a
SX(x)dx − b + a ≤ 0 ≤ (1 + θ)

∫ b
0
SX(x)dx − b + a. In

this case, there exists d0 ∈ [0, a] satisfying Gd1(a) = (1 + θ)
∫ b
d1
SX(x)dx − b + a ≥ 0 for

0 ≤ d1 ≤ d0 and Gd1(a) ≤ 0 for d0 ≤ d1 ≤ a. For d1 ∈ [0, d0] or Gd1(a) ≥ 0, one has

vd1(d
∗
2(d1)) = d1 +PI using the same arguments as in Case 2. For d1 ∈ [d0, a] or Gd1(a) ≤ 0,

one has vd1(d
∗
2(d1)) = −a + d1 + b using the same arguments as in Case 1. Thus, on the

whole interval [0, a], vd1(d
∗
2(d1)) = d1 + PI ∨ (b − a) is a continuous function of d1 and its

first derivative is

d

dd1
vd1(d

∗
2(d1)) =

{
1− (1 + θ)SX(d1), for 0 ≤ d1 ≤ d0,

1, for d0 ≤ d1 ≤ a.

It implies that

min
(d1, d2)∈[0, a]×[a, b]

v(d1, d2) = min
d1∈[0, a]

min
d2∈[a, b]

v(d1, d2) = min
d1∈[0, a]

v(d1, d
∗
2(d1)) = v(d∗1, d

∗
2(d
∗
1)),

where d∗1 = VaR 1
1+θ

(X) ∧ d0. The corresponding optimal solution is

I∗(x) = (x− d∗1)+ − (x− b)+ =


0, for 0 ≤ x < b∗1,

x− d∗1, for b∗1 ≤ x < b,

d∗1, for b ≤ x <∞.

Combining the above three cases, the optimal solution of Problem (3.1) can be sum-

marized into a unified formula, which is a limited stop-loss reinsurance contract given as
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follows:

I∗(x) = (x−max{0, d0 ∧ VaR 1
1+θ

(X)})+ − (x− b)+

=


0, for 0 ≤ x < max{0, d0 ∧ VaR 1

1+θ
(X)},

x−max{0, d0 ∧ VaR 1
1+θ

(X)}, for max{0, d0 ∧ VaR 1
1+θ

(X)} ≤ x < b,

b−max{0, d0 ∧ VaR 1
1+θ

(X)}, for b ≤ x <∞,

where d0 ∈ R is the solution of the equation (1 + θ)
∫ b
d0
SX(x)dx = b− a.
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