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Abstract

In this paper, we consider a risk model which allows the insurer to partially re�ect the
recent claim experience in the determination of the next period's premium rate. In a ruin
context, similar mechanisms to the one proposed in this paper have been studied by, e.g., Tsai
and Parker (2004), Afonso et al. (2009) and Loisel and Tru�n (2013). In our proposed risk
model, we assume the surplus process is monitored at some review times only and the premium
review decision is based on the surplus increment between two successive review times. When
review times are distributed as a combination of exponentials and the claim arrival dynamic
is compound Poisson, we derive a matrix-form defective renewal equation for the Gerber-Shiu
function, as well as an explicit expression for the discounted joint density of the surplus prior to
ruin and the de�cit at ruin. Finally, we numerically compute the ruin probability and some tail
properties of the de�cit at ruin. A comparison with their counterparts in a constant premium
rate model is also presented, and some risk management conclusions are made.

Keywords: varying premiums; experience-based premium policy; risk management; Gerber-
Shiu function; defective renewal equation; discounted density.

1 Introduction

In the ruin theory literature, it is typically assumed that the incoming premium rate per unit time
is constant over time. This assumption is often justi�ed at the macro level by assuming that the
insurer's aggregate insurance portfolio is fairly large and stable over time. For instance, an insurance
product is gradually phased out and replaced by a more trendy alternative which overall maintains
a fairly stable stream of cash �ows. Also, terminating customers are replaced by new ones, which
is expected to keep the insurance portfolio reasonably homogeneous over time.

In this paper, we propose to instead examine an insurer's surplus process on a smaller scale.
The constant premium rate assumption is thus harder to justify in this case. We consider a strategy
where the incoming premium rate is no longer constant, but is allowed to vary based on the recent
claim experience of a particular insurance (sub-)portfolio. This can be viewed as a mechanism to
have a premium rate policy which is somehow responsive to the recent claim experience, a well
known practice in industry supported by the so-called credibility theory in insurance mathematics
(see, e.g., Klugman et al. (2012)). Our premium review policy described below can also be regarded
as a di�erent allocation of the insurer's revenues over time, which we will show has great merit
from a risk management standpoint. Indeed, the premium strategy is expected to provide a more
optimal matching of the cash in�ows and out�ows of an insurer over time, and can thus contribute
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to an enhanced set of asset and liability management techniques available to insurers to manage the
solvency risk.

In the same spirit as credibility theory, the main idea of the insurer's premium policy is to
generate supplementary premium income following a period of bad claim experience, while reducing
the incoming premium rate when a period of good claim experience is observed. Such a strategy
is often consistent with the insurer's new perception of the risk insured (even though the risk itself
may have remained unchanged). As such, we consider an insurer with the following �nite set of
premium rate options: {ci}mi=1 with ci < cj for i < j. For instance, these premium rates can result
from the application of a set of security loadings to the underlying risk. We assume that the insurer
has the ability to modify the incoming premium rate at some time points based on the increment
value of the surplus process between two successive review times. Also, as in Albrecher et al. (2011,
2013), ruin will be monitored at these discrete time points only. A complete description of the risk
model is presented in Section 2.

To better re�ect the surplus cash �ows of an insurance portfolio, many researchers have con-
sidered risk models whose premium rate is allowed to take di�erent values over time. One typical
research direction is to consider risk models under a dividend strategy (see, e.g., Avanzi (2009))
of a barrier type (e.g., Gerber (1979), Lin et al. (2003) and Li and Garrido (2004)) or a threshold
type (e.g., Asmussen and Albrecher (2010), Lin and Pavlova (2006) and Lin and Sendova (2008)).
Another direction is to study risk models with a credibility-based premium policy. For instance,
Asmussen (1999) considered a risk process where the premium rate is calculated according to past
claims statistics, while Tsai and Parker (2004), Afonso (2008), Afonso et al. (2009, 2010) and Loisel
and Tru�n (2013) examined the dynamic experience rating premium policy where premium rate
adapts itself using Bühlmann's credibility theory. Since the set of premium rates is not speci�ed in
advance, the focus is put on the numerical calculation of ruin quantities, as well as some of their
asymptotic properties. Recently, Landriault et al. (2012) proposed the idea of an adaptive premium
policy where premium rates are �xed ahead of time, and with the assumption of mixed Erlang claim
sizes, an explicit expression for the ruin probability in the classical risk model is derived. The model
considered here builds on this recent work.

The rest of the paper is structured as follows. In Section 2, we de�ne the risk model and the
Gerber-Shiu function of interest in this paper. To analyze them, we �rst consider the distribution
of the increments between successive review times. More precisely, in Section 3, we characterize
the two one-sided density of increments between successive exponentially distributed review times
through their Laplace transforms. In Section 4, when review times are distributed as a combination
of exponentials, a matrix-form defective renewal equation for the Gerber-Shiu function is derived,
with claim arrivals following a compound Poisson process. By employing Rouche's theorem and
the initial value theorem, we derive explicit expressions for some densities of ruin-related quantities.
In Section 5, we illustrate the bene�t of the proposed premium policy from a risk management
standpoint via some numerical examples. Finally, we conclude with a brief discussion of another
variant of the risk model under study in this paper.

2 Description of the risk model

We assume a claim arrival dynamic as in the classical risk model. For completeness, we recall that
in the classical risk model, the surplus process is de�ned as

Ut = u+ Zt, t ≥ 0, (2.1)
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where u ≥ 0 is the initial surplus level, c > 0 is the premium rate, and Zt = ct− St. The aggregate
claim amount process {St; t ≥ 0} is de�ned as

St =

{∑Nt
i=1 Ji, Nt > 0,

0, Nt = 0,

where {Nt; t ≥ 0} is a Poisson process with arrival rate λ > 0 and the claim sizes {Ji; i ≥ 1} are
a sequence of independent and identically distributed (iid) random variables (rv's) with density p
and mean µ, independent of {Nt; t ≥ 0}. In the classical risk model, the premium rate c per unit
time is assumed to be constant over time.

In this paper, we consider instead a risk model with an embedded premium policy. This risk
model is such that both premium changes and ruin detection can only occur at the random times
{Xk; k ≥ 1}, where Xk is the k-th review time with X0 = 0. Thus, to analyze the ruin event,
it su�ces to consider the surplus process at the review times {Xk; k ≥ 1} only. Hence, let Uk be
the surplus process value at time Xk, and de�ne ηk to be the e�ective premium rate between the
successive review times Xk−1 and Xk. It follows that

Uk = u+

k∑
j=1

Yj , (2.2)

where Yj = ηjTj−
(
SXj − SXj−1

)
and Tj = Xj−Xj−1 is the j-th inter-review time. We assume that a

review period beginning with premium rate ci has an inter-review time that is distributed according

to a rv Ki with density ki and mean κi, i.e., Tj |(ηj = ci)
d
= Ki, for i = 1, . . . ,m and j = 1, 2, . . ..

It is also assumed that conditional on {ηk; k ≥ 1}, the inter-review times {Tk; k ≥ 1} are mutually
independent, as well as independent of the aggregate claim process {St; t ≥ 0}. Furthermore, the
premium rate process {ηk; k ≥ 1} is assumed to be a (possibly non-time homogeneous) discrete-time
Markov process. Given that ηk = ci,

ηk+1 =

{
cmin(i+1,m), if ciTk −

(
SXk − SXk−1

)
≤ 0,

cmax(i−1,1), if ciTk −
(
SXk − SXk−1

)
> 0.

In other words, for an inter-review period operating at a premium rate ci, the subsequent inter-
review period will operate at a premium rate cmax(i−1,1) (cmin(i+1,m)) with transition probability
Pr
(
ciTk −

(
SXk − SXk−1

)
≤ 0
)
(Pr

(
ciTk −

(
SXk − SXk−1

)
> 0
)
).

It follows that the time to ruin T ∗ is de�ned as T ∗ = Xk∗ , where

k∗ = inf{k ≥ 1;Uk < 0},

with T ∗ = ∞ if Uk ≥ 0 for k = 0, 1, 2, . . .. Also, de�ne Uk∗−1 and |Uk∗ | to be the surplus prior to
ruin and the de�cit at ruin, respectively. A Gerber-Shiu function (see, e.g., Gerber and Shiu (1998))
of interest in this context is

mi,j,δ(u) = E
[
e−δT

∗
w (Uk∗−1, |Uk∗ |) I{ηk∗=j}I{T ∗<∞}|U0 = u, η1 = ci

]
, (2.3)

for i, j = 1, . . . ,m, where δ ≥ 0 can be viewed as a discount factor or a Laplace transform (LT)
argument, w(x, y) is a penalty function which is assumed to satisfy mild integrability conditions,
and IA is the indicator function of the event A.

To analyze the Gerber-Shiu function de�ned in (2.3), it will be particularly helpful to examine
the distribution of the increments of the surplus process {Ut; t ≥ 0} over an exponentially distributed
time horizon, which is studied in the next section.
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3 The two one-sided densities of Zeα

In this section, we assume eα is an exponential rv with �nite mean 1/α (independent of any other
rv's). Also, de�ne Zeα to be the increment of the surplus process over the horizon eα. The two
one-sided densities of Zeα , namely g+ and g−, are de�ned respectively through their one-sided LTs
as

E
[
e−sZeα I{Zeα>0}

]
=

∫ ∞
0

e−sxg+(x)dx,

and

E
[
e−s(−Zeα )I{Zeα<0}

]
=

∫ ∞
0

e−sxg−(x)dx.

Our objective is to identify g+ and g− in the classical risk model (2.1). The main results can be
found in Propositions 3.1 and 3.2, respectively. We point out that Kyprianou (2006, Corollary 8.9)
derived the same result in the more general class of spectrally negative Lévy processes. However,
we suggest a simpler proof to this result in the context of the classical risk model, which relies on
a simple set of LT arguments.

3.1 The one-sided density g+

To determine g+, we �rst de�ne the �rst passage time at level 0 for the process (2.1) as τ−0 = inf{t ≥
0|Ut < 0} (with τ−0 =∞ if Ut ≥ 0 for t ≥ 0). Thus, by conditioning on whether the review time eα
or the �rst passage time τ−0 occurs �rst, we have

E
[
e−sZeα I{Zeα>0}

]
= E

[
e−sZeα I{eα<τ−0 }

]
+ E

[
e−sZeα I{Zeα>0}I{eα≥τ−0 }

]
. (3.1)

To obtain an expression for the �rst term on the right-hand side of (3.1), let

ϕα(u) = E
[
e−sUeα I{eα<τ−0 }

|U0 = u
]
,

for which E
[
e−sZeα I{eα<τ−0 }

]
= ϕα(0). Note that ϕα(u) is the LT of Ueα killed if the surplus process

reaches negative values before the generic time eα. The term �killed� is used here to specify that all
sample paths with

{
eα > τ−0

}
are discarded. The reader is referred to Appendix A for the proof of

Lemma 3.1.

Lemma 3.1 The LT of Ueα for all sample paths with
{
eα > τ−0

}
is given by

ϕα(u) = α

{
1

s+ ρ
vα,c(u)−

∫ u

0
e−sxvα,c(u− x)dx

}
,

where vα,c(u) is de�ned on [0,∞) through its LT

ṽα,c(z) =
1

cz − λ(1− p̃(z))− α
,

and ρ = ρc(α) is the unique non-negative solution of cz − λ(1− p̃(z))− α = 0.

Note that vα,c(·) is known as the α-scale function in the literature on Lévy processes. We also
remark that the inversion of ϕα(u) wrt s yields

E
{

Pr(Ueα ∈ (x, x+ dx), eα < τ−0 |U0 = u)
} ∼= α

{
e−ρxvα,c(u)− vα,c(u− x)I{u>x}

}
dx.
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From Lemma 3.1 and the fact that vα,c(0) = 1/c, it is immediate that

E
[
e−sZeα I{eα<τ−0 }

]
≡ ϕα(0) =

α

c

1

s+ ρ
. (3.2)

As for the second term on the right-hand side of (3.1), we have the following lemma.

Lemma 3.2 The LT of the one-sided density of Zeα with {eα ≥ τ−0 , Zeα>0} is given by

E
[
e−sZeα I{Zeα>0}I{eα≥τ−0 }

]
=

∫ ∞
0

{
λ

c
Tρp(y)

}
e−ρyE

[
e−sZeα I{Zeα>0}

]
dy, (3.3)

where Trp(x) =
∫∞
x e−r(y−x)p(y)dy is the Dickson-Hipp operator with Re(r) ≥ 0.

Proof. For τ−0 ≤ eα, we shall �rst condition on the distribution of the de�cit at ruin |Uτ−0 | together
with {τ−0 ≤ eα}, which corresponds to the discounted density of the de�cit at ruin

E

[
e−ατ

−
0 I{|U

τ−0
|∈(y,y+dy)}|U0 = 0

]
∼=
λ

c
Tρp(y)dy,

as per a result of Gerber and Shiu (1998, Equation 3.4) with δ = α.
From a de�cit of y, the skip-free upward surplus process must then return to level 0 before

the exponential time eα, which happens with probability e−ρy (see Asmussen and Albrecher (2010,
Chapter V, Lemma 3.1)). Then, using the strong Markov property, we have

E
[
e−sZeα I{Zeα>0}I{eα≥τ−0 }

]
=

∫ ∞
0

E

[
e−ατ

−
0 I{|U

τ−0
|∈(y,y+dy)}|U0 = 0

]
e−ρyE

[
e−sZeα I{Zeα>0}

]
=

∫ ∞
0

{
λ

c
Tρp(y)

}
e−ρyE

[
e−sZeα I{Zeα>0}

]
dy.

This completes the proof of Lemma 3.2.
We now make use of Lemma 3.2 together with Equation (3.2) to identify the one-sided density

g+.

Proposition 3.1 The defective density of ZeαI{Zeα>0} is

g+(x) = αΦα,ce
−ρx, (3.4)

for x > 0, where

Φα,c =
1

c− λT 2
ρ p(0)

, (3.5)

and T 2
ρ p(0) =

∫∞
0 e−ρyTρp(y)dy.

Proof. Substituting (3.2) and (3.3) into (3.1) yields

E
[
e−sZeα I{Zeα>0}

]
=
α

c

1

s+ ρ
+

{∫ ∞
0

e−ρy
λ

c
Tρp(y)dy

}
E
[
e−sZeα I{Zeα>0}

]
,

which implies that

E
[
e−sZeα I{Zeα>0}

]
= αΦα,c

1

s+ ρ
, (3.6)

where Φα,c is de�ned in (3.5). The LT inversion of (3.6) wrt s yields (3.4).
Also, it is easy to prove that Φα,c > 0, which will be used in Section 4.
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3.2 The one-sided density g−

We are now interested in the other one-sided density of Zeα . De�ne τ
+
b = inf{t ≥ 0|Ut ≥ b} to be

the �rst passage time of {Ut; t ≥ 0} at level b.
Conditioning on the �rst excursion below 0 (before eα), and then on whether the review time

eα or the recovery time τ+
0 occurs �rst, we have

E
[
e−s(−Zeα )I{Zeα<0}

]
=

∫ ∞
0

{
λ

c
Tρp(y)

}
e−ρyE

[
e−s(−Zeα )I{Zeα<0}

]
dy +

∫ ∞
0

{
λ

c
Tρp(y)

}
φα(y)dy,

(3.7)
where

φα(y) = E
[
e−s(−Ueα )I{eα<τ+

0 }
|U0 = −y

]
.

An explicit expression for φα(y) is given in Lemma 3.3 (see Appendix B for the proof).

Lemma 3.3 The ruin quantity φα(y) can be expressed as

φα(y) = α
(
e−ρy − e−sy

)
ṽα,c(s), (3.8)

where ṽα,c(s) and ρ are as de�ned in Lemma 3.1.

We are now in a position to provide a closed-form expression for the one-sided density g−.

Proposition 3.2 The defective density of −ZeαI{Zeα<0} is given by

g−(x) = α {Φα,ce
ρx − vα,c(x)} , x > 0. (3.9)

Proof. Substituting (3.8) into the second term on the right-hand side of (3.7), it follows∫ ∞
0

{
λ

c
Tρp(y)

}
E
[
e−s(−Ueα )I{eα<τ+

0 }
|U0 = −y

]
dy

=

∫ ∞
0

{
λ

c
Tρp(y)

}{
α
(
e−ρy − e−sy

)
ṽα,c(s)

}
dy

= αṽα,c(s)

{
λ

c
T 2
ρ p(0)− λ

c

p̃(ρ)− p̃(s)
s− ρ

}
= αṽα,c(s)

{
λ

c
T 2
ρ p(0)− 1

}
+
α

c

1

s− ρ
, (3.10)

where the scale function identity

ṽα,c(s) =
1

c(s− ρ)

1

1− λ
c
p̃(ρ)−p̃(s)
s−ρ

,

was used in the process.
Substituting (3.10) into (3.7) yields

E
[
e−s(−Zeα )I{Zeα<0}

]
=
λ

c
T 2
ρ p(0)E

[
e−s(−Zeα )I{Zeα<0}

]
+ αṽα,c(s)

{
λ

c
T 2
ρ p(0)− 1

}
+
α

c

1

s− ρ
,

i.e.,

E
[
e−s(−Zeα )I{Zeα<0}

]
= αΦα,c

1

s− ρ
− αṽα,c(s). (3.11)

The inversion of (3.11) wrt s results in (3.9).
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Example 3.1 We assume that claim sizes are exponentially distributed with mean 1/β. Let ρ > 0
and −R < 0 be the two solutions of

s2 +

(
β − λ+ α

c

)
s− αβ

c
= 0.

It is clear that Φα,c = 1
c
β+ρ
R+ρ and

vα,c(x) =
1

c

β + ρ

ρ+R
eρx − 1

c

β −R
ρ+R

e−Rx.

Using (3.4) and (3.9), it follows that, for x > 0,

g+(x) =
α

c

β + ρ

R+ ρ
e−ρx and g−(x) =

α

c

β −R
ρ+R

e−Rx.

This is in agreement with Albrecher et al. (2013, Example 4.1).

Remark 3.1 (Discounted one-sided densities) It is no more di�cult to consider the two one-

sided �discounted� densities of Zeα, namely gδ+ and gδ−. We �rst consider gδ+ de�ned through its

LT

E
[
e−δeαe−sZeα I{Zeα>0}

]
=

∫ ∞
0

e−sxgδ+(x)dx. (3.12)

Indeed,

E
[
e−δeαe−sZeα I{Zeα>0}

]
= E

[
e−sZeα I{Zeα>0}I{e∗δ>eα}

]
,

where e∗δ is an exponential rv with mean 1/δ, independent of all other rv's. Using the fact that

min(e∗δ , eα) is distributed as eα+δ, I{e∗δ>eα} is Bernoulli distributed with mean α
α+δ , and min(e∗δ , eα)

and I{e∗δ>eα} are independent (see, e.g., Ross (2010)), it follows that

E
[
e−δeαe−sZeα I{Zeα>0}

]
=

α

α+ δ
E
[
e−sZeα+δ I{Zeα+δ

>0}

]
.

Thus,

gδ+(x) =
α

α+ δ
g+(x),

for x > 0, where g+(x) is as given in (3.4) but with the parameter α substituted by α + δ. We can

apply the same arguments for gδ−. Therefore, the two one-sided discounted densities of Zeα are

gδ+(x) = αΦα+δ,ce
−ρx, (3.13)

and

gδ−(x) = α {Φα+δ,ce
ρx − vα+δ,c(x)} ,

for x > 0 where ρ = ρc(α+ δ).

4 Matrix-form defective renewal equation

In this section, we assume that a review period beginning with premium rate ci has an inter-review
time distributed as a rv Ki that is a combination of exponentials, i.e., it has a density given by

ki(t) =
n∑
k=1

ξikαike
−αikt, t > 0, (4.1)

and k̃i(s) =
∑n

j=1 ξij
αij
s+αij

. Note that the class of combinations of exponentials is dense in the set

of all continuous probability distributions on the positive axis (see, e.g., Dufresne (2007)).
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Proposition 4.1 Let gδi,+ and gδi,− be the two one-sided discounted densities of the increments over

the review time Ki with density (4.1). For x > 0, we have

gδi,+(x) =

n∑
k=1

ξikαikΦike
−ρikx, (4.2)

and

gδi,−(x) =
n∑
k=1

ξikαik {Φike
ρikx − vik(x)} , (4.3)

where ρik = ρci(αik + δ), Φik = Φαik+δ,ci and vik(x) = vαik+δ,ci(x).
Proof. By the de�nition of the LT of gδi,+, along with (3.12) and (3.13), it follows∫ ∞

0
e−sxgδi,+(x)dx = E

[
e−δKie−sZKi I{ZKi>0}

]
=

∫ ∞
0

E
[
e−δte−sZtI{Zt>0}

]
ki(t)dt

=

n∑
k=1

ξikE
[
e−δeαik e−sZeαik I{Zeαik>0}

]
=

∫ ∞
0

e−sx
n∑
k=1

ξikαikΦike
−ρikxdx,

By the uniqueness of LT, we obtain (4.2). Similar arguments apply to (4.3).

4.1 Laplace transform of the Gerber-Shiu function

With the two one-sided discounted densities, we now consider ruin-related quantities in the risk
model (2.2) with the embedded premium policy.

By conditioning on the increment of the surplus process at the �rst review time, the Gerber-Shiu
function de�ned in (2.3) can be expressed as

mi,j,δ(u) =

∫ u

0
mmin(i+1,m),j,δ(u− y)gδi,−(y)dy + bij(u) +

∫ ∞
0

mmax(i−1,1),j,δ(u+ y)gδi,+(y)dy, (4.4)

where gδi,+(·) and gδi,−(·) are de�ned in (4.2) and (4.3), and

bij(u) =

{∫ ∞
u

w(u, y − u)gδi,−(y)dy

}
I{i=j}. (4.5)

Taking the LT on both sides of (4.4), one �nds that

m̃i,j,δ(z) = m̃min(i+1,m),j,δ(z)g̃
δ
i,−(z) + b̃ij(z) +

n∑
k=1

ξikαikΦik

m̃max(i−1,1),j,δ(ρik)− m̃max(i−1,1),j,δ(z)

z − ρik
.

(4.6)
In matrix form, Equation (4.6) becomes

(I−A(z)) m̃δ(z) = B̃(z) +

n∑
k=1

Dk(z)Ck,δ, (4.7)
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where m̃δ(z) = [m̃i,j,δ(z)]
m
i,j=1, B̃(z) = diag

{
b̃ii(z)

}m
i=1

, Dk(z) = diag
{
ξikαikΦik
z−ρik

}m
i=1

, Ck,δ =[
m̃max(i−1,1),j,δ(ρik)

]m
i,j=1

, and

A(z) =



∑n
k=1

ξ1kα1kΦ1k
ρ1k−z g̃δ1,−(z) 0 · · · 0∑n

k=1
ξ2kα2kΦ2k
ρ2k−z 0 g̃δ2,−(z)

. . . 0

0
. . .

. . .
. . . 0

0
. . .

∑n
k=1

ξ(m−1)kα(m−1)kΦ(m−1)k

ρ(m−1)k−z
0 g̃δm−1,−(z)

0 · · · 0
∑n

k=1
ξmkαmkΦmk

ρmk−z g̃δm,−(z)


.

Remark 4.1 It is not di�cult to check that A(0)|δ=0 is the transition matrix for the discrete-time

Markov process {ηk; k ≥ 1}, whose stationary probabilities ϑT= [ϑ1, . . . , ϑm] satisfy{
ϑTA(0)|δ=0 = ϑT ,

ϑT1 = 1,

while the the stationary probabilities of the process {Uk; k ≥ 0} are given by πT = [π1, . . . , πm],
where

πi =
ϑiκi∑m
j=1 ϑjκj

, (4.8)

for i = 1, . . . ,m (see, e.g., Ross (2010)). Given these stationary probabilities, we can write the

positive security loading condition for model (2.2) as

m∑
i=1

πici > λµ, (4.9)

which is very intuitive, since it is equivalent to
∑m

i=1 ϑiE [ciKi − SKi ] > 0.

Assuming (I−A(z)) is invertible, it follows that

m̃δ(z) =
adj (I−A(z))

(
B̃(z) +

∑n
k=1 Dk(z)Ck,δ

)
det (I−A(z))

, (4.10)

where adj (I−A(z)) is the adjoint matrix of (I−A(z)). Note that the matrices {Ck,δ}nk=1 in (4.10)
contain m × m × n unknown constants, namely m̃1,j,δ(ρ1k) and m̃(i−1),j,δ(ρik) for i = 2, . . . ,m,
j = 1, . . . ,m and k = 1, . . . , n. Thus, our objective is to identify these constants in order to fully
characterize the closed-form expression for m̃δ(z) given in (4.10), enabling its use in the numerical
implementation of Section 5. An application of a matrix generalization of Rouche's theorem (see
Dshalalow (1995)) will be useful in this context.

Lemma 4.1 For δ > 0, there are m× n non-negative solutions, namely γ1, . . . , γmn, to
det (I−A(z)) = 0.

Proof. De�ne the contour D = limr→∞ (Dr ∪D0), where Dr = {z : |z| = r and Re(z) ≥ 0} and
D0 = {z : |z| < r Re(z) = 0}. It can be shown that

∑m
j=1 |aij(z)| < 1 on D, where aij(z) is the

(i, j) entry of A(z).
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Given that gδi,−(y) ≥ 0, for y > 0, it follows that

∣∣∣g̃δi,−(z)
∣∣∣ ≤ g̃δi,−(0) =

n∑
k=1

ξikαik

{
Φik

−ρik
+

1

αik + δ

}
for i = 1, . . . ,m and Re(z) ≥ 0.

Let us now assume that ∣∣∣∣∣
n∑
k=1

ξikαikΦik

z − ρik

∣∣∣∣∣ ≤ g̃δi,+(0), (4.11)

holds for all z in Dr ∪D0. It follows that

m∑
j=1

|aij(z)| =

∣∣∣∣∣
n∑
k=1

ξikαikΦik

z − ρik

∣∣∣∣∣+
∣∣∣g̃δi,−(z)

∣∣∣ ≤ g̃δi,+(0) + g̃δi,−(0) = k̃i(δ) < 1.

To show that (4.11) holds on the contour Dr ∪ D0 for r su�ciently large, let us �rst consider
the imaginary part of the contour. It is clear that for any z such that Re(z) = 0,∣∣∣∣∣

n∑
k=1

ξikαik
Φik

z − ρik

∣∣∣∣∣ = |g̃i,+(−z)| ≤ g̃δi,+(0).

Also, for all z ∈ Dr such that r > r0 = maxi,k ρik +
∑n
k=1|ξikαikΦik|∑n
k=1

ξikαikΦik
ρik

, we have

∣∣∣∣∣
n∑
k=1

ξikαikΦik

z − ρik

∣∣∣∣∣ ≤
n∑
k=1

|ξikαikΦik|
|z| −maxi,k ρik

≤
n∑
k=1

ξikαikΦik

ρik
= g̃δi,+(0).

Therefore,
∑m

j=1 |aij(z)| < 1 holds on Dr for any r > r0 and the imaginary axis de�ned by
D0. Now we can apply the matrix form of Rouche's theorem. Since det I = 1 6= 0, det (I−A(z))
satis�es NI−A − PI−A = 0, where NI−A and PI−A are the number of zeros and poles inside D of
det (I−A(z)), respectively. It is clear from the de�nition of A(z) that det (I−A(z)) has m × n
poles, namely z = ρik for i = 1, . . . ,m and k = 1, . . . , n. Therefore, det (I−A(z)) must have m×n
zeros inside D.

Note that in the limiting case δ → 0+, if the positive security loading condition (4.9) is satis�ed,
there are still m× n non-negative solutions to det (I−A(z)) = 0 among which one solution is 0.

Henceforth, we assume that γ1, . . . , γmn are distinct. For i = 1, . . . ,mn, let the non-zero row
vector hTi = [hi1, . . . , him] be the left eigenvector of (I−A(γi)) associated with the eigenvalue 0.
Now we are ready to provide an explicit expression for {Ck,δ}nk=1.

Proposition 4.2 If the matrix V =
[
hTi Dk(γi)

]mn,n
i=1,k=1

is invertible, then the matrices {Ck,δ}nk=1
are given by  C1,δ

...

Cn,δ

 = W

 hT1 B̃(γ1)
...

hTmnB̃(γmn)

 , (4.12)

where W = −V−1.
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Proof. By de�nition, for i = 1, . . . ,mn,

hTi (I−A(γi)) = 0T ,

which implies
hTi (I−A(γi)) m̃δ(γi) = 0T m̃δ(γi) = 0T . (4.13)

Multiplying (4.7) at z = γi by the left eigenvector hTi and using (4.13), one �nds

hTi (I−A(γi)) m̃δ(γi) = hTi

(
B̃(γi) +

n∑
k=1

Dk(γi)Ck,δ

)
= 0T ,

which results in the following system of linear equations,

V

 C1,δ
...

Cn,δ

 = −

 hT1 B̃(γ1)
...

hTmnB̃(γmn)

 .

For V an invertible matrix, the result easily follows.
We point out that the matrix V is a generalized Cauchy matrix (see, e.g., Heinig (1995)) of the

form [
zTi yj
ci − dj

]mn
i,j=1

,

where ci = γi, dj = ρst, z
T
i = hTi , yj = ξstαstΦstes with es the canonical vectors, s = j − b jmc ×m,

and t = d jme. Conditions under which such a matrix is invertible have been widely analyzed in
the literature (see, e.g., Heinig (1995, 1998) for more details). For instance, when V is invertible,
an application of Theorem 2.2 in Heinig (1995) leads to an expression for W = −V−1. Let Z =
col(zTi )mni=1 and Y = col(yTj )mnj=1, then

W = [wi,j ]
mn
i,j=1 =

[
xTi pj
di − cj

]mn
i,j=1

,

where X = col(xTi )mni=1 and P = col(pTj )mnj=1 are the solutions to VX = Z and PTV = YT .
Therefore, using (4.10) and (4.12), we have an explicit expression for m̃δ(z), whose inversion

results in an expression for mij,δ(u) in terms of the solutions γ1, . . . , γmn.

4.2 Matrix-form defective renewal equation and discounted joint densities

Intuitively, we expect the Gerber-Shiu function to satisfy a matrix-form defective renewal equation,
also known as Markov renewal equation in the ruin theory literature (see, e.g., Cheung and Feng
(2013)). Interest in such a representation comes from the fact that its solution is known to have
some particularly nice properties (see, e.g., Miyazawa (2002) and Li and Luo (2005)).

Let h∗δ1,ij(y|u) and h∗δ2,ij(x, y|u) be the discounted density of the de�cit at ruin |Uk∗ | for ruin
occurring at time X1 and the discounted joint density of (Uk∗−1, |Uk∗ |) for ruin occurring after X1,
respectively. By conditioning on the �rst drop in surplus at a review time, the Gerber-Shiu function
mi,j,δ(u) can be represented as

mi,j,δ(u) =

m∑
l=1

∫ u

0
ml,j,δ(u− y)h∗δil (y|0)dy + fij(u), (4.14)

11



where

h∗δij (y|u) = h∗δ1,ij(y|u) +

∫ ∞
0

h∗δ2,ij(x, y|u)dx,

and

fij(u) =

∫ ∞
u

w(u, y − u)h∗δ1,ij(y|0)dy +

∫ ∞
u

∫ ∞
0

w(x+ u, y − u)h∗δ2,ij(x, y|0)dxdy.

In a matrix form, we have
mδ(u) = H ∗mδ(u) + F(u), (4.15)

where mδ(u) = [mi,j,δ(u)]mi,j=1, H(y) =
[
h∗δij (y|0)

]m
i,j=1

, F(u) = [fij(u)]mi,j=1 and the convolution of

two matrices is de�ned as

[H ∗mδ(u)]ij =
m∑
l=1

∫ u

0
h∗δil (y|0)ml,j,δ(u− y)dy.

Given that
∑m

l=1

∫∞
0 h∗δil (y|0)dy = E

[
e−δT

∗
I{T ∗<∞}|U0 = 0, η1 = ci

]
< 1 under δ > 0 (or the pos-

itive security loading if δ = 0), (4.15) is a matrix-form defective renewal equation with a unique
solution.

In the following, we complete the characterization of (4.15) by identifying the discounted densi-
ties h∗δ1,ij(y|0) and h∗δ2,ij(x, y|0).

Proposition 4.3 The discounted densities h∗δ1,ij(y|0) and h∗δ2,ij(x, y|0) are given by

h∗δ1,ij(y|0) = gδi,−(y)I{i=j}, (4.16)

and

h∗δ2,ij(x, y|0) =

n∑
k=1

ξikαikΦik

mn∑
l=1

w(mk−m+i),lhlje
−γlxgδj,−(y + x). (4.17)

Proof. Taking u = 0 and a penalty function of the form w(x, y) = e−s1x−s2y in (4.14), we have

mi,j,δ(0) =

∫ ∞
0

e−s2yh∗δ1,ij(y|0)dy +

∫ ∞
0

∫ ∞
0

e−s1x−s2yh∗δ2,ij(x, y|0)dxdy. (4.18)

Also, an application of the initial value theorem (see, e.g., Spiegel (1965)) to the transform
m̃δ(z) given in (4.10) leads to

mδ(0) = B(0) +

n∑
k=1

DkCk,δ,

where Dk = diag {ξikαikΦik}mi=1. Alternatively, for i, j = 1, . . . ,m,

mi,j,δ(0) = bij(0) +
n∑
k=1

ξikαikΦikm̃max(i−1,1),j,δ(ρik). (4.19)

Now, making use of (4.5) and (4.12), it is immediate that

bij(0) =

∫ ∞
0

w(0, y)gδi,−(y)dyI{i=j} =

∫ ∞
0

e−s2ygδi,−(y)I{i=j}dy (4.20)
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and

m̃max(i−1,1),j,δ(ρik) =
mn∑
l=1

w(mk−m+i),l

(
m∑
s=1

hlsb̃sj(γl)

)

=

mn∑
l=1

m∑
s=1

w(mk−m+i),lhls

∫ ∞
0

e−γlu
∫ ∞
u

e−s1u−s2(y−u)gδs,−(y)dyduI{s=j}

=

∫ ∞
0

∫ ∞
0

mn∑
l=1

m∑
s=1

w(mk−m+i),lhlse
−γlxe−s1x−s2ygδs,−(y + x)I{s=j}dydx. (4.21)

Substituting (4.20) and (4.21) into (4.19), one obtains

mi,j,δ(0) =

∫ ∞
0

e−s2ygδi,−(y)I{i=j}dy

+

∫ ∞
0

∫ ∞
0

n∑
k=1

ξikαikΦik

mn∑
l=1

m∑
s=1

w(mk−m+i),lhlse
−γlxe−s1x−s2ygδs,−(y + x)I{s=j}dydx.

(4.22)

A comparison of (4.18) and (4.22) immediately leads to (4.16) and (4.17).

5 Numerical examples

In this section, we numerically implement the theoretical results obtained in Section 4. We show
that the proposed embedded premium policy mitigates the risk of an insurer's insolvency. Our
conclusions are consistent with similar work performed on the impact of experience-rating system
on ruin-related quantities (see, e.g., Loisel and Tru�n (2013) and Tsai and Parker (2004)).

First, we introduce a constant premium model with randomized reviews (CPMRR) (see, e.g.,
Albrecher et al. (2011, 2013)), where the classical risk model (2.1) can only be observed at random
review times with density k. In other words, the CPMRR is the same as the model de�ned in (2.2)
but with premium rates ci ≡ c̄ and review time distributions ki(t) ≡ k(t) for i = 1, . . . ,m. In
the following, we propose to compare ruin quantities in the risk model (2.2) with the embedded
premium policy to their counterparts in the CPMRR. As a basis for comparison, we assume that c̄
is �xed at the stationary level of the embedded premium policy, i.e.,

c̄ =

m∑
j=1

πjcj ,

where πT = [π1, . . . , πm] are the stationary probabilities de�ned in (4.8). Also, given that for our
embedded premium policy, ruin quantities are de�ned conditional on the initial premium rate, we
remove this dependence on η1 by mixing the ruin quantities over the stationary probabilities, i.e.,
we consider

mst,δ(u) =

m∑
i=1

πimi,δ(u), (5.1)

where mi,δ(u) =
∑m

j=1mi,j,δ(u) is the Gerber-Shiu function with an initial premium rate ci. In
addition, we assume the review time's density does not depend on the premium rate in e�ect, i.e.,
ki(t) = k(t) for i = 1, . . . ,m.
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5.1 Ruin probability

We begin our analysis with the ruin probability. Let ψst(u) be the stationary ruin probability
resulting from Equation (5.1) with δ = 0 and w(x, y) = 1. Also, de�ne ψc̄(u) to be the ruin
probability of the CPMRR.

Example 5.1 We consider an example with two premium rates c1 = 11 and c2 = 14. Claim sizes

are assumed to be exponentially distributed with mean 10, while the inter-review times are also

exponentially distributed with k(t) = αe−αt. Finally, we set the claim arrival rate to λ = 1. Results
for ψst(u) and ψc̄(u) are provided in Table 1, for di�erent u and α.

ψst(u) ψc̄(u) ψst(u) ψc̄(u) ψst(u) ψc̄(u) ψst(u) ψc̄(u)

α u=0 u=25 u=50 u=100

0.1 0.5410 0.5158 0.3418 0.3458 0.2143 0.2318 0.0831 0.1042
0.5 0.7104 0.7053 0.4583 0.4772 0.2946 0.3229 0.1213 0.1478
1 0.7688 0.7666 0.5122 0.5289 0.3407 0.3650 0.1505 0.1737
10 0.8808 0.8807 0.6660 0.6700 0.5036 0.5098 0.2880 0.2950
∞ 0.9091 0.9091 0.7243 0.7243 0.5770 0.5770 0.3663 0.3663

Table 1: Ruin probability with di�erent values of u and α

From Table 1, we observe that:

1. As expected, the ruin probability is a decreasing function of the initial surplus u.

2. The ruin probability is an increasing function of α. As the rate α increases, the frequency
of solvency checks increases, making it more likely to identify a ruin event. Also, given that
c1 and c2 have positive security loadings, a larger α implies that the premium review will be
conducted more often to reduce the premium rate to c1, and thus making the surplus process
riskier.

As expected, when α goes to ∞, all ruin probabilities converge to the ruin probability in the
(continuous time) classical risk model (2.1) with a constant premium rate of c1.

3. For relatively large surplus values, the ruin probabilities ψst are smaller than ψc̄, which implies
that our embedded premium policy reduces the risk of insolvency in the long run. However,
the opposite conclusion is reached for small initial surplus values, an observation also made
by Tsai and Parker (2004) and Loisel and Tru�n (2013) in a similar context.

In the following example, our goal is to investigate the e�ect of the distribution of the inter-review
times on the ruin probability.

Example 5.2 We reconsider Example 5.1 under two following alternative distributional assump-

tions for the inter-review times:

M1: k(t) = (α1e
−α1t + α2e

−α2t)/2 with (α1, α2) such that the mean is 1/α and the variance is

1.5/α2 > 1/α2.

M2: k(t) =
(
3α1e

−α1t − α2e
−α2t

)
/2 with (α1, α2) such that the mean is 1/α and the variance

is 0.5/α2 < 1/α2.
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ψst(u) ψc̄(u) ψst(u) ψc̄(u) ψst(u) ψc̄(u) ψst(u) ψc̄(u)

α u=0 u=25 u=50 u=100

0.1 0.5486 0.5198 0.3444 0.3436 0.2164 0.2285 0.0858 0.1020
0.5 0.7126 0.7057 0.4612 0.4768 0.2992 0.3237 0.1261 0.1498
1 0.7696 0.7664 0.5160 0.5304 0.3465 0.3682 0.1564 0.1778
10 0.8799 0.8798 0.6668 0.6706 0.5054 0.5112 0.2903 0.2971
∞ 0.9091 0.9091 0.7243 0.7243 0.5770 0.5770 0.3663 0.3663

Table 2: Ruin probability under M1

ψst(u) ψc̄(u) ψst(u) ψc̄(u) ψst(u) ψc̄(u) ψst(u) ψc̄(u)

α u=0 u=25 u=50 u=100

0.1 0.5359 0.5123 0.3397 0.3458 0.2130 0.2330 0.0820 0.1055
0.5 0.7086 0.7047 0.4570 0.4781 0.2928 0.3236 0.1191 0.1478
1 0.7680 0.7665 0.5108 0.5291 0.3384 0.3644 0.1479 0.1725
10 0.8814 0.8814 0.6656 0.6698 0.5026 0.5088 0.2863 0.2936
∞ 0.9091 0.9091 0.7243 0.7243 0.5770 0.5770 0.3663 0.3663

Table 3: Ruin probability under M2

Tables 2 and 3 contain the values of the resulting ruin probabilities for Example 5.2. Similar
conclusions as those provided for Example 5.1 are also valid here. As far as the distributional
assumptions of inter-review times are concerned, we remark a tendency for the ruin probability to
increase as the variance of the inter-review time distribution increases. However, this conclusion is
not general, as when u = 0 and α = 10, the opposite ordering is observed.

5.2 De�cit at ruin

In this subsection, we shift our attention to the de�cit at ruin, more precisely to its tail properties.
By taking δ = 0 and w(x, y) = e−sy in Equation (5.1), one �nds that

m∑
i=1

πiE
[
e−s|Uk∗ |I{T ∗<∞}|U0 = u, η1 = ci

]
=

∫ ∞
0
e−sy Pr (Lst ∈ dy) ,

where Lst corresponds to the de�cit at ruin in the stationary risk model of (2.2). Clearly Lst is a
defective rv, and we alternatively consider the proper rv L∗st = Lst|T ∗ < ∞. In what follows, we
focus on the Value at Risk (VaR) of the mixing de�cit at ruin Lst (and L

∗
st), which is de�ned as

VaR
(∗)
st,q = inf

{
y ≥ 0 : Pr

(
L

(∗)
st > y

)
≤ 1− q

}
. (5.2)

In the CPMRR, the counterparts to (5.2) are denoted by VaRc̄,q and VaR∗c̄,q, respectively.

Example 5.3 We reconsider Example 5.1 under assumption M1 in Example 5.2. Table 4 contains

the VaR value when α = 0.5, in which case we have α1 = 1/3 and α2 = 1.

Table 4 leads to similar conclusions as those for the ruin probabilities of Table 1, even though
the impact is less noticeable. Indeed, with the exception of small surplus levels, the values of VaR
of the de�cit at ruin (both defective and proper) in the proposed premium policy risk model are
smaller than their counterparts in the CPMRR. This is another numerical evidence of the merit of
the embedded premium policy proposed in this paper from a risk management standpoint.
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q u=0 u=25 u=50 u=100 u=200

VaRst,q VaRc̄,q VaRst,q VaRc̄,q VaRst,q VaRc̄,q VaRst,q VaRc̄,q VaRst,q VaRc̄,q
0.95 51.37 50.59 43.02 43.71 34.54 36.29 17.70 21.22 0 0
0.98 69.82 68.74 61.37 62.00 52.75 54.56 35.59 39.30 2.15 9.13
0.99 83.99 82.65 75.46 76.00 66.73 68.55 49.34 53.16 15.41 22.61
0.995 98.32 96.70 89.70 90.13 80.88 82.67 63.28 67.17 28.87 36.28
0.9995 146.86 144.14 137.89 137.76 128.77 130.27 110.60 114.50 74.92 82.77

VaR∗st,q VaR∗c̄,q VaR∗st,q VaR∗c̄,q VaR∗st,q VaR∗c̄,q VaR∗st,q VaR∗c̄,q VaR∗st,q VaR∗c̄,q
0.95 58.15 57.46 58.50 58.47 58.59 58.81 58.60 58.98 58.58 59.00
0.98 76.72 75.72 77.11 76.97 77.20 77.40 77.19 77.60 77.17 77.62
0.99 90.97 89.70 91.36 91.11 91.44 91.59 91.42 91.81 91.39 91.84
0.995 105.38 103.82 105.76 105.35 105.82 105.88 105.78 106.12 105.74 106.15
0.9995 154.09 151.40 154.31 153.25 154.28 153.86 154.17 154.15 154.11 154.19

Table 4: VaR of the defective and proper de�cit at ruin

6 Conclusion

To conclude, we point out that another variant of the proposed risk model can be analyzed using the
methodology developed in this paper. This risk model consists of replacing the natural performance
level 0 for the increment between successive review times by a random threshold (which may or may
not depend on the premium rate e�ective at the beginning of the period). A matrix-form defective
renewal equation for the Gerber-Shiu function as well as discounted joint densities of interest can
also be obtained in this context.
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Appendix

A Proof for Lemma 3.1

By conditioning on the �rst occurrence between a claim instant and a review time, we get

ϕα(u) =

∫ ∞
0

λe−(λ+α)t

{∫ u+ct

0
ϕα(u+ ct− y)p(y)dy

}
dt+

∫ ∞
0

αe−(λ+α)te−s(u+ct)dt

=
λ

c

∫ ∞
u

e−
λ+α
c

(x−u)

∫ x

0
ϕα(x− y)p(y)dydx+

α

λ+ α+ cs
e−su

=
λ

c
Tλ+α

c
rα(u) +

α

λ+ α+ cs
e−su, (A.1)

where

rα(x) =

∫ x

0
ϕα(x− y)p(y)dy.
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Taking the LT on both sides of (A.1), one obtains

ϕ̃α(z) =
λ

c

r̃α
(
λ+α
c

)
− r̃α(z)

z − λ+α
c

+
α

λ+ α+ cs

1

z + s

=
λ

c

ϕ̃α
(
λ+α
c

)
p̃
(
λ+α
c

)
− ϕ̃α(z)p̃(z)

z − λ+α
c

+
α

λ+ α+ cs

1

z + s
. (A.2)

A simple rearrangement of (A.2) yields

{cz − λ (1− p̃(z))− α} ϕ̃α(z) =

{
λϕ̃α

(
λ+ α

c

)
p̃

(
λ+ α

c

)
+

αc

λ+ α+ cs

}
− α

z + s
. (A.3)

The �rst term on the right-hand side of (A.3) does not depend on z, and thus by taking z = ρ,
we can express it as

λϕ̃α

(
λ+ α

c

)
p̃

(
λ+ α

c

)
+

αc

λ+ α+ cs
=

α

ρ+ s
. (A.4)

Substituting (A.4) into (A.3), we have

{cz − λ (1− p̃(z))− α} ϕ̃α(z) = α

(
1

ρ+ s
− 1

s+ z

)
,

i.e.,

ϕ̃α(z) = α

(
1

s+ ρ
− 1

s+ z

)
ṽα,c(z).

By taking the LT inversion wrt z, we complete the proof.

B Proof for Lemma 3.3

By re�ection, we get

φα(y) = E
[
e−sReα I{eα<τ∗−0 }

|R0 = y
]
,

where Rt = u− Zt is the dual risk model and τ∗−0 = inf{t ≥ 0|Rt ≤ 0} is the �rst passage time of
{Rt; t ≥ 0} at level 0. Thus, φα(y) is the LT of Reα given that the review time eα occurs before
ruin. Intuitively, it is clear that

φα(y) = e−sεφα(y − ε) + e−ρ(y−ε)φα(ε),

for all ε ∈ [0, u]. Integrating over ε from 0 to y, it follows that

yφα(y) =

∫ y

0
e−sεφα(y − ε)dε+

∫ y

0
e−ρ(y−ε)φα(ε)dε, (B.1)

Taking the LT on both sides of (B.1), we obtain∫ ∞
0

e−zyyφα(y)dy =

(
1

s+ z
+

1

ρ+ z

)
φ̃α(z).

Note that
∫∞

0 e−zyyφα(y)dy = d
dz φ̃α(z). Thus, solving this ordinary di�erential equation yields

φα(y) = c(s)
(
e−sy − e−ρy

)
, (B.2)
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where c(s) is a constant involving s.
To identify c(s), we condition on the time and amount of the �rst jump, i.e.,

φα(y) =

∫ y/c

0
λe−(λ+α)t

{∫ ∞
0

φα(y − ct+ x)p(x)dx

}
dt+

∫ y/c

0
αe−(λ+α)te−s(y−ct)dt

= c(s)

{
λ

λ+ α− cs
p̃(s)

(
e−sy − e−(λ+α)y/c

)
− λ

λ+ α− cρ
p̃(s)

(
e−ρy − e−(λ+α)y/c

)}
+

α

λ+ α− cs

(
e−sy − e−(λ+α)y/c

)
=

{
c(s)

λ

λ+ α− cs
p̃(s) +

α

λ+ α− cs

}
e−sy − c(s)e−ρy

−
{
c(s)

λ

λ+ α− cs
p̃(s)− c(s) +

α

λ+ α− cs

}
e−(λ+α)y/c.

Matching the coe�cients of e−sy, we get

c(s) =
α

α+ λ− cs− λp̃(s)
= −αṽα,c(s). (B.3)

Thus, substituting (B.3) into (B.2) yields

φα(y) = α
(
e−ρy − e−sy

)
ṽα,c(s).
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