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Abstract

We revisit Atanassov’s methods for Halton sequences, (t, s)-sequences, and
(t, e, s)-sequences by providing a unifying framework enlightening the power
and the efficiency of these methods for the study of low-discrepancy se-
quences. In this context, we obtain new improved explicit bounds for the
star-discrepancy of these sequences, showing in most cases a better behavior
than preceding ones in the non-asymptotic regime. Theoretical comparisons
of discrepancy bounds in the non-asymptotic regime are much more difficult
to achieve than in the asymptotic regime, where results exist to compare the
leading constants cs. Hence in this paper we mostly proceed via numerical
comparisons to compare bounds. But in the case of (t, s)-sequences in base
2, we are able to compare two discrepancy bounds and prove that one is
demonstrably better than the other for any N ≥ 2s. The proof is far from
trivial as the two bounds are based on different combinatorial arguments.

Keywords: Discrepancy bounds, low-discrepancy sequences.

1. Introduction

Low-discrepancy sequences have been shown to be useful for various tasks
in integration and approximation, providing estimates with a smaller error
than those based on sequences of random points. The term discrepancy
refers to the distance between the distribution induced by the points in the
sequence and the uniform distribution. Low-discrepancy sequences are often
assessed via bounds on this discrepancy measure. Several breakthroughs in
the study of these bounds were achieved over the last decade or so by using
an approach originally developed by Atanassov in [1]. This approach is the
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main focus of this paper, whose purpose is two-fold. First, we present a
general description of this approach, which allows us to review in a unifying
way the bounds that have been obtained via this approach for different types
of low-discrepancy sequences. Second, we establish new discrepancy bounds
by using tighter combinatorial arguments to handle the leading term of these
bounds, as well as tighter bounds on their complementary terms. We also
establish comparisons between these new bounds and previously obtained
ones. The rest of this section is devoted to the presentation of a few basic
definitions and some terminology, as well as an outline of the rest of the
paper.

Let us begin with the notion of discrepancy that will be used throughout
the paper. For short, we only consider the so-called star-discrepancy, which
corresponds to the worst-case error in the domain of complexity of multi-
variate problems. Let X = (Xn)n≥1 be an infinite sequence in Is = [0, 1]s,
with s ≥ 2, and let J be an interval of Is. The discrepancy function of
X at rank N , on J is the difference E(J ;N ;X) = A(J ;N ;X) − NV (J),
where A(J ;N ;X) = #{n; 1 ≤ n ≤ N,Xn ∈ J} and V (J) is the volume of
J . Then, the star-discrepancy D∗ (at rank N) is defined by D∗(N,X) =
supJ∈J ∗ |E(J ;X;N)|, where J ∗ is the set of intervals J =

∏s
j=1[0, zj) with

zj ∈ [0, 1]. Note that several authors have a 1/N factor when defining the
above quantities. We notice too that for our purpose here, one-dimensional
sequences, for which more precise results exist (see among others [9, Section
2] and the survey [7]), are not relevant. Further, the condition s ≥ 2 will be
useful later.

A sequence satisfying D∗(N,X) = O((logN)s) is considered to be a low-
discrepancy sequence (LDS), or more precisely, in order to see the leading
constant, if:

D∗(N,X) ≤ cs(logN)s +O((logN)s−1). (1)

Here, we are mainly interested in the behavior of LDS in the finite regime
and hence we are looking for best possible bounds with exact formulas rather
than (1).

We now briefly recall the definitions of the LDS we are going to study:
– Halton sequences have coordinates given by van der Corput sequences in
pairwise coprime bases, these sequences (xn)n≥1 being obtained by means
of the famous radical inverse function that consists in reversing the b-adic
expansion of n. That is, in base b ≥ 2, xn is given by xn =

∑∞
r=0 ar(n)b−r−1,

where the ar(n) are such that n − 1 =
∑∞

r=0 ar(n)br for n ≥ 1. Here, let us
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mention again the survey [7] dedicated to the memory of van der Corput on
the occasion of his 125th birthday.
– Let b ≥ 2 and 0 ≤ t ≤ m be integers. Then a (t,m, s)-net in base
b is a point set in Is with bm points such that any (elementary) interval∏s

i=1[aib
−di , (ai + 1)b−di) in base b (with 0 ≤ ai < bdi for 1 ≤ i ≤ s) with

volume bt−m contains exactly bt points of the set. Now, a sequence (Xn)n≥1 in
Is is a (t, s)-sequence in base b if the subset {[Xn]b,m; kbm < n ≤ (k+1)bm} is
a (t ,m, s)-net in base b for all integers k ≥ 0 and m ≥ t, where [X]b,m means
an m-truncation is applied to each coordinate. Van der Corput sequences
are the backbone for the construction of concrete (t, s)-sequences, as well as
for (t, e, s)-sequences which we now define.
– The notion of (t, e, s)-sequences, where e = (e1, . . . , es) with positive inte-
gers ei, was recently introduced by Tezuka [17]: A (t,m, e, s)-net in base
b is a point set in Is with bm points such that any elementary interval∏s

i=1[aib
−di , (ai + 1)b−di) with 0 ≤ ai < bdi and ei|di for 1 ≤ i ≤ s, and

with volume bt−m, contains exactly bt points of the set. Then the defini-
tion of a (t, e, s)-sequence in base b is the same as for a (t, s)-sequence with
(t,m, e, s)-nets in place of usual (t,m, s)-nets.

What we call Atanassov’s methods (At.Ms) is a new approach introduced
by Atanassov [1] about 10 years ago to compute upper bounds for LDS. In
fact, this approach recovers two kinds of meanings: first, when it is applied
to arbitrary Halton sequences (including scrambled versions with permuta-
tions), in which case one speaks of the first Atanassov’s method (first At.M.);
and second, when a further refinement allows much tighter bounds for a spe-
cial class of permutations in scrambled Halton sequences, in which case one
speaks of the second Atanassov’s method (second At.M.) (see [5] for a gen-
eral updated survey on both methods). Until now, only the first At.M. has
received further extensions to other families of LDS.

The first extension of the first At.M. concerns arbitrary (t, s)-sequences
and was set out in [12]. This extension was further significantly improved in
[9] in the case of even bases, hence getting what was then the best constant
cs for even b.

The second extension of the first At.M., due to Tezuka [17], concerns
(t, e, s)-sequences. Applied to generalized Niederreiter sequences with quality
parameter t, his new bound improves the leading constant cs by a factor of
about

∏s
i=1 e

−1
i . It is worth noting that these results were all obtained with

close extensions of Atanassov’s ideas for Halton sequences to a single base
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(including the special treatment required for even bases in [9]).
Following our investigations of the extension of At.M. for (t, s)-sequences

in [9], we have found an original variant of this extension, which led to new
bounds for (t, s)-sequences in [10]. This variant for (t, s)-sequences has no
equivalent for Halton sequences and (t, e, s)-sequences, which can only be
dealt with using the argument on diophantine geometry used by Atanassov
in his fundamental Lemma 3.3. But the ideas involved in this variant have
led to a key lemma in a proof of a new bound for (t, e, s)-sequences in the
same paper [10].

The rest of the paper is organized as follows. In Section 2, we present
in a unifying way the different discrepancy bounds that have been obtained
using the first At.M., including the variant mentioned previously. In ad-
dition, we introduce a tighter bound for the complementary term in these
bounds. In Sections 3, 4, and 5, we revisit our variant of the first At.M. for
(t, s)-sequences, (t, e, s)-sequences, and Halton sequences, respectively, hence
getting new bounds for the discrepancy of these sequences. Numerical ex-
periments, based on a new approach for the comparison of various explicit
bounds due to P. Kritzer on a ingenious suggestion of H. Woźniakowski, are
presented in Section 6 and show the behavior of old and new bounds in the
non-asymptotic regime. These experiments confirm that the new bounds are
often smaller than previously obtained ones. Nevertheless, we have been able
to prove at the end of Section 3 that for (t, s)-sequences in base 2, the bound
obtained from our original variant is demonstrably better than the newly
obtained one for any dimension s and all N ≥ 2s.

2. Review of results for Halton, (t, s)- and (t, e, s)-sequences

In short, if b1, . . . , bs are integers with bi ≥ 2 for all i, we can say that
Halton sequences are obtained with pairwise coprime bases (and for which
an adapted definition of the quality parameter t would be set to 0, see [5,
p. 111]), (t, s)-sequences in base b are obtained with bi = b for all i, and
(t, e, s)-sequences in base b are obtained with bi = bei for all i. With this
correspondence, we can easily state in a condensed way the different steps of
the first At.M., its extensions and its variant. We postpone the statement of
the theorems until the next sections – where they will be useful for compar-
isons with our new results, and later, as they relate to Section 6 – and focus
on the method in itself.
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It is essentially based on three ingredients: A well-known property that
permits to bound the discrepancy function on an elementary interval, a de-
composition of intervals by means of signed splittings using signed numera-
tion systems, and a fundamental lemma, coming from diophantine geometry,
applied to bound the sums resulting from the above decomposition. These
three ingredients were respectively introduced in [16, p. 9], in [3] and [4], and
in [1] (see [5, p. 111–112] for more details on each of these items). They read
as follows:

Lemma 1. Let J be an interval of the form J =
∏s

i=1[cib
−di
i , c′ib

−di
i ) with

integers ci, c
′
i satisfying 0 ≤ ci < c′i ≤ bdii . Then for every N ≥ 1

|A(J ;N ;X)−NV (J)| ≤ bt(c′1 − c1) · · · (c′s − cs).

Further if N < btbd11 · · · bdss then A(J ;N ;X) ≤ bt(c′1 − c1) · · · (c′s − cs).

Lemma 1 applies to the three families of sequences, see [1, Lemma 3.1]
(with t set to 0), [9, Lemma 2] and [17, Lemma 1].

Definition 1. Let be given an interval J ⊆ Is, then a signed splitting of J
is any collection of intervals J1, . . . , Jn and respective signs ε1, . . . , εn equal
to ±1, such that for any (finitely) additive function ν on the intervals in Is,
ν(J) =

∑n
i=1 εiν(Ji).

Lemma 2. Let J =
∏s

i=1[0, z(i)) be an interval in Is and, for each 1 ≤ i ≤ s,

let ni ≥ 0 be given integers. Set z
(i)
0 = 0, z

(i)
ni+1 = z(i) and, if ni ≥ 1, let

z
(i)
j ∈ [0, 1] be arbitrary given numbers for 1 ≤ j ≤ ni. Then the collection

of intervals
∏s

i=1[min(z
(i)
ji
, z

(i)
ji+1),max(z

(i)
ji
, z

(i)
ji+1)), with signs ε(j1, . . . , js) =∏s

i=1 sgn(z
(i)
ji+1 − z

(i)
ji

), for 0 ≤ ji ≤ ni, is a signed splitting of the interval J .

Lemma 2 is independent of bases and thus it applies to the three families
of sequences, see [1, Lemma 3.5], [9, Lemma 4] and [17, Lemma 3].

Lemma 3. Let N ≥ 1, k ≥ 1 and b1, . . . , bs (bi ≥ 2) be integers. For integers

j ≥ 0, 1 ≤ i ≤ k, let some numbers c
(i)
j ≥ 0 be given, satisfying c

(i)
0 ≤ 1 and

c
(i)
j ≤ ci for j ≥ 1, for some fixed numbers ci (1 ≤ i ≤ k). Then

∑
{j=(j1,...,jk) ; b

j1
1 ···b

jk
k ≤N}

k∏
i=1

c
(i)
ji
≤ 1

k!

k∏
i=1

(
ci

logN

log bi
+ k

)
· (2)
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Lemma 3 applies to the three families of sequences, see [1, Lemma 3.3],
[9, Lemma 3] (where the fixed numbers ci = c) and [17, Lemma 2] (there the
given real α stands for logN/ log b− t). Lemma 3 results from the following
essential argument from diophantine geometry, saying that:

for all integers k ≥ 1, #
{
j; bj11 . . . b

jk
k ≤ N

}
≤ 1

k!

k∏
i=1

logN

log bi
· (3)

Note that in (3), we assume ji > 0 for i = 1, . . . , k while in Lemma 3 ji ≥ 0
for i = 1, . . . , k.

Now we are in a position to present in one main result the four theorems
[1, Theorem 2.1], [9, Theorems 2, 3] and [17, Theorem 2] (being agreed
that for simplicity the truncation is omitted in the case of (t, s)- and (t, e, s)-
sequences). A complete proof is then given for this unifiying scheme to obtain
discrepancy bounds.

Theorem 1. (i) For any Halton sequence X with pairwise co-prime bases bi
and N ≥ 1, we have (AtHa04)

D∗(N,X) ≤ 1

s!

s∏
i=1

(
(bi − 1) logN

2 log bi
+ s

)
+

s−1∑
k=0

bk+1

k!

k∏
i=1

(⌊
bi
2

⌋
logN

log bi
+ k

)
+u,

with u =
br

2(s− 1)!

∏
1≤j≤s,j 6=r

(
(bj − 1) logN

2 log bj
+ s− 1

)
if there is an even base

br, and is 0 otherwise.

(ii) For any (t, s)-sequence X in any base b and for any N ≥ 1, we have
(FL12-gen)

D∗(N,X) ≤ bt

s!

(⌊
b

2

⌋
logN

log b
+ s

)s

+ bt
s−1∑
k=0

b

k!

(⌊
b

2

⌋
logN

log b
+ k

)k

.

(iii) For any (t, s)-sequence X in an even base b and any N ≥ bs, we
have (FL12-even)

D∗(N,X) ≤ bt

s!

(
b− 1

2

logN

log b
+ s

)s

+sbt
(
b

2

)s(
logN

log b

)s−1

+bt
s−1∑
k=0

b

k!

(
b

2

logN

log b
+k

)k

.
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(iv) For any (t, e, s)-sequence X in base b and N > bt, we have (Tez13)

D∗(N,X) ≤

bt

s!

s∏
i=1

(
bbei/2c
ei

(
logN

log b
− t
)

+ s

)
+

s−1∑
k=0

bt+ek+1

k!

k∏
i=1

(
bbei/2c
ei

(
logN

log b
− t
)

+k

)
.

Before proceeding to the proof, note that for (ii) and (iii), the stated
bounds hold trivially for N ≤ bt since it is larger than the obvious bound of
N in that case.

Proof. Pick any (z(1), . . . , z(s)) ∈ [0, 1)s and expand each z(i) as
∑∞

j=0 a
(i)
j b
−j
i

according to signed numeration systems (where the digits a
(i)
ji

are bounded
by (bi − 1)/2, bi/2 and (bi − 2)/2 in the respective cases where bi is odd, bi
is even and j is even, and bi is even and j is odd).

Let ni := blogN/ log bic, define z
(i)
0 = 0 and z

(i)
ni+2 = z(i), and consider the

numbers z
(i)
k =

∑k−1
j=0 a

(i)
j b
−j
i for k = 1, . . . , ni + 1. Applying Lemma 2 with

(z
(i)
j )ni+2

j=1 , J =
∏s

i=1[0, z(i)) is expanded in the signed splitting:

I(j) =
s∏

i=1

[min(z
(i)
ji
, z

(i)
ji+1),max(z

(i)
ji
, z

(i)
ji+1)), 0 ≤ ji ≤ ni + 1,

with signs ε(j) =
∏s

i=1 sgn(z
(i)
ji+1 − z

(i)
ji

), where j = (j1, . . . , js).
Since V and A( . ;N ;X) are both additive, the discrepancy function is ex-
panded as

A(J ;N ;X)−NV (J) =

n1+1∑
j1=0

· · ·
ns+1∑
js=0

ε(j) (A(I(j);PN)−NV (I(j))) =: Σ1+Σ2,

(4)
where we rearrange the terms so that in Σ1 we put the terms j such that
bj11 · · · bjss ≤ N and in Σ2 the rest.

It is easy to deal with Σ1 in the case where all bi are odd: from Lemma
1 and since z

(i)
k+1 − z

(i)
k = a

(i)
k b
−k
i , for any j ∈ Σ1 we have that

|A(I(j);N ;X)−NV (I(j))| ≤ bt
s∏

i=1

| z(i)
ji+1 − z

(i)
ji
| bji = bt

s∏
i=1

| a(i)
ji
|. (5)
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Hence, applying Lemma 3 with k = s, c
(i)
j = |a(i)

j | and ci = bbi/2c, we obtain

|Σ1| ≤
∑

{j ; b
j1
1 ···b

js
s ≤N}

|A(I(j);N ;X)−NV (I(j))| ≤ bt

s!

s∏
i=1

(
(bi − 1) logN

2 log bi
+ s

)
,

(6)

which is the leading part of the bounds of the four theorems. Notice that
(Tez13) in (iv) differs from (6) by terms logN/ log b instead of logN/ log b−t.
This point is addressed in Section 4.2 where the reader will find a detailed
discussion and a further slight improvement of (Tez13).

In the case where one bi is even, getting (bi − 1)/2 instead of bi/2 in
the leading part of [1, Theorem 2.1], and [9, Theorem 3] requires a trick
developed by Atanassov in his proof [1, pp. 22–23], which implies a further
complementary term (denoted u in [1, Theorem 2.1]). This refinement is not
considered in [17, Theorem 2].

The terms gathered in Σ2 give the second part of the four bounds in
Theorem 1. The idea of Atanassov is to divide the set of s-tuples (j1, . . . , js)
in Σ2 into s disjoint setsB0, . . . , Bs−1 included in larger ones for which Lemma
3 applies and gives the desired upper bound. His proof can be transcribed
as well in the present scheme and gives

|Σ2| ≤ bt
s−1∑
k=0

bk+1

k!

k∏
i=1

(⌊
bi
2

⌋
logN

log bi
+ k

)
. (7)

The bound (7) on Σ2 can be slightly improved by treating the cases b
even and b odd separately in the first At.M. (for Halton sequences) and its
extensions to (t, s)- and (t, e, s)-sequences. A result describing this improved
bound for Σ2 will be given at the beginning of the next section, with a proof
for both this new bound and for (7) given in the appendix.

The scheme used above to obtain the bounds in Theorem 1 runs for the
original At.M. and its extensions to (t, s)-sequences and (t, e, s)-sequences,
all using the original diophantine geometry argument. While we tried to
overcome an inaccuracy in our proof of [9, Theorem 3], we found a different
way to deal with it that allowed us to improve further both [9, Theorems 2
and 3] and that also appeared suitable for (t, e, s)-sequences. We call this
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approach a variant of Atanassov’s method. Before we recall the result that
this variant leads to along with its proof, we first overview its main idea,
which is based on the following two steps.

The first step consists in a more precise combinatorial argument in place
of (3) (not applicable to Halton sequences and (t, e, s)-sequences) to bound
the discrepancy function of (t, s)-sequences (see [10, Lemma 4]):

Lemma 4. Given two integers k ≥ 1 and n ≥ 0, the number of nonnegative
integers solutions of the inequality 0 ≤ j1 + · · ·+ jk ≤ n is equal to

(
n+k
k

)
.

Thanks to this property and using a careful worst-case configuration anal-
ysis in the case of an even base, with the quantities c

(i)
j and ci = c of Lemma

3, we get ∑
{j; bj1 ···bjk≤N}

k∏
i=1

c
(i)
ji
≤ ck

k!

k∏
l=1

(
logN

log b
+ l

)
, (8)

which was established in [10, Eq.(9)].
The second step, still based on our combinatorial argument together with

a careful analysis of the distribution of even and odd ji in k-tuples j =
(j1, . . . , jk), consists in a variant of Inequality (8) useful to deal with even
bases ([10, Lemma 5]):

∑
{j; bj1 ···bjk≤N}

k∏
i=1

c
(i)
ji
≤ 1

k!

(
c+ c′

2

)k k∏
l=1

(
logN

log b
+ 2l

)
, (9)

in which the numbers c
(i)
j ≥ 0 satisfy c

(i)
2h+1 ≤ c and c

(i)
2h ≤ c′ for h ≥ 0 (where

c, c′ ≥ 0 are some fixed numbers).

Altogether, using Inequalities (8) and (9) in place of Lemma 3, the proof
of Theorem 1 valid for the three families of sequences applies and leads to
[10, Theorem 1] for (t, s)-sequences which is an improvement on [9, Theorems
2 and 3]. Summarizing, we get the following result:

Theorem 2. (i) For any (t, s)-sequence X in an odd base b and for any
N ≥ 1 (FL14-odd)

D∗(N,X) ≤ bt

s!

(
b− 1

2

)s s∏
k=1

(
logN

log b
+k

)
+bt

s−1∑
k=0

b

k!

(
b− 1

2

)k k∏
l=1

(
logN

log b
+l

)
.
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(ii) For any (t, s)-sequence X in an even base b and any N ≥ 1 (FL14-
even)

D∗(N,X) ≤ bt

s!

(
b− 1

2

)s s∏
k=1

(
logN

log b
+2k

)
+bt

s−1∑
k=0

b

k!

(
b− 1

2

)k k∏
l=1

(
logN

log b
+2l

)
.

Proof. For the odd b case and as mentioned above, the result can be proved
following the same steps as the proof of Theorem 1 up until (6), where we

use (8) instead of Lemma 3 with c = (b− 1)/2 since a
(i)
ji
≤ (b− 1)/2 when b

is odd. Thus we get

|Σ1| ≤
bt

s!

(
b− 1

2

)s s∏
k=1

(
logN

log b
+ k

)
.

The same argument is used to handle the bound on Σ2, the result being that
each term in the sum over k for the bound in (7) is replaced by an expression
of the form

b

k!

(
b− 1

2

)k k∏
l=1

(
logN

log b
+ l

)
.

For the even b case, the proof also mimics the one for Theorem 1 up to
(6), where instead of using Lemma 3, we use (9) to bound |Σ1|, with c and c′

given respectively by (b−2)/2 and b/2, as can be inferred from the comments

at the beginning of the proof of Theorem 1, when bounds on a
(i)
j are given.

As in the odd b case, we also apply this argument to obtain a bound on |Σ2|
where Inequality (9) is applied to each term over k in that bound.

Finally, as alluded to in the presentation of our variant in the introduc-
tion, we discuss its adaptation that led to an improvement of the leading
constant cs in [17, Theorem 2]. This application to (t, e, s)-sequences will
be improved in Section 4. The main ingredient is the following inequality,
established in [10, Lemma 7]. It is based on the diophantine argument (3)
combined with the idea already used for the proof of (9):

∑
{j ; e1j1+···+ekjk≤n}

k∏
i=1

c
(i)
ji
≤ 1

k!

k∏
i=1

(
fi + f ′i
ei

⌊
n+

∑k
i=1 ei

2

⌋
+ k

)
, (10)

in which the numbers c
(i)
j ≥ 0 satisfy c

(i)
0 ≤ 1, c

(i)
2h+1 ≤ fi for any h ≥ 0 and

c
(i)
2h ≤ f ′i for any h ≥ 1 (and where fi, f

′
i ≥ 0 are some fixed numbers).
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Applying again the scheme presented for the three families in the proof of
Theorem 1, but with Inequality (10) in place of Lemma 3, our variant leads
to [10, Theorem 2] for (t, e, s)-sequences, as given below.

Theorem 3. For any (t, e, s)-sequence X in base b and N ≥ 1, we have
(FLtes14)

D∗(N,X) ≤b
t

s!

s∏
i=1

(
bei − 1

2ei

(
logN

log b
+

s∑
i=1

ei

)
+ s

)
+

s−1∑
k=0

bt+ek+1

k!

k∏
i=1

(
bei − 1

2ei

(
logN

log b
+

k∑
i=1

ei

)
+k

)
.

Proof. Here as well, the proof proceeds as in the proof of Theorem 1 up
until (6), where instead of Lemma 3 we apply (10) with n = blogN/ log bc,
fi = b(bei−1)/2c and fi = bbei/2c. (These values for fi and f ′i come from the

bounds for the digits a
(i)
j mentioned at the beginning of the proof of Theorem

1.) Applying (10) also to the terms in the sum over k that bounds |Σ2| in
(7) gives us the result.

3. Improving bounds for (t, s)-sequences

In this section, as announced in Section 1, we revisit our variant of the
first At.M. for (t, s)-sequences. We start by presenting in Section 3.1 a new
bound that holds for odd bases, and then in Section 3.2 we focus on the case
of even bases. An explicit comparison between the new bound obtained there
and the one obtained in our variant for the case b = 2 is studied in Section
3.3.

Before presenting these results, we first give the improved bound on Σ2

that was mentioned at the end of our proof of Theorem 1, as it will be
used throughout this section to provide smaller complementary terms in the
different bounds we present. The proof of this result (and of the original
bound (7)) is given in the appendix. Note that the improved bound is given

in terms of the product
∏k

i=1 |a
(i)
ji
| which can then be bounded according to

the different approaches considered in this paper, including (t, e, s)-sequences
(Section 4) and Halton sequences (Section 5).
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Proposition 1. Let N ≥ 1, s ≥ 1 and b1, . . . , bs (bi ≥ 2) be integers. Let Σ2

and the integers a
(i)
j for i = 1, . . . , s be defined as in the proof of Theorem 1.

Then

|Σ2| ≤ bt
s−1∑
k=0

⌊
bk+1

2
+ 1

⌋ ∑
{j;bj11 ···b

jk
k ≤N}

k∏
i=1

|a(i)
ji
|.

3.1. The case of an odd base

Starting from another combinatorial property, namely the number of pos-
itive integer solutions of the equation x1 + · · ·+ xk = n is equal to

(
n−1
k−1

)
(see

the proof of [10, Lemma 4]), we have found an inequality even more precise
than Inequalities (2) used for [9, Theorem 1] and (8) used for [10, Theorem
1] (see [10, Third point of Remark 2]):

Lemma 5. Let the quantities c
(i)
j and ci = c be as in Lemma 3. Then we

have ∑
{j;0≤j1+···+jk≤n}

k∏
i=1

c
(i)
ji
≤

k∑
m=0

cm
(
n

m

)(
k

m

)
=

min(k,n)∑
m=0

cm
(
n

m

)(
k

m

)
. (11)

Proof. We give the proof for the sake of completeness. We first partition the
set {j; 0 ≤ j1 + · · · + jk ≤ n} into k + 1 subsets as follows: ∪mk=0Tm, where

Tm = {j; 0 ≤ j1 + · · ·+ jk ≤ n and
∑k

i=1 1ji>0 = m.} Since c
(i)
0 ≤ 1, we have

that ∑
{j;0≤j1+···+jk≤n}

k∏
i=1

c
(i)
ji
≤

k∑
m=0

∑
j∈Tm

cm.

We then note that |Tm| =
(
k
m

)∑n
l=m

(
l−1
m−1

)
=
(
k
m

)(
n
m

)
, where the first equality

comes from the combinatorial property mentioned before the statement of
Lemma 5, and the second equality follows from a well-known combinatorial
identity involving binomial coefficients.

In the case of an odd base, we then apply the scheme presented in Theorem
2, but with (11) instead of Lemma 4, and Proposition 1 to handle Σ2, and
get the following improved bound:

Theorem 4. For any (t, s)-sequence X in odd base b and for any N ≥ 1

D∗(N,X) ≤ bt
min(s,n)∑
m=0

1

m!

(
s

m

)(
b− 1

2

)m m−1∏
l=0

(
logN

log b
− l
)

+

12



bt
s−1∑
k=0

min(k,n)∑
m=0

b+ 1

2m!

(
k

m

)(
b− 1

2

)m m−1∏
l=0

(
logN

log b
− l
)

(newFL-odd),

where n = blogN/ log bc.

This new bound improves upon FL14-odd because in the latter, we replace
((b − 1)/2)m in the above bound by ((b − 1)/2)s to simplify it. Hence the
improvement will be more significant as b increases. The new bound also
improves upon FL12-gen because in the latter, the term

(
n
m

)
in the above

bound is replaced by nmss−m/s! to simplify it. Thus the improvement of the
above bound is more significant when n and s are small.

3.2. The case of an even base

The case of an even base needs a new version of inequality (11), i.e.,
an analogue of (9) with two constants c, c′ instead of one. To this end, we
proceed as in [10, Lemma 7], but with all ei = 1. The idea is then to replace
the argument from diophantine geometry used in the proof of that lemma by
the other combinatorial property we just evoked for the proof of (11). Details
are given in the proof of the following result:

Lemma 6. With the notations of Inequality (10), but based on common
values fi = f and f ′i = f ′ for all i, we have

∑
{(j1,...,jk) ;0≤j1+···+jk≤n}

k∏
i=1

c
(i)
ji
≤

k∑
m=0

(f + f ′)m
(⌊

n+m
2

⌋
m

)(
k

m

)
. (12)

Proof. In the same manner as in [1, Lemma 3.3], [9, Lemma 3] and [17,
Lemma 2], we split up the sum on the left-hand side (LHS) of (12) along
subsets u of {1, . . . , k} with ji > 0 if i ∈ u and ji = 0 if i /∈ u, and with
m = |u|, but we add a new splitting according to the parity of the ji’s. To
this end, we consider subsets L of u with i ∈ L if ji is even and i ∈ u\L if ji
is odd:

∑
(j1,...,jk)∈S′

k∏
i=1

c
(i)
ji

=
∑

u⊆{1,...,k}

m∑
l=0

∑
L⊆u,|L|=l

∑
j∈S′u

jieven ⇔i∈L

k∏
i=1

c
(i)
ji
,

13



where S ′u = {(j1, . . . , jk) ∈ S ′ ; ei1ji1 + · · ·+ eimjim ≤ n and ji = 0⇔ i /∈ u}.
According to the hypothesis on the coefficients c

(i)
ji

, we obtain

∑
(j1,...,jk)∈S′

k∏
i=1

c
(i)
ji
≤

∑
u⊆{1,...,k}

m∑
l=0

∑
L⊆u,|L|=l

∑
j∈S′u

jieven ⇔i∈L

∏
i∈L

f ′i
∏

i∈u\L

fi


≤

∑
u⊆{1,...,k}

m∑
l=0

∑
L⊆u,|L|=l

N(u,L, k, n)(f ′)lfm−l,

where N(u,L, k, n) is the cardinality of the set {j ∈ S ′u ; ji even ⇔ i ∈ L}.
For short, we write |u| = m and |u \ L| = m− l. Adding the numbers of

solutions to
∑

i∈u hi = g with g going from m to bn+m−l
2
c (recall that hi > 0

if i ∈ u, so that
∑

i∈u hi ≥ m), we get:

N(u,L, k, n) =

(⌊
n+m−l

2

⌋
m

)
instead of the bound N(u,L, k, n) ≤ 1

m!

⌊
n+m−l

2

⌋m
that was used to get [10,

Lemma 7], recalled here via (10).
Putting this all together, and using the simplification that here the num-

bers fi and f ′i take the respective common values f and f ′, we get

∑
(j1,...,jk)∈S′

k∏
i=1

c
(i)
ji
≤

∑
u⊆{1,...,k}

m∑
l=0

(
m

l

)(⌊
n+m−l

2

⌋
m

)
(f ′)lfm−l

≤
k∑

m=0

(
k

m

)(⌊
n+m

2

⌋
m

)
(f + f ′)m.

Using this result, we again apply the scheme used in Theorem 1 and
bound Σ1 and Σ2 in the same way – with Σ2 handled via Proposition 1 –
arriving to:

Theorem 5. For any (t, s)-sequence X in an even base b and any N ≥ 1 we
have

D∗(N,X) ≤ bt
min(s,n)∑
m=0

1

m!

(
s

m

)(
b− 1

2

)m m−1∏
l=0

(
logN

log b
+m− 2l

)
+
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bt
s−1∑
k=0

min(k,n)∑
m=0

b+ 2

2m!

(
k

m

)(
b− 1

2

)m m−1∏
l=0

(
logN

log b
+m− 2l

)
(newFL-even),

where n = blogN/ log bc.

3.3. Comparisons between new and variant-based bounds for the case b = 2

Since the proof for the new bound relies on an entirely different argument
than what is used for FL14-even (Theorem 2 (ii)) and FL12-even (Theorem 1
(iii)), it is more difficult to make comparisons than in the b odd case. When
b ≥ 4, the new bound is based on a sum of smaller powers of (b− 1)/2 than
the other two bounds, but this is no longer an advantage when b = 2. In
that case, the bound FL14-even is never larger than the newFL-even bound
from Theorem 5, as shown in the following result.

Proposition 2. For a (t, s)-sequence X in base b = 2 and with s ≥ 2, the
bound on D∗(N,X) given in Theorem 2 (FL14-even) is never larger than the
one given in Theorem 5 (newFL-even) for any N ≥ bs.

Proof. Looking at these two bounds, it should be clear that the required
result is obtained if we can prove that gs(n) ≤ hs(n) for n = logN/ log b ≥ s,
where

gs(n) =
1

2ss!
(n+ 2s)(n+ 2s− 2) · · · (n+ 2) =

1

s!

Γ(n
2

+ s+ 1)

Γ(n
2

+ 1)

hs(n) =
s∑

m=0

hs,m(n), where hs,m(n) =

(
s
m

)
m!

Γ(n+m
2

+ 1)

Γ(n−m
2

+ 1)
.

To do so, we first rewrite gs(n) in the same form as hs(n) by grouping
the terms having the same power of s/2:

gs(n) =
1

s!

(
n+ s

2
+
s

2

)(
n+ s

2
− 1 +

s

2

)
. . .

(
n− s

2
+ 1 +

s

2

)
=

s∑
m=0

gs,m(n) where gs,m(n) =
1

s!

(
s

m

)(s
2

)s−m
µ(n, s,m),

where

µ(n, s,m) :=
1(
s
m

) ∑
I⊆B(n,s),|I|=m

∏
ij∈I

ij (13)
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and B(n, s) := {n+s
2
, n+s

2
− 1, . . . , n−s

2
+ 1}. Indeed,

(
s
m

)
µ(n, s,m) is the

product of m distinct terms of the form (n + s)/2 − j for 0 ≤ j < s, which
are exactly the elements of B(n, s).

To help us compare the terms hs,m(n) and gs,m(n), the following lemma
will be useful. It shows that the average product µ(n, s,m) defined in (13)
is bounded from above by the product of the m “middle” terms in the set
B(n, s). Its proof is in the appendix.

Lemma 7. For n ≥ s ≥ 2 and 0 ≤ m ≤ s, where m, s ∈ N and n ∈ R, we
have that µ(n, s,m) ≤ Γ(n+m

2
+ 1)/Γ(n−m

2
+ 1).

Based on Lemma 7, we see that if m is large enough, then gs,m(n) ≤
hs,m(n). More precisely, if we let k∗s be the smallest integer such that(s

2

)s−k∗s
≤ s!

k∗s !
, (14)

then gs,m(n) ≤ hs,m(n) for m ≥ k∗s . On the other hand, when m is small, we
cannot infer from Lemma 7 that gs,m(n) ≤ hs,m(n). However by pairing the
terms appropriately, in the end it is possible to obtain that the terms coming
from hs(n) dominate the ones from gs(n). First, we will show the following
result, whose proof is in the appendix.

Lemma 8. Let w = ds/2e and k∗s be defined as in (14). Then we have that

gs,k(n) + gs,k+w(n) ≤ hs,k+w(n) for 0 ≤ k < k∗s . (15)

Next, from Lemma 8, since gs,k(n) ≤ hs,k(n) (and gs,w+k(n) ≤ hs,w+k(n))
for k ≥ k∗s , and since all terms gs,k(n) and hs,k(n) are non-negative, we get
as required

gs(n) =
s∑

k=0

gs,k(n) =

k∗s−1∑
k=0

(gs,k(n) + gs,w+k(n)) +
w−1∑
k=k∗s

gs,k(n) +
s∑

k=w+k∗s

gs,k(n)

≤
k∗s−1∑
k=0

hs,w+k(n) +
w−1∑
k=k∗s

hs,k(n) +
s∑

k=w+k∗s

hs,k(n) ≤
s∑

k=0

hs,k(n) = hs(n).

Hence, Proposition 2 is proved.
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4. Improving bounds for (t, e, s)-sequences

4.1. Overview on the current state of results on (t, e, s)-sequences

The original result of Tezuka [17, Theorem 2] was recalled in Theorem 1,
and the one based on our variant [10, Theorem 2] in Theorem 3. The main
difference between these two results is in the leading term with a smaller
asymptotic constant cs for even bases in [10], whose online version was pub-
lished in March 2014. Several months later, in 2014 Tezuka published a new
paper [18] where he obtained the same constant cs for even bases as the one
we obtained in [10], using an approach that we proposed for (t, s)-sequences
in an even base in [9, Section 4] (see [18, Theorem 2]). These various bounds
are stated and discussed in Section 4.3 and Section 6.

4.2. On the range of validity of bounds for (t, e, s)-sequences

The other difference between [10, Theorem 2] and [17, Theorem 2] is in the
range of N : indeed, the bound (FLtes14) is interesting only if N > bt since
trivially D∗(N,X) ≤ N for any N whereas this bound is always larger than
bt. But in QMC methods where, until now, the only (t, e, s)-sequences used
are generalized Niederreiter sequences, i. e., (0, e, s)-sequences, the difference
on the range of N disappears. In the end, as to the non-asymptotic regime,
the bound (Tez13) seems better without the quantity

∑s
i=1 ei appearing in

the products, in spite of a smaller cs in (FLtes14) for even b. This is the case
in our numerical experiments (Section 6), which confirm that an improvement
of the leading constant cs is often obtained at the expense of complementary
terms (as already noticed in [11, Section 5], especially with the bound from
[6] which gives the currently best cs for (t, s)-sequences).

The difference is even more striking when considering the new bound
from [18], which has the same improved value for cs as (FLtes14), but at the
expense of an extra complementary term that appears to grow quickly with
the dimension, leading to a larger bound than both (FLtes14) and (Tez13).

In any case, the discussion vis-a-vis the significance about the range of
N in both theorems is pointless since our proof of [10, Theorem 2] also
works with the hypothesis N > bt and gives (logN/ log b − t) in place of
(logN/ log b) in our bound (FLtes14). Indeed, this is achieved by defining
Σ1 to be over the vectors j such that e1j1 + . . . + esjs ≤ n − t (as done in
[17]) rather than using e1j1 + . . . + esjs ≤ n, as done in (10). While this
means there are now more vectors in Σ2, this split still allows Lemma 1 to be
applied in the same way in the argument used to bound the sums over each
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Bk (see Remark 1 in the appendix), and thus the same bound is obtained at
the end. Furthermore, the new bound for Σ2 given in Proposition 1 leads to
the following slight effective improvement of [17, Theorem 2].

Theorem 6. For any (t, e, s)-sequence X in any base b and any N > bt we
have (newTez13)

D∗(N,X) ≤ bt

s!

s∏
i=1

(
bbei/2c
ei

(
logN

log b
− t
)

+ s

)
+

bt
s−1∑
k=0

b b
ek+1

2
+ 1c

k!

k∏
i=1

(
bbei/2c
ei

(
logN

log b
− t
)

+ k

)
.

Similarly, we can improve [10, Theorem 2], where we use the “N > bt”
version discussed in the preceding paragraph, and focus on the case where b
is even (the only case susceptible of interest for this result):

Theorem 7. For any (t, e, s)-sequence X in an even base b and any N > bt

we have (newFLtes-even)

D∗(N,X) ≤ bt

s!

s∏
i=1

(
bei − 1

2ei

(
logN

log b
− t+

s∑
i=1

ei

)
+ s

)
+

bt
s−1∑
k=0

b b
ek+1

2
+ 1c

k!

k∏
i=1

(
bei − 1

2ei

(
logN

log b
− t+

k∑
i=1

ei

)
+ k

)
.

4.3. Discussion of the result [18, Theorem 2]

Now, recall [18, Theorem 2]: For any (t, e, s)-sequence X in any base b
and any N > bt we have (Tez14)

D∗(N,X) ≤ bt

s!

s∏
i=1

(
bei − 1

2ei

(
logN

log b
− t
)

+ s

)
+

bt+es
∑s

i=1 ei
2

s−1∏
i=1

(
bbei/2c
ei

(
logN

log b
− t
)

+ bbei/2c
)

+

s−1∑
k=0

bt+ek+1

k!

k∏
i=1

(
bbei/2c
ei

(
logN

log b
− t
)

+ k

)
.

18



For an odd base, this bound has no improvement on [17, Theorem 2]. In
the case of an even base, it provides another proof for the leading term
and the asymptotic constant cs we already obtained in [10, Theorem 2] and
in Theorem 7. Hence, it is of interest to compare in the non asymptotic
regime these two methods leading to the same cs . However, in order to get
a fair comparison, we will compare the bounds of Theorem 6 (b odd) and
Theorem 7 with the following slight improvement of [18, Theorem 2] using
our Proposition 1:

Theorem 8. For any (t, e, s)-sequence X in any base b we have (newTez14)

D∗(N,X) ≤ bt

s!

s∏
i=1

(
bei − 1

2ei

(
logN

log b
− t
)

+ s

)
+

bt+es
∑s

i=1 ei
2

s−1∏
i=1

(
bbei/2c
ei

(
logN

log b
− t
)

+ bbei/2c
)

+

bt
s−1∑
k=0

b b
ek+1

2
+ 1c

k!

k∏
i=1

(
bbei/2c
ei

(
logN

log b
− t
)

+ k

)
.

Because Theorems 7 and 8 are mainly interesting in number theory, for
their improvement of the leading term with the constant cs, it might seem
useless to improve a part of the complementary terms, all the more since
the methods imply further restrictions for the range of N . But, as already
observed, bounds in the finite range are mainly useful in applied mathematics
(QMC Methods); and there, all (t, e, s)-sequences of interest (until now)
belong to the sub-family of generalized Niederreiter sequences for which t = 0.
Hence, the range for N is the interval [1,∞) and it makes sense to use
the bounds (newFLtes-even) and (newTez14) in numerical experiments for
comparisons with other bounds.

5. Improving bounds for Halton sequences

In Theorem 1 we recalled the bound established in [1] for Halton se-
quences. The term u in that bound arises from Atanassov’s trick to get the
desired bound on Σ1, as mentioned in Section 2: see [19, page 15] for com-
plete details. However, an alternative approach is to use a bound similar to
(10), using the analogy between the bases bi and the powers bei stated earlier.
This leads to the following lemma.
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Lemma 9. Let N ≥ 1, k ≥ 1 and b1, . . . , bk be pairwise coprime integers
with br even for some r. Then

∑
j;b

j1
1 ...b

jk
k ≤N

k∏
i=1

c
(i)
ji
≤ 1

k!

k∏
i=1,i 6=r

(
fi log(brN)

log bi
+ k

)(
(fr + f

′
r) log(brN)

2 log br
+ k

)
,

(16)

in which the numbers c
(i)
ji

satisfy c
(i)
0 ≤ 1, c

(i)
ji
≤ fi for i 6= r, c

(r)
2h+1 ≤ fr, and

c
(r)
2h ≤ f ′r.

Proof. For u ⊆ {1, . . . , k}, let Su = {j = (j1, . . . , jk) ∈ S; ji > 0 ⇔ i ∈ u}
and let ei = log bi. We split the sum over the vectors in S according to
the cases: (1) r ∈ u, j ∈ Su, jr even; (2) r ∈ u, j ∈ Su, jr odd, and (3)
r /∈ u, j ∈ Su. In order to bound these sums, we need to count how many
vectors j there are in each of the three inner sums. We get 1

2|u|!
∏

i∈u logN/ei

for the first one, 1
2|u|!

∏
i∈u(logN+er)/ei for the second, and 1

|u|!
∏

i∈u logN/ei
for the third. Hence we can bound the LHS of (16) by

∑
u:r∈u

1

2|u|!

(∏
i∈u

logN

ei

)
f
′

r

∏
i∈u,i 6=r

fi +
∑
u:r∈u

1

2|u|!

(∏
i∈u

logN + er
ei

)
fr

∏
i∈u,i 6=r

fi

+
∑
u:r/∈u

1

|u|!

(∏
i∈u

logN

ei

)∏
i∈u

fi

≤
∑
u:r∈u

1

|u|!
∏
i∈u

logN + er
ei

( ∏
i∈u,i 6=r

fi

)(
fr + f

′
r

2

)
+
∑
u:r/∈u

1

|u|!
∏
i∈u

logN

ei

∏
i∈u

fi,

where u runs over all subsets of {1, . . . , k}. Next, using the notation f̃i = fi
if i 6= r and f̃r = (fr + f

′
r)/2, and the inequality 1/|u|! ≤ kk−|u|/k!, we bound

the above by

∑
u

kk−|u|

k!

∏
i∈u

f̃i
ei

log(brN)≤ 1

k!

k∏
i=1,i 6=r

(
(log brN)fi

ei
+k

)(
(fr + f

′
r)(log brN)

2er
+k

)
.

The following new bound for Halton sequences is obtained by applying
Lemma 9 with fi = (bi − 1)/2, fr = br/2 and f ′r = (br − 2)/2, and by using
our improved bound for Σ2, presented in Proposition 1.
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Theorem 9. For any Halton sequence X in bases bi, where br is even for
some r, and any N ≥ 1 with nr = log(brN), we have (newFLHa)

D∗(N,X) ≤ 1

s!

s∏
i=1

(
(bi − 1)nr

2 log bi
+ s

)
+

s−1∑
k=0

b bk+1

2
+ 1c
k!

k∏
i=1

(
(bi − 1)nr

2 log bi
+ k

)
.

6. Numerical comparisons

We now wish to compare some of the bounds discussed in this paper for
given values of N and s, and for some specific LDS. Rather than comparing
D∗(N,X) or D∗(N,X)/N directly as we did in [11], we follow an approach
proposed by P. Kritzer [14] and motivated by a question by H. Woźniakowski:
we instead consider the quantity

σ∗s,p = sup
N≥p

D∗(N,X)

(logN)s
.

The definition of σ∗s,p is motivated by the fact that the Koksma-Hlawka bound
[15] on the integration error obtained by using the first N ≥ p points of the
sequence can be written as σ∗s,p((logN)s/N)‖f‖1, where ‖f‖1 is the variation
of f in the sense of Hardy and Krause. As done by Kritzer, we then plot σ∗s,p
on graphs for which p ranges between 1000 and 10,000 in Figures 1, 2, and
3, and between 10,000 and 100,000 in Figure 4. We chose this approach over
the one in [11] because the bounds are more easily (and more compactly)
compared via graphs than tables of numbers, and the quantity σ∗s,p has the
advantage of providing a nice connection with the use of LDS for QMC
methods. We also note that here as in [11], we show values of σ∗s,p even when
they correspond to discrepancy values worse than the trivial bound of N , as
this still allows us to compare the behaviour of the different bounds and infer
how they may eventually reach values of N where they become non-trivial.

For (t, s)-sequences, for a given s and base b, we consider the sequence
with the smallest known value of t (obtained via MinT), and then compare
bounds from Thm 1 (FL12-gen), Thm 2 (FL14-odd), Thm 3 (FL12-even),
Thm 4 (FL14-even), FK from [6] with our new bounds from Thm 5 (newFL-
odd) and Thm 6 (newFL-even). We note that although the bound FK from
[6] gives the best constant cs for (t, s)-sequences, the bound itself is typically
larger than the newer FL14 and newFL. Due to space constraints, we show
graphs only for a few pairs (b, s), but they are fairly representative of the
results we obtained overall.
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In Figures 1 and 2, first we see that for (b = 2, s = 5), the bound FL14-
even is the smallest, followed closely by our new bound newFL-even, and
that when we increase to s = 10, newFL-even and FL14-even are by far much
better than the other bounds (some of them are not shown because they are
too large). On the other hand, we show that for the base (b = 4, s = 4), the
best bound is newFL-even, while FL14-even is better than FL12-gen only
for smaller values of N . Finally, with a larger base b = 11 and in dimension
s = 10, our new bound newFL-odd and FL12-gen outperform the others (not
shown on the graph), with the new one being clearly the smallest one.
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Figure 1: (t, s)-sequences: b = 2, s = 5 (left), b = 2, s = 10 (right)
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Figure 2: (t, s)-sequences: b = 4, s = 4 (left), b = 11, s = 10 (right)

Next for (t, e, s)-sequences, in base b = 2 and for generalized Niederre-
iter sequences, where t = 0, our new bound specialized to the case b even
(newFLtes-even) provides some improvement over newTez13 – which is the
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same as the bound from [17], except for the slight improvement to handle Σ2

– for small dimensions, e.g., when s = 4, as seen on top of Figure 3.
Both bounds are much better than the one from [18], even if we used the

version newTez14 from Theorem 8 that incorporates the slight improvement
from Proposition 1. However, newFLtes-even is clearly outperformed by
newTez13 in larger dimensions. In such cases, what is more interesting is to
compare the bound Tez13 with newTez13, which are the same except that
newTez13 handles the Σ2 term using a tighter bound. Here as well the bound
from [18] is the largest. Comparisons between these four bounds are provided
in the lower left part of Figure 3, for b = 2 and s = 10. For the case b = 3 and
s = 20, we only show the bound Tez13 of [17] and newTez13, i.e., the effect
of Proposition 1, as the one from [18] is dramatically large and off scale.
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Figure 3: (t, e, s)-sequences: b = 2, s = 4 (top), b = 2, s = 10 (bottom left), b = 3, s = 20
(bottom right)

As for the Halton sequences, we compare five different bounds: in addition
to AtHa04 and our new bound newFLHa, we also consider AtHaBk (AtHa04
with improved term Σ2 as proposed here), a “brute” method where in (1) we
replace the term (bi−1)/2 by bbi/2c and thus do not need the u term; brutBk
is the same as this brute method but where the bound on Σ2 is improved
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as proposed in our new bound. The results shown on Figure 4 suggest that
our new bound newFLHa outperforms AtHa04 from [1] in lower dimensions,
but eventually, as s increases, the latter becomes smaller. Typically, we see
that AtHaBk gives the lowest bound, followed very closely by BrutBk when
s = 50.
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Figure 4: Halton sequences: s = 10 (left), s = 50 (right)

Acknowledgements

We thank the two anonymous reviewers for their helpful comments. In
particular, we thank the anonymous reviewer who mentioned the publication
[18] to us, as we were not aware of its existence at the time the present paper
was originally submitted. The second author was supported by NSERC grant
RGP238959.

Appendix

Proof of the bound (7) for Σ2. The way we obtain (7) is similar to what is
done in the proof of Theorems 1 and 2 in [10]. First, we split the sum over
{j; bj11 . . . bjss > N} into subsets B0, . . . , Bs−1 where B0 = {j; bj11 > N} and

Bk = {j; bj11 . . . b
jk
k ≤ N, bj11 . . . b

jk+1

k+1 > N} for k = 1, . . . , s− 1. We note that
B0 6= ∅ since we must have j1 = n1 + 1. In order to evaluate its contribution
to Σ2, we proceed as follows. Let r ≥ 1 be the largest integer such that
br−1

1 ≤ N , so that r = n1 + 1. Hence, j ∈ B0 if and only if j1 = r, j2, . . . , js
being arbitrary in [0, ni + 1]. Recall that J =

∏s
i=1[0, z(i)), and set

J ′ = [0, z(1)
r )×

s∏
i=2

[0, z(i)) and K = [min(z(1)
r , z(1)),max(z(1)

r , z(1)))×
s∏

i=2

[0, z(i)).
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If z(1) > z
(1)
r , then we have J = J ′ ∪K, and otherwise we have J ′ = J ∪K

(disjoint unions), so that

sgn(z(1) − z(1)
r )E(K; [PN(X)]) = E(J ; [PN(X)])− E(J ′; [PN(X)]).

Therefore, we have ±E(K; [PN(X)]) =
∑

j∈B0
ε(j)E(I(j); [PN(X)]) and so,

E(K; [PN(X)]) is the contribution of B0 to Σ2. Now since br−1
1 z

(1)
r ∈ Z and

| z(1) − z(1)
r | = |

∞∑
j=r

a
(k+1)
j b−j1 | ≤

⌊
b1

2

⌋
1

br1

b1

b1 − 1
≤ 1

br−1
1

, (17)

we get [min(z
(1)
r , z(1)),max(z

(1)
r , z(1))) ⊆ [m1b

−r
1 ,m2b

−r
1 ) for some non-negative

integers m1,m2 satisfying 0 ≤ m2 −m1 ≤ b1. Hence, K ⊂ [m1b
−r
1 ,m2b

−r
1 )×

[0, 1)s−2 and so, using Lemma 1 (observe that N < br1 ≤ btbr1) we have
A(K; [PN(X)]) ≤ bt(m2−m1) ≤ btb1. But we also have NV (K) ≤ btbr1(m2−
m1)b−r1 ≤ btb1 which in the end gives the bound |E(K; [PN(X)])| ≤ btb1 for
the contribution of B0.

We can then deal with the sets Bk for 1 ≤ k ≤ s− 1 in a similar fashion
to what we did for B0 (see [19] (and [9, p. 72] for the special case of (t, s)-
sequences) for complete details), so that we get

|Σ2| ≤ bt
s−1∑
k=0

bk+1

∑
{(j1,...,jk);b

j1
1 ...b

jk
k ≤N}

k∏
i=1

|a(i)
ji
|. (18)

Finally, we bound the a
(i)
ji

’s using Lemma 3. Hence, we get the bound

|Σ2| ≤ bt
s−1∑
k=0

bk+1

k!

k∏
l=1

(⌊
bl
2

⌋
logN

log bl
+ k

)
. (19)

Remark 1. Note that the argument used to handle B0 above can easily be
adapted to the alternative split of Σ1 and Σ2 based on bj11 · · · bjss ≤ logbN− t,
because in that case, when we first use Lemma 1 we would have N/bt < br1,
which still leads to N < btbr1 and thus the rest of the argument follows.
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Proof of Proposition 1. To get the improved bound in Proposition 1, we go
back to the step where we bound, for each set Bk, 0 ≤ k < s, the bk+1-
adic expansion of the real number z(k+1) starting from the rth digit, i.e.,
z(k+1) − z(k+1)

r =
∑∞

j=r a
(k+1)
j b−jk+1. In the above proof (see (17) for the case

k = 0), this term is bounded by b−r+1
k+1 .

• When bk+1 is odd, it is easy to show that a bound of b−r+1
k+1 /2 can instead

be obtained. The rest of the proof shows that the constant that must then
appear in the bound for Σ2 restricted to Bk – which, in the different bounds
for D∗(N,X) that we have given in Theorem 1, appears inside the sum over
k from 0 to s − 1 in the second term – is the smallest integer larger than
brk+1 times this bound. Hence for an odd base, we get that this constant is
(bk+1 + 1)/2 instead of bk+1 for each Bk.
•When bk+1 is even, we must split the expansion over odd and even indices:

|z(k+1)−z(k+1)
r | ≤

∞∑
j=r

|a(k+1)
j |b−jk+1 ≤ b−rk+1

(
∞∑
j=0

|a(k+1)
r+2j |b

−2j
k+1 +

∞∑
j=0

|a(1)
r+2j+1|b

−2j−1
k+1

)
,

and then consider the case r even and odd independently, using the worst
configuration as in the proofs of Theorems 1 and 2 in [10]. Simple calculations
respectively yield

|z(k+1) − z(k+1)
r | ≤ 1

br−1
k+1

bk+1 + 2

2(bk+1 + 1)
and |z(k+1) − z(k+1)

r | ≤ 1

br−1
k+1

bk+1

2(bk+1 + 1)
.

Hence for an even base, the constant bk+1 in the bound for each Bk can be
replaced by (bk+1 + 2)/2 (the largest of these two bounds), so that overall we
obtain a single upper bound for odd and even bases:

|Σ2| ≤ bt
s−1∑
k=0

⌊
bk+1

2
+ 1

⌋ ∑
{j;bj11 ···b

jk
k ≤N}

k∏
i=1

|a(i)
ji
|.

At this point, we mention that, for an even base b, summing over odd and
even digits leads to b−r+1

∑∞
j=0

(
b

2bj
+ b−2

2bj+1

)
= b−r+1 b2+b−2

2(b2−1
= b−r+1 b+2

2(b+1)
, a

formula invoqued by Atanassov to justify the existence of signed numeration
systems in even bases [1, p. 21-22], but not to bound more closely Σ2 as we
did above.
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Proof of Lemma 7. We note that µ(n, s, 0) = 1 and proceed by induction on
s ≥ 2, with the exact statement used for induction being

µ(n, s,m) ≤
Γ(n+m

2
+ 1)

Γ(n−m
2

+ 1)
for all 1 ≤ m ≤ s and n ≥ s. (20)

To start the recursion, we need to show that µ(n, 2,m) ≤ Γ(n+m
2

+1)/Γ(n−m
2

+
1) for m = 1, 2 and n ≥ 2. Indeed, we have

µ(n, 2, 1) =
1

2

(
n+ 2

2
+
n

2

)
=

Γ(n+1
2

+ 1)

Γ(n−1
2

+ 1)
, µ(n, 2, 2) =

(
n+ 2

2

)
n

2
=

Γ(n+2
2

+ 1)

Γ(n−2
2

+ 1)
.

We also note that for any s ≥ 2, the cases m = s and m = 1 are easily seen
to be true since both the LHS and RHS of (20) are given by

Γ(n+s
2

+ 1)

Γ(n−s
2

+ 1)
and

1

s

s−1∑
j=0

(
n+ s

2
− j
)

=
n+ s

2
− s− 1

2
=
n+ 1

2
.

Proceeding to the induction step, we now assume that (20) holds for s−1 ≥ 2
and we want to show it also holds for s and 1 < m < s. To do so, we split
the sum over I in the definition (13) of µ(n, s,m) into two sums based on
the decomposition

B(n, s) =
n+ s

2
∪ B(n− 1, s− 1).

The first sum is over the subsets I included in B(n−1, s−1) (which contains
the s− 1 numbers (n+ s)/2− 1, . . . , (n− s)/2 + 1) and the second over the
subsets that include (n+ s)/2 and m−1 other elements from B(n−1, s−1).
Applying the induction hypothesis on both sums and using the fact that(
s−1
m

)
/
(
s
m

)
= (s−m)/m and

(
s−1
m−1

)
/
(
s
m

)
= m

s
, we get

µ(n, s,m) =
s−m
s

µ(n− 1, s− 1,m) +
m

s

n+ s

2
µ(n− 1, s− 1,m− 1)

≤ s−m
s

Γ(n−1+m
2

+ 1)

Γ(n−1−m
2

+ 1)
+
m

s

(
n+ s

2

)
Γ(n−1+m−1

2
+ 1)

Γ(n−1−(m−1)
2

+ 1)
.

Hence to show that this is bounded from above by Γ(n+m
2

+ 1)/Γ(n−m
2

+ 1),
we need to show that(
s−m
s

)
Γ(n−1+m

2
+ 1)

Γ(n−1−m
2

+ 1)

(
Γ(n+m

2
+ 1)

Γ(n−m
2

+ 1)

)−1

≤ 1−m
s

(
n+ s

2

)
2

n+m
=
n(s−m)

s(n+m)
,

27



which is equivalent to prove by induction on m ≥ 1 that

G(n,m) :=
n− 1 +m

n

Γ(n−1+m
2

)

Γ(n−1−m
2

+ 1)

(
Γ(n+m

2
)

Γ(n−m
2

+ 1)

)−1

≤ 1.

First, as easily seen, G(n, 1) = 1 and G(n, 2) ≤ 1. Then, it’s not difficult to
show that G(n,m) = G(n,m− 2)((n2− (m− 1)2)/((n2− (m− 2)2) which in
turn is bounded by 1 since since 1 < m < s ≤ n.

Proof of Lemma 8. We prove this lemma by successive reductions of the in-
equality gs,k(n) + gs,k+w(n) ≤ hs,k+w(n) for 0 ≤ k < k∗s (Equation (15)),
where w = ds/2e. For future use, observe (by elementary case analysis) that
(s− 1)/2 < w ≤ (s+ 1)/2.

First, multiplying both sides by s! and using Lemma 7, it is sufficient to
prove(
s

k

)
Γ(n+k

2
)

Γ(n−k
2

)

[(s
2

)s−k]
≤

Γ(n+k+w
2

+ 1)

Γ(n−(k+w)
2

+ 1)

(
s

k + w

)[
s!

(k + w)!
−
(s

2

)s−(k+w)
]
.

(21)

This is a first reduction. The next ones are detailed in the following Claims
1, 3, 4 (Claim 2 being required for Claims 3, 4).

Claim 1: The case where k = 0. Noting that µ(n, s, 0) = 1 and that
the RHS of (21) (in which k = 0) increases with n ≥ s, it is clear that (21)
reduces to (s

2

)s
≤

Γ( s+w
2

+ 1)

Γ( s−w
2

+ 1)

(
s

w

)(
s!

w!
−
(s

2

)s−w)
. (22)

Now, simple computations on the RHS of (22) show that(
s!

w!
−
(s

2

)s−w)
≥
(s

2

)s−w
,

Γ( s+w
2

+ 1)

Γ( s−w
2

+ 1)
≥ w! and

(
s

w

)
≥ 1

w!

(s
2

)w
(hints: for the first bound compute s!

w!

(
s
2

)s−w
and note that 2

(
1 + 2

s

)s−w−1 ≥
2 since s ≥ 2; for the second bound, simplify and use (s+w)/2 ≥ w; for the
third bound, use s − w + 1 ≥ s/2). Thus, (21) is true for k = 0 and hence
Lemma 8 reduces to (21) with 1 ≤ k < k∗s , a second reduction.
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Claim 2: An upper bound for k∗s . For all s ≥ 2, we have k∗s ≤
max(2, b(s− 1)/7c).
We first note that k∗s ≤ bs/2c as easily seen from its definition given by (14).
On the other hand, it is also easy to check the claim for all s ≥ 2 up to
several thousands of integers by comparing numerically

∏s−k−1
j=0 s/(2(s − j)

to 1. But the proof requires more attention and efforts since the bound is
almost sharp as can be seen by investigation of numerical results. The first
values are k∗s = 1 for 2 ≤ s ≤ 13 and k∗s = 2 for 14 ≤ s ≤ 21.

Let s = 7l + j for 0 ≤ j ≤ 6. We proceed by induction on l and we
first check numerically that k∗s ≤ bl + (j − 1)/7c =: lj for small l ≥ 1 and
1 ≤ j ≤ 6, i. e., that

A :=

(
7l + j

2

)7l+j−lj
≤ (7l + j)!

lj!
. (23)

Then, we assume (23) holds for a given l and want to show that

(
7(l + 1) + j

2

)7(l+1)+j−(lj+1)

= A

(
7(l+1)+j

2

)7(l+1)+j−(lj+1)

(
7l+j

2

)7l+j−lj ≤ (7(l + 1) + j)!

(lj + 1)!

(24)
Applying the induction hypothesis to A and simplifying the ratio, we see
that to obtain (24) it is sufficient to show that

(7l + j)!

lj!

(
1 +

7

7l + j

)7l+j−lj (7(l + 1) + j

2

)6

≤ (7(l + 1) + j)!

(lj + 1)!
. (25)

From this point, we separate the cases j = 0 where l0 = l − 1 and j ≥ 1
where lj = l.
• For j = 0, (25) becomes

(7l)!

(l − 1)!

(
1 +

1

l

)6l+1(
7(l + 1)

2

)6

≤ (7(l + 1))!

l!
, i. e.,

(
1 +

1

l

)6l

≤
(

2

7(l + 1)

)6

7(7l + 6) . . . (7l + 1).

Now, we have (1 + 1/l)l ≤ e and 7l+ j ≥ 7l, so (25) will be true if l satisfies
e6 ≤ 7 · 26(l/(l + 1))6, i. e., (2 6

√
7− e)l ≥ e. With e ≤ 2.72 and 2 6

√
7 ≥ 2.76

we obtain l ≥ 2.72/0.04 = 68.
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• For j ≥ 1, (25) becomes

(7l + j)!

l!

(
1 +

7

7l + j

)6l+j (
7(l + 1) + j

2

)6

≤ (7(l + 1) + j)!

(l + 1)!
, i. e. ,

(
1 +

7

7l + j

)6l+j

≤
(

2

7l + j + 7

)6
(7l + j + 7) . . . (7l + j + 1)

l + 1
.

But, 7l + j + 7 = (7l + j)(1 + 7/(7l + j)), thus (25) will be true if l satisfies(
1 +

7

7l + j

)6l+j−1

≤
(

2

7l + j + 7

)6
(7l + j)(7l + j + 6) . . . (7l + j + 1)

l + 1
.

Now, it is easy to see that 7(6l + j − 1) ≤ 6(7l + j), so that(
1 +

7

7l + j

)6l+j−1

≤
(

1 +
6

6l + j − 1

)6l+j−1

≤ e6.

Hence, (25) will be true if l satisfies e ≤ 2 6

√
7l+j
l+1

7l+j+1
7l+j+7

. In addition, since

(7l+ j)/(l+ 1) increases up to 7 when l→∞, we can choose the same lower

bound as for j = 0 with l such that 2 6

√
7l+j
l+1
≥ 2.76 for all 1 ≤ j ≤ 6, i. e.,

l ≥ 119. Finally, (25) will be true if l ≥ 119 satisfies

e ≤ 2.76
7l + j + 1

7l + j + 7
= 2.76

(
1− 6

7l + j + 7

)
, i. e., 0.04(7l+j+7) ≥ 6 ·2.76,

which requires only l ≥ 60 (of course, it could be possible to optimize the
least l satisfying both conditions).

Claim 3: A third reduction. Coming back to (21) with 1 ≤ k < k∗s
and dealing with the last term of its RHS, in the same way as in the proof
of (22) for the same term but with k = 0, we first obtain

s!

(k + w)!
−
(s

2

)s−(k+w)

≥
(s

2

)s−(k+w)

since from Claim 2, we have k+w < k∗s +w ≤ s and so
(
1 + 2k

s

)s−(k+w)−1 ≥ 1.

Next, set v = bw
2
c and notice for future use that (s − 2)/4 ≤ v ≤ (s + 1)/4

(by simple case analysis). Since w/2− v ≥ 0, we obtain

Γ(n+k
2

+ 1)

Γ(n−k
2

+ 1)
≤

Γ(n+w+k
2
− v + 1)

Γ(n+w−k
2
− v + 1)

·
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Thus the RHS of (21) times the ratio Γ(n−k
2

)/Γ(n+k
2

) is bounded from below
by (

s

k + w

)(s
2

)s−(k+w)

×
Γ(n+k+w

2
+ 1)

Γ(n+w+k
2
− v + 1)

×
Γ(n+w−k

2
− v + 1)

Γ(n−w−k)
2

+ 1)
·

Hence a sufficient condition to obtain (21) is to establish the bound(
s

k

)(s
2

)w
≤
(

s

k + w

)
Γ(n+k+w

2
+ 1)

Γ(n+w+k
2
− v + 1)

×
Γ(n+w−k

2
− v + 1)

Γ(n−w−k)
2

+ 1)
· (26)

Claim 4: A last reduction. First, we note that the product of ratios
in the RHS of (26) is increasing in n, and thus it suffices to prove (26) with
n = s. Then, we observe that the first ratio is the product of v terms larger
than n/2, hence (26) reduces to(s

2

)w−v
≤
(
s

k

)−1(
s

k + w

)
Γ( s+w−k

2
− v + 1)

Γ( s−w−k)
2

+ 1)
· (27)

To achieve the proof of Lemma 8, we need the explicit forms of R :=
Γ( s+w−k

2
−v+1)

Γ(
s−w−k)

2
+1)

and B :=
(
s
k

)−1( s
k+w

)
in the RHS of (27):

R =

(
s+ w − k

2
− v
)(

s+ w − k
2

− v − 1

)
· · ·
(
s− (w + k)

2
+ 1

)
and

B =

(
s

k

)−1(
s

k + w

)
=

(s− k)(s− k − 1) · · · (k + w + 1)

(s− (k + w))(s− (k + w)− 1) · · · (k + 1)
, where

we used the fact that s−k ≥ k+w since 2k ≤ 2(k∗s−1) ≤ 2(bs/7c−1) ≤ s−w.

There are two cases to consider, depending on which of R and B has the
most terms (w − v and s− w − 2k, respectively).
• Case 1: w − v ≤ s − w − 2k. We see that the w − v terms of R

clearly dominate the w − v largest terms of the denominator of B since
(s+w− k)/2− v ≥ s− k−w, i. e., 3w+ k− 2v ≥ s, because w ≥ (s− 1)/2
(as already noted) and k ≥ 1. The remaining s−w− 2k− (w− v) (smallest)
terms of the denominator of B are clearly dominated by the s−w−2k−(w−v)
smallest terms of its numerator, and then the remaining w−v (largest) terms
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of the numerator of B are all at least s/2, so that overall, we indeed have
B ·R ≥ (s/2)w−v.
• Case 2: w − v > s− 2k − w (i. e., more terms in R than in B).

First, we note that 1 ≤ k < k∗s implies k∗s ≥ 2; so, as seen in Claim 2, s ≥ 14.
But s = 14 cannot occur in Case 2 since w− v = 4 ≤ s− 2k−w ≤ 5. Hence
Claim 2 applies with s ≥ 15 and k∗s ≤ b(s− 1)/7c.
Then, as argued in Case 1, the s− 2k−w smallest terms in R dominate the
terms in the denominator of B if (s−w− k)/2 + 1 ≥ k+ 1, i. e., 3k ≤ s−w.
But, from Claim 2, 3k ≤ 3((s− 1)/7− 1) = 3(s− 8)/7 ≤ (s− 1)/2 ≤ s− w
(since w ≤ (s+ 1)/2).
Next, we observe that all the terms in the numerator of B are at least s/2
since k+w+1 ≥ s/2. So it is sufficient to show that each of the w−v− (s−
2k−w) largest terms of R can be paired in the reverse order with the largest
terms from the numerator of B so that their product is at least (s/2)2.
To this end, we first need to check that l := w−v−(s−2k−w) ≤ s−2k−w,
the number of terms in B. This is true if 2s − 3w + v − 4k ≥ 2s − 3(s +
1)/2 + (s− 2)/4− 4k ≥ 0, i. e., if 8k ≤ (3s− 8)/2, which is clearly satisfied
because k ≤ ((s− 1)/7− 1).
Next, to verify that the above property holds, it is sufficient to check that it
is satisfied for the first product, i.e.,(

s+ w − k
2

− v − (w − v − (s− 2k − w)− 1)

)
(s− k) ≥ s2

4
,

i. e., ((3s−3w−5k)/2+1)(s−k) ≥ s2/4, because if xy ≥ z then (x+1)(y−1) ≥
z if y ≥ x+1; and this last condition is verified with x+1 = (3s−3w−5k)/2+2
and y = s− k because w ≥ (s− 1)/2 implies (s− 3)/4 + 3k/2 ≥ 2, true since
s ≥ 15.
Finally, using again that w ≤ (s+1)/2 and k ≤ (s−1)/7−1, we obtain after
a simple computation (3s− 3w− 5k + 2)(s− k) ≥ (s(11/14) + 87/14))(6s+
8)/7 ≥ s2/2, since (11/14)(6/7) = 33/49 ≥ 1/2. Overall, we indeed have
B · R ≥ (s/2)w−v in Case 2, just like for Case 1 and this ends the proof of
Lemma 8.
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[3] H. Faure, Suites à faible discrépance dans Ts, Publ. Dép. math., Uni-
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