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Abstract

In this paper we review recent discrepancy bounds for (t, s)-sequences and
other low-discrepancy sequences. We then provide numerical comparisons of
these bounds for various combinations of dimension and number of points. In
some cases, we compare different bounds for the same type of construction,
and in other cases, we compare the best bounds across different constructions.
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1. Introduction

The family of (t, s)-sequences constitute a large and important family of
low-discrepancy sequences, often used in the context of quasi-Monte Carlo
methods for integration and approximation. The quality of these sequences is
often assessed through the concept of star discrepancy, denoted by D∗(PN),
where PN is the set of points in [0, 1)s obtained by considering the first N
points of the sequence under study. The exact value of the discrepancy is
typically very hard to compute, therefore the behavior of these sequences is
often assessed through bounds of the form

ND∗(PN) ≤ cs(logN)s +O(logN)s−1. (1)

There has been a lot of work on discrepancy bounds of the form (1)
for (t, s)-sequences over the last few years. In some cases, the asymptotic
behavior of the bound, as studied through the quantity cs, was improved
significantly [1, 4, 6, 17]. In some other cases, the improvement was instead
done within the O(logN)s−1 term, which can still have an important effect
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when comparing bounds in the non-asymptotic regime, that is, for finite val-
ues of N . When sequences are compared with the goal of determining which
ones should be preferred for practical purposes, we believe it is important to
not only focus on the constant cs but also consider the whole bound, whose
behaviour may be more indicative of the sequence’s performance when used
in practice, for possibly large values of s and not so large values of N . If a
construction provides an improvement in cs at the expense of a much worse
bound overall, it is unclear that its performance in practice will be satis-
fying. This type of behaviour was studied in [5] for Halton sequences and
the so-called modified Halton sequences introduced by Atanassov in [1]. The
latter have a smaller constant cs that is competing with Niederreiter-Xing
sequences, but with a huge complementary O(logN)s−1 term. As mentioned
in [5], in that case the bound does not tell the whole story, in particular
because it is independent of the choice of permutations used to improve the
quality of the original Halton sequences for finite values of N .

The goal of this paper is first to present an overview of these recent re-
sults, highlighting the various improvements that each result provided. This
discussion is presented in Section 2. Then we provide numerical comparisons
to assess the impact of these different improvements. Since these bounds also
allow us to compare the performance of different choices of bases for (t, s)-
sequences, we also present results comparing the best bounds for different
low-discrepancy sequences.

2. Review of known bounds

Before presenting the different recent bounds that will later be com-
pared, we first provide some background information on discrepancy and
(t, s)-sequences. We then give some perspective on how the different bounds
were obtained and what improvement they provide.

We start with a review of the notion of discrepancy, which will be used
throughout the paper. We focus on the so-called extreme discrepancy, which
corresponds to the worst case error in the domain of complexity of mul-
tivariate problems. Assume we have a point set PN = {X1, . . . , XN} ⊆
Is := [0, 1]s and denote J (resp J ∗) the set of intervals J of Is of the form
J =

∏s
j=1[yj, zj), where 0 ≤ yj < zj ≤ 1 (resp. J =

∏s
j=1[0, zj)). Then the

discrepancy function of PN on such an interval J is the difference

E(J ;N) = A(J ;PN)−NV (J),
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where A(J ;PN) = #{n; 1 ≤ n ≤ N,Xn ∈ J} is the number of points in PN

that fall in the subinterval J , and V (J) =
∏s

j=1(zj − yj) is the volume of J .
Then, the star (extreme) discrepancy D∗ and the (extreme) discrepancy

D of PN are defined by

D∗(PN) = sup
J∈J ∗

|E(J ;N)| and D(PN) = sup
J∈J
|E(J ;N)|.

It is well known thatD∗(PN) ≤ D(PN) ≤ 2sD∗(PN). For an infinite sequence
X, we denote by D(N,X) and D∗(N,X) the discrepancies of its first N
points. Note that several authors have a 1/N factor when defining the above
quantities.

Moving on to (t, s)-sequences, this concept was introduced by Niederreiter
[12] to give a general framework for various constructions using generating
matrices applied to van der Corput sequences, including Sobol’ sequences
[15], Faure sequences [2], and later a more general class of constructions re-
ferred to as Niederreiter-Xing sequences [14]. The definition of this last class
of sequences needs an extension of the original concept of (t, s)-sequences
which is now widely used in the literature. In this paper, we only consider
this extension which makes use of the coordinatewise m-digit truncation in
base b ≥ 2 of elements X ∈ Is, denoted by [X]b,m (see [14] for details).

Definition 1. A sequence (Xn)n≥1 of points Xn ∈ Is is a (t, s)-sequence in
base b if the subset {[Xn]b,m; kbm < n ≤ (k + 1)bm} is a (t,m, s)-net in base
b for all integers k ≥ 0 and m ≥ t.

Several of the bounds presented in this paper make use of the technique
introduced by Atanassov in [1] to study Halton sequences. His approach
is very different from the traditional ones developed by Sobol’, Faure and
Niederreiter for (t, s)-sequences, which make use of a double recursion on the
parameter m such that N = bm, and the dimension s, along with a sym-
metrisation technique that provides the 1/(s! · 2s) term. Instead, Atanassov
uses a signed splitting method together with an argument from diophantine
geometry to provide an expression for cs smaller by a factor of s! compared
to the previous bound for Halton sequences from [2, Section 2].

Atanassov’s proof method was adapted in [8] to provide bounds for (t, s)-
sequences having about the same constant cs—equal when b is odd and larger
by b/(b− 1) when b is even—as those that were known at the time, namely
from Niederreiter [13]. However, in the subsequent paper [6], we were able
to use signed splittings coupled with signed b-adic expansions in the case
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of an even base b to get a significant improvement on cs in that case, more
precisely by a factor of ((b− 1)/b)s−1 compared to[13]. The results from [6]
are given next, starting with one that is valid for any (t, s)-sequence:

Theorem 1. Let X be a (t, s)-sequence in base b. For any N ≥ 1 we have

D∗(N,X) ≤ bt

s!

(⌊
b

2

⌋
logN

log b
+ s

)s

+ bt
s−1∑
k=0

b

k!

(⌊
b

2

⌋
logN

log b
+ k

)k

. (2)

We also have from [6] the result that is specialized to the case of an even
base b, given by:

Theorem 2. Let X be a (t, s)-sequence in an even base b. For any N ≥ bs

we have

D∗(N,X) ≤b
t

s!

(
b− 1

2

logN

log b
+ s

)s

+ sbt
(
b

2

)s(
logN

log b

)s−1

(3)

+bt
s−1∑
k=0

b

k!

(
b

2

logN

log b
+ k

)k

.

Note that the two results stated above (as well as Theorem 4 later on)
are slightly different from the ones given in the original papers [8, 6]: the
second sum starts at k = 0 above, correcting the result given in [8, 6] that
starts at k = 1 instead. This difference is explained in more detail in [3, 7].

On the other hand, using a completely different approach that is rather
a refinement of the double recursion coupled with the symmetrisation in-
troduced by Sobol’ for his construction, Kritzer [10] was able to improve
the constant cs from [13] by a multiplicative factor of 1/2 for odd b and
b/(2(b+1)) for even b. His approach was then extended in a joint paper with
Faure [4] to provide the smallest value for cs known so far, improving cs from
Theorem 2 by a factor of b2/(2(b2− 1)) when b is even. Their approach still
uses a (unique) recursion and the same symmetrisation idea, along with two
clever counting lemmas. Their bounds are described in the following result.

Theorem 3. Let s ≥ 2 and let X be a (t, s)-sequence in base b. Then for
any N ≥ max{b, bt}, we have

D∗(N,X) ≤ bt
s∑

v=0

A
(s)
v,b

(
logN

log b

)v

, (4)
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with A
(s)
0,b =

b+ 2

2
a
(s)
0,b , A

(s)
s,b =

b− 1

2s
a
(s)
s−1,b and

A
(s)
v,b =

(
2v +

b− 1

2

)
a
(s)
v,b +

b− 1

2v
a
(s)
v−1,b for 1 ≤ v ≤ s− 1, in which

a
(s)
v,b =

(
s− 2

v

)(
b+ 2

2

)s−2−v
(b− 1)v

2vv!
(a

(2)
0,b + s2 − 4)

+

(
s− 2

v − 1

)(
b+ 2

2

)s−1−v
(b− 1)v−1

2v−1v!
a
(2)
1,b ,

where a
(2)
0,b =

{
b+8
4

if b is even,
b+4
2

if b is odd,
and a

(2)
1,b =

{
b2

4(b+1)
if b is even,

b−1
4

if b is odd.

Next and going back to Atanassov’s method, in [7] we were able to get
a different discrepancy bound by making use of a careful worst-case analysis
when studying signed splittings, together with a tighter counting argument.
The constant cs in this new bound is the same as in [6]—and therefore not as
small as the one from [4]—but overall the bound appears to be better than
both (3) and (4) in the non-asymptotic regime. This bound is recalled in the
following theorem [7, Theorem 1].

Theorem 4. For any (t, s)-sequence X in any base b and for any N ≥ 1 we
have (where γb = 2− b (mod 2))

D∗(N,X) ≤ bt

s!

(
b− 1

2

)s s∏
k=1

(
logN

log b
+ γbk

)
(5)

+ bt
s−1∑
k=0

b

k!

(
b− 1

2

)k k∏
l=1

(
logN

log b
+ γbl

)
.

We now define a new family of low-discrepancy sequences recently intro-
duced by Tezuka [17], namely the family of (t, e, s)-sequences.

Definition 2. Given integers t,m with 0 ≤ t ≤ m and an s-tuple of positive
integers e = (e1, . . . , es), a (t,m, e, s)-net in base b is an s-dimensional point
set with bm points such that any elementary interval E =

∏s
i=1[aib

−di , (ai +
1)b−di) with 0 ≤ ai ≤ bdi and ei|di for 1 ≤ i ≤ s, and V (E) = bt−m, contains
exactly bt points of the set. (Notice that these conditions imply that m− t is
of the form j1e1 + · · ·+ jses). The definition of (t, e, s)-sequences is the same
as for (t, s)-sequences, with (t,m, e, s)-nets in place of the usual (t,m, s)-nets.
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From the definition of (t,m, e, s)-nets, it is easy to see that (t, s)-sequences
are (t, e, s)-sequences with e = (1, . . . , 1). A stronger version of Definition 2
has been further introduced by Hofer and Niederreiter in [9].

It is quite remarkable that Atanassov’s technique developed for Halton
sequences in [1] also applies to (t, e, s)-sequences: using an adaptation where
powers bei take place of coprimes pi, Tezuka was able to get the following
bound for the discrepancy of an arbitrary (t, e, s)-sequence X in base b. (see
his Theorem 2 in [17] for the version with N > bt instead of N ≥ 1):

Theorem 5. Let b ≥ 2 be an arbitrary integer. The star discrepancy of the
first N ≥ 1 points of a (t, e, s)-sequence X in base b satisfies

D∗(N,X) ≤b
t

s!

s∏
i=1

(
bbei/2c
ei

(
logN

log b

)
+ s

)
+

bt
s−1∑
k=0

bek+1

k!

k∏
i=1

(
bbei/2c
ei

(
logN

log b

)
+ k

)
. (6)

For (t, s)-sequences, Theorem 5 and Theorem 1 give the same bound.

But in the same paper, Tezuka was also able to obtain new discrepancy
bounds for generalized Niederreiter sequences (as defined in [16, Section 3])
by characterizing them as (0, e, s)-sequences, where ei is the degree of the
irreducible polynomial (so-called base polynomial) in base b used in the def-
inition of the ith generating matrix of the sequence [17, Theorem 1], hence
getting the following corollary to Theorem 5:

Corollary 1. The discrepancy of a generalized Niederreiter sequence in pri–
me power base b, with base polynomial degrees ei, satisfies the bound (1) with

cTez
s =

1

s!

s∏
i=1

bbei/2c
ei log b

.

Next, applying our variant of Atanassov’s method for (t, s)-sequences, we
have been able to improve this result as follows [7, Theorem 2]:

Theorem 6. Let b ≥ 2 be an arbitrary integer. The star discrepancy of the
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first N ≥ 1 points of a (t, e, s)-sequence X in base b satisfies

D∗(N,X) ≤b
t

s!

s∏
i=1

(
bei − 1

2ei

(
logN

log b
+

s∑
i=1

ei

)
+ s

)
+

bt
s−1∑
k=0

bek+1

k!

k∏
i=1

(
bei − 1

2ei

(
logN

log b
+

k∑
i=1

ei

)
+ k

)
. (7)

Hence we obtain a new constant cFL
s = 1

s!

∏s
i=1

bei−1
2ei log b

for generalized
Niederreiter sequences such as those considered in Corollary 1. If b is odd
the two constants are equal, but if b is even cFL

s is lower than cTez
s . For

example, we can see in [7, Table 1] that in base 2, when the integers ei are
the degrees of the irreducible polynomials over F2 sorted in non-decreasing
order, cFL

s is smaller by a factor of about 10, at least for small dimensions
(less than 10).

3. Numerical comparisons of bounds

We first note that all the bounds for D∗(N,X) have been divided by N
in our calculations. In Table A.1 below, we compare the above bounds in
the case where b = 2. For each pair (N, s), we give on the first line the
value of the general bound (2), on the second line the value of the bound
(3) specialized for even bases, on the third line the value of the bound (4),
and on the fourth line, the value of the bound (5). In all cases, the term bt

in the bound is set equal to 1 since it appears as a multiplying constant in
each bound. Note that the bound is only given when N is larger than the
minimum number of points for which the bound holds. We see that starting
in dimension s = 3, the bound (5) is always smaller than the other ones.

We performed the same kind of calculation for base 3, and the results are
in Table A.2, where for each pair (N, s), we give on the first line the value
of the bound (2), on the second line the value of the bound (4), and on the
third line, the value of the bound (5). As in the case where the base is 2,
here we also omit the term bt as it appears in all bounds as a multiplying
constant. Results for base 4 and base 5 are shown in Tables A.3 and A.4
below. The results for base 3 are similar to the ones for base 2, while for
bases 4 and 5, we see that the bound (2) is often more competitive, except
for base 5 and dimension 20, where we see it being outperformed by (5).

Next, we compare the bounds from (6) and (7) on generalized Niederreiter
sequences in base 2 and 3. More precisely, we compare these two bounds on
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(0, e, s)-sequences for different values of s and N , where ei is the degree of the
ith irreducible polynomial over Fb, for b = 2, 3. For comparison purposes, we
also provide the value of the bound (5) using t =

∑s
i=1(ei − 1). The results

are in Tables A.5 and A.6. In base 2, for small dimensions (s ≤ 5), the bound
(5) gives the smallest values, and for s > 5 (6) is the best. The results are
similar for base 3, except that (6) starts to be the best as soon as s ≥ 4, and
it also always give a smaller value than (7). This makes sense since the main
advantage of (7) over (6) holds for even bases only.

Overall, we see through these results that a smaller asymptotic constant
cs does not necessarily lead to a smaller discrepancy bound, when considering
moderate values of N .

4. Comparisons across bases

The previous section focused on comparing recent discrepancy bounds for
a fixed base b. In this section, we want to compare different constructions
through their discrepancy bound. More specifically, we compare the Sobol’
sequence (base 2), with Faure sequences in base b ≥ s (we choose b as the
smallest prime larger or equal to s), and also Halton sequences and gener-
alized Niederreiter sequences in base 2, i.e., the (0, e, s)-sequences in base 2
studied at the end of the previous section. We also indicate which of the
above bounds was used to get the result in the table.

Finally, for comparison purposes we also include the bound obtained for
Halton sequences proved by Atanassov in [1], which holds for N ≥ 1 and is
given by the following inequality, where u 6= 0 only if one bi is even, in which

case u = bi
2(s−1)!

∏
1≤j≤s,j 6=i

(
(bj−1) logN

2 log bj
+ s− 1

)
D∗(N,H) ≤ 1

s!

s∏
i=1

(
(bi − 1) logN

2 log bi
+ s

)
+

s−1∑
k=0

bk+1

k!

k∏
i=1

(⌊
bi
2

⌋
logN

log bi
+ k

)
+u.

As we can see in Table A.7, in dimension 5 and 10 and despite its suc-
cessful use in many practical applications, the Sobol’ sequence leads to the
largest bound, while the Faure sequence provides the smallest bound. It
is worth noting that even when s = 10, which is still relatively small, the
bounds are already useless in some sense, since they are all above 1. We
would need to make comparisons for values of N much larger than 107 in
order to get reasonable values for the bound, but such values of N are much
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larger than what can be “afforded” by a typical computational budget. Nev-
ertheless, these numerical results give some information on the behavior of
the sequences for very large values of N and suggest which ones might be
the best in that setting. For this reason, we chose to show the value of the
computed bound rather than the trivial bound of 1.

5. Conclusion

We have reported on recent important improvements for the behavior of
the star discrepancy of (t, s) and (t, e, s)-sequences from a number theoretic
point of view, with leading asymptotic constants cs divided by factors as
large as (b/(b − 1))s−2 in the case of an even base since 2006 [10]. These
improvements have been initiated thanks to an adaptation of Atanassov’s
method for Halton sequences [8, 6] and led indirectly to the new concept of
(t, e, s)-sequences introduced in [17]. However, from the point of view of ef-
fective bounds in the non-asymptotic regime, it clearly appears through our
numerical comparisons that these improvements are obtained at the expense
of complementary terms in Equation (1) which take a prominent place in
usual ranges of samples for applications. Hence, regarding practitioners, we
are still confronted with the same problem: which sequences can be recom-
mended in quasi-Monte Carlo methods with a good expectation of reliable
results? At the moment, we still think that the success of Sobol’ sequences,
as well as generalized Halton and Faure sequences is in the selection of good
direction numbers for the first ones and good scramblings by permutations
for the last ones (see the conclusions [5, Section 8] and [11, Section 7] for
more comments).
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Appendix A. Tables

Table A.1: Results for base b = 2; each pair (N, s) shows successively bounds (2) from
Theorem 1, (3) from Theorem 2, (4) from Theorem 3, and (5) from Theorem 4.

N\s 2 3 4 5 8 10 20
104 1.47e-2 9.84e-2 5.43e-1 2.62 1.79e2 2.32e3 2.30e8

9.45e-3 9.43e-2 1.16 1.67e1 5.86e4 1.29e7 –
4.74e-3 5.70e-2 5.72e-1 4.94 1.68e3 5.58e4 –
5.03e-3 1.90e-2 5.78e-2 1.52e-1 1.53 5.18 3.46e2

105 2.10e-3 1.64e-2 1.04e-1 5.72e-1 5.43e1 8.39e2 1.50e8
1.24e-3 1.45e-2 2.22e-1 4.02 2.79e4 9.62e6 –
6.26e-4 8.10e-3 8.93e-2 8.53e-1 3.96e2 1.60e4 –
6.86e-4 2.97e-3 1.03e-2 3.07e-2 4.27e-1 1.74 2.37e2

106 2.84e-4 2.53e-3 1.82e-2 1.12e-1 1.43e1 2.61e2 8.25e7
1.55e-4 2.08e-3 3.78e-2 8.27e-1 1.00e4 4.96e6 –
7.96e-5 1.10e-3 1.31e-2 1.36e-1 8.32e1 3.99e3 –
8.95e-5 4.39e-4 1.71e-3 5.67e-3 1.06e-1 5.10e-1 1.35e2

107 3.69e-5 3.70e-4 2.97e-3 2.03e-2 3.39 7.20e1 3.96e7
1.90e-5 2.83e-4 5.95e-3 1.53e-1 2.94e3 1.99e6 1.84e20
9.85e-6 1.44e-4 1.84e-3 2.06e-2 1.60e1 9.01e2 2.61e10
1.13e-5 6.19e-5 2.68e-4 9.76e-4 2.37e-2 1.34e-1 6.57e1
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Table A.2: Results for base b = 3; each pair (N, s) shows successively the bounds (2) from
Theorem 1, (4) from Theorem 3, and (5) from Theorem 4.

N\s 2 3 4 5 8 10 20
104 8.51e-3 4.39e-2 1.91e-1 7.45e-1 3.02e1 2.97e2 1.26e7

6.82e-3 9.56e-2 1.14 1.18e1 7.23e3 3.66e5 –
7.99e-3 3.62e-2 1.30e-1 3.98e-1 5.88 2.46e1 3.63e3

105 1.15e-3 6.79e-3 3.33e-2 1.44e-1 7.47 8.34e1 5.11e6
8.86e-4 1.35e-2 1.77e-1 2.03 1.70e3 1.05e5 –
1.09e-3 5.74e-3 2.38e-2 8.32e-2 1.77 9.15 3.10e3

106 1.50e-4 9.92e-4 5.40e-3 2.57e-2 1.68 2.11e1 1.89e6
1.11e-4 1.82e-3 2.60e-2 3.25e-1 3.56e2 2.62e4 3.71e12
1.43e-4 8.54e-4 4.01e-3 1.57e-2 4.61e-1 2.89 2.10e3

107 1.89e-5 1.39e-4 8.29e-4 4.30e-3 3.48e-1 4.93 6.41e5
1.36e-5 2.38e-4 3.64e-3 4.91e-2 6.84e1 5.88e3 1.60e12
1.81e-5 1.21e-4 6.34e-4 2.77e-3 1.08e-1 8.08e-1 1.19e3

Table A.3: Results for base b = 4; each pair (N, s) shows successively the bounds (2) from
Theorem 1, (3) from Theorem 2, (4) from Theorem 3, and (5) from Theorem 4.

N\s 2 3 4 5 8 10 20
104 1.78e-2 1.25e-1 7.13e-1 3.53 2.54e2 3.36e3 3.46e8

1.86e-2 1.95e-1 2.38 3.36e1 1.17e5 2.58e7 -
8.40e-3 1.36e-1 1.88 2.27e1 8.12e4 4.57e6 -
1.59e-2 1.12e-1 6.68e-1 3.54 3.47e2 5.98e3 2.92e9

105 2.48e-3 2.02e-2 1.33e-1 7.51e-1 7.52e1 1.19e3 2.22e8
2.45e-3 3.04e-2 4.55e-1 8.10 5.59e4 1.92e7 -
1.11e-3 1.93e-2 2.94e-1 3.91 5.20e3 4.47e5 1.79e14
2.08e-3 1.66e-2 1.10e-1 6.39e-1 7.97e1 1.56e3 1.20e9

106 3.28e-4 3.06e-3 2.28e-2 1.44e-1 1.94e1 3.63e2 1.21e8
3.11e-4 4.40e-3 7.78e-2 1.67 2.00e4 9.93e6 -
1.41e-4 2.63e-3 4.32e-2 6.25e-1 1.09e3 1.11e5 9.09e13
2.64e-4 2.33e-3 1.69e-2 1.08e-1 1.68e1 3.71e2 4.42e8

107 4.20e-5 4.39e-4 3.64e-3 2.55e-2 4.52 9.85e1 5.77e7
3.83e-5 6.04e-4 1.23e-2 3.08e-1 5.88e3 3.98e6 -
1.75e-5 3.45e-4 6.08e-3 9.47e-2 2.08e2 2.48e4 3.88e13
3.25e-5 3.16e-4 2.50e-3 1.72e-2 3.29 8.15e1 1.47e8
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Table A.4: Results for base b = 5; each pair (N, s) shows successively the bounds (2) from
Theorem 1, (4) from Theorem 3, and (5) from Theorem 4

N\s 2 3 4 5 8 10 20
104 1.58e-2 1.02e-1 5.40e-1 2.49 1.49e2 1.78e3 1.33e8

1.23e-2 2.07e-1 3.10 4.13e1 5.80e4 5.33e6 -
1.76e-2 1.20e-1 6.55e-1 3.09 1.83e2 2.06e3 6.74e7

105 2.14e-3 1.61e-2 9.75e-2 5.08e-1 4.13e1 5.80e2 7.28e7
1.60e-3 2.94e-2 4.84e-1 7.10 1.34e4 1.50e6 2.53e15
2.36e-3 1.84e-2 1.15e-1 6.14e-1 5.04e1 6.81e2 4.40e7

106 2.80e-4 2.38e-3 1.62e-2 9.43e-2 1.01e1 1.66e2 3.48e7
2.01e-4 3.98e-3 7.10e-2 1.13 2.78e3 3.69e5 1.27e15
3.04e-4 2.68e-3 1.88e-2 1.12e-1 1.22e1 1.95e2 2.38e7

107 3.53e-5 3.36e-4 2.54e-3 1.63e-2 2.26 4.26e1 1.48e7
2.46e-5 5.21e-4 9.98e-3 1.71e-1 5.31e2 8.21e4 5.39e14
3.80e-5 3.73e-4 2.90e-3 1.90e-2 2.70 5.02e1 1.11e7

Table A.5: Results comparing bounds for (0, e, s)-sequences in base 2; each pair (N, s)
shows successively the bounds (5) from Theorem 4, (6) from Theorem 5, and (7) from
Theorem 6.

N\s 2 3 4 5 8 10 20
104 5.03e-3 3.79e-2 4.63e-1 4.86 2.51e4 2.17e7 1.02e23

1.43e-2 1.16e-1 1.03 6.51 2.53e3 1.93e5 7.04e13
6.31e-3 5.46e-2 7.22e-1 8.81 9.28e4 1.66e8 2.26e26

105 6.86e-4 5.94e-3 8.27e-2 9.82e-1 7.00e3 7.30e6 7.00e22
1.98e-3 1.83e-2 1.83e-1 1.31 7.37e2 7.24e4 9.11e13
8.15e-4 7.70e-3 1.09e-1 1.39 1.58e4 2.85e7 3.85e25

106 8.95e-5 8.77e-4 1.37e-2 1.81e-1 1.73e3 2.14e6 3.97e22
2.62e-4 2.70e-3 3.00e-2 2.40e-1 1.88e2 2.30e4 8.63e13
1.02e-4 1.05e-3 1.57e-2 2.12e-1 2.59e3 4.76e6 6.45e24

107 1.13e-5 1.24e-4 2.14e-3 3.12e-2 3.88e2 5.61e5 1.94e22
3.63e-5 4.23e-4 5.32e-3 4.85e-2 5.57e1 8.85e3 1.20e14
1.33e-5 1.50e-4 2.44e-3 3.50e-2 4.78e2 9.07e5 1.26e24
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Table A.6: Results comparing bounds for (0, e, s)-sequences in base 3; each pair (N, s)
shows the bounds (5) from Theorem 4, (6) from Theorem 5, and (7) from Theorem 6.

N\s 2 3 4 5 8 10 20
104 7.99e-3 3.62e-2 3.91e-1 3.58 1.29e4 4.36e6 1.64e21

8.00e-3 4.02e-2 3.62e-1 2.32 1.29e3 6.67e4 4.56e13
1.05e-2 7.06e-2 1.05 1.41e1 2.40e5 3.08e8 9.23e26

105 1.09e-3 5.74e-3 7.15e-2 7.49e-1 3.86e3 1.62e6 1.39e21
1.08e-3 1.83e-2 6.29e-2 4.58e-1 3.73e2 2.52e4 6.45e13
1.37e-3 1.02e-2 1.62e-1 2.29 4.18e4 5.43e7 1.61e26

106 1.43e-4 8.54e-4 1.20e-2 1.42e-1 1.01e3 5.13e5 9.47e20
1.40e-4 8.98e-4 1.02e-2 8.28e-2 9.43e1 8.03e3 6.49e13
1.73e-4 1.40e-3 2.38e-2 3.54e-1 6.99e3 9.27e6 2.75e25

107 1.81e-5 1.21e-4 1.90e-3 2.49e-2 2.36e2 1.43e5 5.37e20
1.76e-5 1.25e-4 1.56e-3 1.40e-2 2.14e1 2.24e3 5.04e13
2.13e-5 1.87e-4 3.38e-3 5.28e-2 1.13e3 1.54e6 4.64e24

Table A.7: Comparisons of discrepancy bounds across bases

N \ s 2 5 10
104 Sobol’ 4.74e-3 (4) 4.86 (5) 4.34e7 (5)

Faure 4.74e-3 (4) 2.49 (2) 5.72e4 (2)
Halton 7.28e-3 2.96 6.52e4
GNied 5.03e-3 (5) 4.86 (5) 1.93e5 (6)

105 Sobol’ 6.26e-4 (4) 9.82e-1 (5) 1.46e7 (5)
Faure 6.26e-4 (4) 5.08e-1 (2) 2.35e4 (2)
Halton 1.05e-3 6.39e-1 2.66e4
GNied 6.86e-4 (5) 9.82e-1 (5) 7.24e4 (6)

106 Sobol’ 7.96e-5 (4) 1.81e-1 (5) 4.28e6 (5)
Faure 7.96e-5 (4) 9.43e-2 (2) 8.04e3 (2)
Halton 1.43e-4 1.25e-1 9.15e3
GNied 8.95e-5 (5) 1.81e-1 (5) 2.30e4 (6)

107 Sobol’ 9.85e-6 (4) 3.12e-2 (5) 1.12e6 (5)
Faure 9.85e-6 (4) 1.63e-2 (2) 2.38e3 (2)
Halton 1.87e-5 2.27e-2 2.76e3
GNied 1.13e-5 (5) 3.12e-2 (5) 8.85e3 (6)
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