
An adaptive premium policy with a Bayesian motivation in the

classical risk model

David Landriault Christiane Lemieux
∗

Gordon E. Willmot

Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

Abstract

In this paper, we consider an extension of the classical risk model in which the premium rate
policy is adaptive to claims experience. We assume that the premium rate is reviewed each time
the surplus reaches a new descending ladder height. A choice between a finite number m of rates
is then made depending on the time elapsed between successive ladder heights. We derive explicit
expressions for the probability of ruin in this model, assuming claim sizes have a mixed Erlang
distribution. We then motivate further the idea behind this adaptive premium rate policy by using
a mixed Poisson process for the claims arrival, and propose a method to fix the parameters of the
policy in this setting. Finally, we discuss other applications of this method.
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1 Introduction

The main topic of this paper is to study models that consider an insurer’s surplus process and its
associated probability of ruin. More precisely, we are looking at ruin models of the form

U(t) = u+

∫ t

0
c(s)ds−

N(t)
∑

k=1

Xk,

where u ≥ 0 is the initial surplus, the stochastic process {N(t), t ≥ 0} denotes the number of claims
up to time t and the rv’s {Xk, k ≥ 1} represent the corresponding claim amounts. In the classical ruin
model, {N(t), t ≥ 0} is assumed to be a Poisson process with arrival rate λ > 0, the claim amounts
{Xk, k ≥ 1} are independent and identically distributed (iid) rv’s with probability density function
(pdf) p(x), cumulative distribution function (cdf) P (x) = 1− P̄ (x), and mean µ, and the process c(t)
is fixed to a constant c > 0.

In this paper, we consider two directions for generalization: (1) non-constant and non-deterministic
premium rates; (2) Bayesian setting for the parameters of the model. More precisely, we propose an
adaptive premium policy that chooses among a certain number of possible rates based on the behavior
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of the surplus, as opposed to strictly looking at the current surplus level. Instead, we review the
premium rate every time the surplus drops below its previously reached minimum, and then choose
a rate based on the time elapsed since the last drop. By assuming a Bayesian setup for the arrival
process, we can then link the selection of the new rate to an assessment of the most likely regions
for the (unknown) parameter Λ representing the arrival rate of the claim process. Thus the premium
income is in fact stochastic rather than deterministic, but it is convenient notationally to express it in
the form

∫ t
0 c(s)ds as there is no impact of this representation in the ensuing analysis.

In the past, there has been several studies in which the premium rate has been allowed to take different
values. One such line of study is to work with a surplus model in which the company pays a certain
level of dividends depending on the current surplus level. See for example [3, 6, 18] and the notes
and references in [4, p.221]. As for Bayesian models in risk theory, the use of mixed Poisson processes
to model the claim arrival process has been studied in detail in [12, 23, 25], among others. More
recently, in [2] the authors have considered Bayesian models for both the claim arrival process and the
claim amounts. The idea of connecting the Bayesian setting with some kind of adaptive policy for the
premium charged has been considered in [1, 20, 21] using a Bühlmann-type credibility set-up, and is
also discussed in [4, p.407]. In these previous papers, the premium policy adapts itself in such a way
that the rate is not restricted to specific values. As a result, exact expressions for the probability of
ruin cannot be derived and one must resort to numerical methods (as in [1, 21]) or asymptotic analyses
(as in [4, 20]). Another closely related idea is explored in [19], where additional contributions to the
surplus can be made at each control point, in addition to changing the premium rate. However, the
ensuing analysis (of finite-time ruin probabilities) is done based on the assumption that the rate will
remain fixed thereafter.

In this work, we propose to fix the premium rates ahead of time, as this has the clear advantage of
yielding a closed-form expression for the probability of ruin. Note that in practice, a company might
find it desirable from a marketing point of view to have premium rates that are known ahead of time,
and thus we believe our chosen set-up may be of practical interest.

The rest of this paper is organized as follows. In Section 2, we introduce our model when the parameters
for the inter-arrival times and claim amounts distribution are assumed to be known, and derive the
probability of ruin in this case. In Section 3, we use a Bayesian framework to introduce and compare
different strategies that can be used by the insurer to determine the premium rate. Two examples
including numerical results are presented in Section 4. Concluding remarks and ideas for future work
are provided in Section 5.

Before we proceed to Section 2, we wish to emphasize that the primary motivation for introducing our
new premium rate policy is as a mean to manage uncertainty on the parameters of the model. This
point of view will become clear in Section 3, when we introduce a Bayesian framework for our model
and propose a method to choose the parameters of the policy. In order to perform this type of analysis,
we first need to study the model when the parameters are fixed, i.e., we first need to condition on the
value taken by these parameters. This is what is done in Section 2. It should be noted, however, that
the results of Section 2 are also of interest on their own, in the following sense. Even if an insurer
has reasons to believe that there is no uncertainty about the model parameters, it is still of interest
to adopt a premium rate policy that can better weather the turbulence caused by a string of bad
(unlucky) experience. In that case, the trigger that forces the premium rate to increase is perceived
as an indication that bad claim experience has struck, rather than one suggesting that the parameters
have been misestimated.
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2 Model under fixed parameter setting

In this section, we assume that the arrival rate λ of the Poisson process {N(t), t ≥ 0} is fixed. We also
assume that the claim sizes are iid mixed Erlang with parameter β and mixing weights {qk}

∞
k=1. That

is, the pdf of a claim size rv has the form

p(x) =
∞
∑

k=1

qkeβ,k(x), x ≥ 0, (1)

where {qk}
∞
k=1 is a discrete probability measure and eβ,k(x) = βkxk−1e−βx/(k − 1)! is the Erlang pdf

with mean kβ−1 and variance kβ−2 (with corresponding cdf denoted Eβ,k(x)). Hence the mean is given
by µ =

∑∞
k=1 kqk/β. We fix m premium rates c1, . . . , cm where c1 > . . . > cm > 0 and m−1 thresholds

x1, . . . , xm−1, where 0 < x1 < . . . < xm−1, whose use will be explained shortly. Let τi be the time of
the ith (descending) ladder height of the surplus process. That is, for i ≥ 1 we have recursively

τi = inf
t≥τi−1

{U(t) < U(τi−1)},

beginning with τ0 = 0. Also, let Ti be the time elapsed between the (i − 1)th and ith ladder heights,
i.e., Ti = τi − τi−1. The m − 1 thresholds x1, . . . , xm−1 are then used to determine intervals of values
for Ti associated with a given premium rate. That is, the premium rate review policy is such that
if Ti ∈ (xj−1, xj ], then the premium rate is fixed to cj , for j = 1, . . . ,m − 1 and if Ti > xm−1, then
the premium rate is fixed to cm. Hence, together the 2m − 1 parameters (c1, . . . , cm, x1, . . . , xm−1)
characterize this deficit-adaptive premium policy.

Our goal is then to compute the probability of ruin ψi(u) for i = 1, . . . ,m, defined as

ψi(u) := ψ(u, ci, λ) = P (T <∞|c(0) = ci),

where T is the time of ruin for the surplus process {U(t), t ≥ 0}. In what follows, two joint distributions
will be particularly relevant to the analysis. The first one is the joint defective pdf of the time t and
size y of the first drop given a premium rate ci, denoted by ki(t, y), which is derived in, e.g., [17].
The behavior of these two variables influence the choice of premium rate in our model, which is why
we need their joint distribution. For mixed Erlang claim sizes and for any λ > 0, we have that
ki(t, y) = ki,1(t, y) + ki,2(t, y), where

ki,1(t, y) = λe−λt
∞
∑

k=1

qkeβ,k(cit+ y),

ki,2(t, y) = λe−λt
∞
∑

m=1

(λt)m

m!

∫ cit

0

x

cit

∞
∑

k=1

q∗mk eβ,k(cit− x)
∞
∑

r=1

qreβ,r(x+ y)dx.

Note that {q∗mk }∞k=1 are the mixing weights associated with the m-fold convolution of the pdf p(x), i.e.,

p∗m(x) =
∞
∑

k=1

q∗mk eβ,k(x),

where q∗1k = qk for each k ≥ 1, while for m > 1, we have

q∗mk =
k−1
∑

j=1

q
∗(m−1)
j qk−j
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if k ≥ m and q∗mk = 0 if k < m. See [9] for more details. As mentioned above, the expression for ki(t, y)
holds regardless of the value of λ > 0, and is therefore valid for both positive and negative security
loadings.

Next, we introduce hi,j(y), the defective pdf of the drop y leading to premium rate cj when the premium
rate effective just before the drop is ci. In order to ease the analysis involving this pdf, we make use
of a technique called Erlangization in risk theory [4, Chap. IX, Sect. 8],[5], and which was originally
proposed for American option valuation in [8]. In our case, this amounts to the replacement of the
threshold differences gj := xj − xj−1 by independent Erlang rv’s Gj with parameters (nj , (nj/gj)),
j = 1, . . . ,m − 1, where nj ∈ N. Note that by increasing nj , we can approximate the constant gj by
Gj with arbitrary precision. More precisely, we have that E(Gj) = gj and Var(Gj) = g2j /nj and thus
limnj→∞Var(Gj) = 0, which justifies how this model can be used to approximate a model in which
the thresholds are fixed. Furthermore, we assume without loss of generality that for j = 1, . . . ,m− 1,
gj can be written as gj = γjx for γj ∈ N and some x > 0. That is, we assume that the threshold
differences gj are all multiples of a common quantity x. Hence we can choose a positive integer n and
set nj = γjn so that the scale parameter of Gj is 1/ν, where ν := nj/gj = n/x and nj is a positive
integer for all j = 1, . . . ,m− 1.

We can now determine hi,j(y), assuming the thresholds xj have been replaced by Erlang rv’s as de-
scribed above. Observe that in order for a ladder height to cause the premium rate to switch to cj , the
time since the last drop must be between Dj−1 and Dj , where Dj = G1 + . . .+Gj for j = 1, . . . ,m− 1
and we define D0 = 0, Dm = ∞. Note that Dj is Erlang with parameters (ñj = n(γ1 + . . .+ γj), n/x)
for j = 1, . . . ,m, with the convention that ñ0 = 0 and ñm = ∞. Hence, we have

hi,j(y) =

∫ ∞

0
ki(t, y)Pr (Dj−1 < t ≤ Dj) dt

=
1

ν

ñj
∑

k=ñj−1+1

∫ ∞

0
ki(t, y)eν,k(t)dt. (2)

Before going further, we want to point out that the forthcoming analysis does not require that ci > λµ
for all i = 1, . . . ,m. Hence, in what follows we consider both cases, i.e., ci > λµ or ci ≤ λµ. Obviously,
if ci ≤ λµ for all i, then ruin occurs with certainty regardless of the initial premium rate, and the model
becomes uninteresting.

2.1 Renewal equation and Laplace transform

Suppose that U(0) = u and c(0) = ci. By first conditioning on the relevant characteristics of the first
drop in surplus, we have

ψi(u) =
m
∑

j=1

∫ u

0
ψj(u− y)hi,j(y)dy + vi(u),

where

vi(u) =

∫ ∞

u
hi(y)dy

and hi(y) =
∑m

j=1 hi,j(y) is the defective pdf of the drop y when the premium rate is fixed to ci. We
can then take the Laplace transform of ψi(u) for i = 1, . . . ,m. In what follows, we use the notation for
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an arbitrary function g(x),

g̃(z) =

∫ ∞

0
e−zxg(x)dx.

Hence for i = 1, . . . ,m we get

ψ̃i(z) =

m
∑

j=1

h̃i,j(z)ψ̃j(z) + ṽi(z).

In order to solve for ψ̃i(z), i = 1, . . . ,m, it is convenient to rewrite the above system of equations in
matrix form as

ψ̃(z) = H̃(z)ψ̃(z) + ṽ(z),

where the matrix H̃(z) has element h̃i,j(z) on its ith row and jth column, and

ψ̃(z) = (ψ̃1(z), . . . , ψ̃m(z))T

ṽ(z) = (ṽ1(z), . . . , ṽm(z))T .

Solving for ψ̃(z) we get
ψ̃(z) = [I− H̃(z)]−1ṽ(z), (3)

where I is the m×m identity matrix.

The components of the vector ṽ(z) are easy to obtain, as they do not involve the potential change
of premium rates, and are thus identical to the corresponding quantities in the classical model with a
fixed rate of ci. More precisely, we have

ṽi(z) =

∫ ∞

0
e−zu

∫ ∞

u
hi(y)dydu. (4)

Now, for a general claim size pdf p(x), the defective density hi(y) is given by [11]

hi(y) =
λ

ci

∫ ∞

0
e−ρixp(x+ y)dx,

where ρi is the largest real solution of Lundberg’s fundamental equation

λ− ciρ = λp̃(ρ). (5)

When the security loading is positive (i.e., ci > λµ), then ρi = 0 and hi(y) = λP̄ (y)/ci. Otherwise, ρi
is known to be the strictly positive root of (5), which is generally found numerically (or analytically,
in simple cases such as the exponential distribution).

When the claim size distribution is mixed Erlang of the form (1), we have

hi(y) =
λ

ci

∫ ∞

0
e−ρix

∞
∑

k=1

qkeβ,k(x+ y)dx

=
λ

βci

∞
∑

k=1

qk

∫ ∞

0
e−ρix

k
∑

s=1

eβ,s(y)eβ,k−s+1(x)dx

=
λ

βci

∞
∑

s=1

qs,ρieβ,s(y), (6)
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where

qs,ρi =
∞
∑

k=s

qk

(

β

β + ρi

)k−s+1

.

Note that the second equality above is obtained by choosing k = 0 in the easily established algebraic
identity

xkeβ,r(x+ y) =
1

βk+1

r
∑

s=1

(s+ k − 1)!

(s− 1)!
eβ,s+k(x)eβ,r−s+1(y). (7)

Substituting (6) into (4) yields

ṽi(z) =
λ

βci

∫ ∞

0
e−zu

∞
∑

s=1

∫ ∞

u
qs,ρieβ,s(y)dydu

=
λ

βci

∫ ∞

0
e−zu

∞
∑

s=1

1

β

s−1
∑

r=0

qs,ρieβ,r+1(u)du

=
λ

βci

∞
∑

s=1

s−1
∑

r=0

qs,ρi
β

(

β

β + z

)r+1

=
λ

β2ci

∞
∑

r=0

Q̄r,ρi

(

β

β + z

)r+1

,

where

Q̄r,ρi =
∞
∑

s=r+1

qs,ρi . (8)

Similarly, we find that

h̃i(z) =
λ

βci

∞
∑

r=1

qr,ρi

(

β

β + z

)r

. (9)

Remark 1 It is well known that in the classical model with a constant premium rate ci, the Laplace
transform of the probability of ruin ψcl(u, ci, λ) is given by

ψ̃cl(z, ci, λ) =
ṽi(z)

1− h̃i(z)
.

Hence we can rewrite (3) as
ψ̃(z) = [D(z)(I− H̃(z))]−1ψ̃cl(z), (10)

where D(z) is a diagonal matrix with its ith element given by (1 − h̃i(z))
−1, and ψ̃cl(z) is a vector

whose ith component is ψ̃cl(z, ci, λ), for i = 1, . . . ,m. Note that the sum of the elements on the ith row
of I − H̃(z) is precisely (1 − h̃i(z)), and thus (10) amounts to writing ψ̃i(z) as a weighted average of
the Laplace transforms of the classical probabilities of ruin, namely ψ̃cl(z, ci, λ), i = 1, . . . ,m.

Remark 2 From the Laplace transform (9) at z = 0, it follows that

ψcl,i(0) := ψcl(0, ci, λ) =
λ

βci

∞
∑

r=1

qr,ρi .
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It is not difficult to show that ψcl,i(0) = min(λµ/ci, 1). Indeed, we have that

ψcl,i(0) =
λ

βci

∞
∑

r=1

qr,ρi =
λ

βci

∞
∑

r=1

∞
∑

s=r

qs

(

β

β + ρi

)s−r+1

=
λ

βci

∞
∑

w=1

(

β

β + ρi

)w ∞
∑

s=w

qs

=
λ

βci

∞
∑

w=1

(

β

β + ρi

)w

Q̄w−1, (11)

where Q̄w := Q̄w,0. Now, if λ < ci/µ, then ρi = 0 and from (11) we get

ψcl,i(0) =
λ

βci

∞
∑

w=1

Q̄w−1 =
λµ

ci
,

since µ =
∑∞

w=1 Q̄w−1/β. Note that in this case, the corresponding density

hi(y) =
λ

βci

∞
∑

s=1

eβ,s(y)Q̄s−1

is consistent with the result stated in [24, pp.192–193]. On the other hand, if the security loading is
negative, i.e., λ ≥ ci/µ, then ρi > 0 and from Lundberg’s fundamental equation we have

λ− ciρi = λp̃(ρi) ⇔
1− p̃(ρi)

µρi
=

ci
λµ
. (12)

Now, in the mixed Erlang case, we have [22, Sect. 4]

1− p̃(ρi)

µρi
=

∞
∑

k=1

Q̄k−1

µβ

(

β

β + ρi

)k

. (13)

Therefore, combining (11), (12), and (13), when λ ≥ ci/µ we get ψcl,i(0) = 1. Note that the relation
ψcl,i(0) = min(λµ/ci, 1) is consistent with the fact that hi(y) is a defective pdf when λ < ci/µ, and is a
proper pdf otherwise.

2.2 Identifying the probability of ruin from its Laplace transform

In order to get an explicit expression for the probability of ruin ψi(u), we need to express ψ̃(z) in a form
amenable to inversion. The first step toward reaching this goal is to determine h̃i,j(z), which is given
in the following lemma. In the statement of this result, we use the notation fNB(·; r, p) (FNB(·; r, p))
for the pmf (cdf) of a Negative Binomial rv with mean r(1 − p)/p and variance r(1 − p)/p2, with the
convention that FNB(·; 0, ·) = 1 and FNB(·;∞, ·) = 0.

Lemma 1 We have that

h̃i,j(z) =
∞
∑

v=1

ζi,j,v

(

β

β + z

)v

,
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where

ζi,j,v =
λ

βci

∞
∑

m=0

∞
∑

k=0

∞
∑

s=1

q∗mk qv+s−1
s

k + s
fNB

(

m; k + s,
βci

λ+ βci

)

ηi,j(m+ k + s− 1),

and

ηi,j(s) = FNB

(

s; ñj−1,
ν

λ+ βci + ν

)

− FNB

(

s; ñj ,
ν

λ+ βci + ν

)

.

Proof. As seen in (2), hi,j(y) depends on the joint density ki(t, y), which is decomposed into two parts
as ki(t, y) = ki,1(t, y) + ki,2(t, y). Consequently, we also write h̃i,j(z) = h̃i,j,1(z) + h̃i,j,2(z), where

h̃i,j,r(z) =

∫ ∞

0
e−zy







1

ν

∫ ∞

0
ki,r(t, y)

ñj
∑

p=ñj−1+1

eν,p(t)dt







dy, for r = 1, 2.

Using (7) at k = 0, one finds

h̃i,j,1(z) =
1

ν

∫ ∞

0

∫ ∞

0
e−zyλe−λt

∞
∑

k=1

qkeβ,k(cit+ y)

ñj
∑

p=ñj−1+1

eν,p(t)dtdy

=
λ

βν

∞
∑

k=1

k
∑

l=1

qk

[
∫ ∞

0
e−zyeβ,k+1−l(y)dy

]
∫ ∞

0
e−λteβ,l(cit)

ñj
∑

p=ñj−1+1

eν,p(t)dt

=
λ

βν

∞
∑

k=1

k
∑

l=1

qk

(

β

β + z

)k+1−l ñj
∑

p=ñj−1+1

β(βci)
l−1νp

(λ+ βci + ν)l+p−1

(

l + p− 2

l − 1

)

=
λ

λ+ βci

∞
∑

k=1

k
∑

l=1

qk

(

β

β + z

)k+1−l( βci
λ+ βci

)l−1 λ+ βci
ν

ñj
∑

p=ñj−1+1

(λ+ βci)
l−1νp

(λ+ βci + ν)l+p−1

(

l + p− 2

l − 1

)

=
λ

λ+ βci

∞
∑

k=1

k
∑

l=1

qk

(

β

β + z

)k+1−l ( βci
λ+ βci

)l−1

ηi,j(l − 1),

which holds because

λ+ βci
ν

ñj
∑

p=ñj−1+1

fNB

(

s; p,
ν

λ+ βci + ν

)

=
λ+ βci

ν





ñj
∑

p=1

fNB

(

s; p,
ν

λ+ βci + ν

)

−

ñj−1
∑

p=1

fNB

(

s; p,
ν

λ+ βci + ν

)





=FNB

(

s; ñj−1,
ν

λ+ βci + ν

)

− FNB

(

s; ñj ,
ν

λ+ βci + ν

)

=ηi,j(s),

by definition of ηi,j(s). In the previous display, we used a result stated in [15, Prob. 6.34(c)] to go from
the second to the third line.
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Changing the order of summation and using the change of variable v = k − l + 1, we get

h̃i,j,1(z) =
∞
∑

v=1

ζi,j,v,1

(

β

β + z

)v

,

where

ζi,j,v,1 =
λ

βci

∞
∑

l=1

qv+l−1

(

βci
λ+ βci

)l

ηi,j(l − 1).

Moving to the second piece, we first need to compute the integral inside the definition of ki,2(t, y).
Using (7) at k = 1, we get

∞
∑

r=1

qr

∫ cit

0

x

cit
eβ,k(cit− x)eβ,r(x+ y)dx =

1

citβ2

∞
∑

r=1

qr

r
∑

s=1

seβ,r+1−s(y)

∫ cit

0
eβ,s+1(x)eβ,k(cit− x)dx

=
1

citβ2

∞
∑

r=1

qr

r
∑

s=1

seβ,r+1−s(y)eβ,k+1+s(cit)

=
1

β

∞
∑

r=1

qr

r
∑

s=1

s

k + s
eβ,r+1−s(y)eβ,k+s(cit)

=
1

β

∞
∑

s=1

∞
∑

v=1

qv+s−1
s

k + s
eβ,v(y)eβ,k+s(cit).

Hence, we have that

h̃i,j,2(z) =
λ

βν

∫ ∞

0

∫ ∞

0
e−λte−zy

∞
∑

m=1

(λt)m

m!

∞
∑

k=1

q∗mk

∞
∑

s=1

∞
∑

v=1

qv+s−1
s

k + s
eβ,v(y)eβ,k+s(cit)

ñj
∑

p=ñj−1+1

eν,p(t)dtdy

=
λ

βν

∞
∑

m=1

∞
∑

k=1

q∗mk λm
∞
∑

s=1

∞
∑

v=1

qv+s−1
s

k + s

(

β

β + z

)v ñj
∑

p=ñj−1+1

∫ ∞

0
e−λt t

m

m!
eβ,k+s(cit)eν,p(t)dt

=
λ

ciβ

∞
∑

m=1

∞
∑

k=1

∞
∑

s=1

∞
∑

v=1

q∗mk qv+s−1
s

k + s

(

β

β + z

)v λmβk+sck+s
i

(λ+ βci)m+k+s

(

m+ k + s− 1

m

)

×
λ+ βci

ν

ñj
∑

p=ñj−1+1

(

ν

λ+ βci + ν

)p( λ+ βci
λ+ βci + ν

)m+k+s−1(m+ k + s+ p− 2

p− 1

)

=
λ

ciβ

∞
∑

m=1

∞
∑

k=1

∞
∑

s=1

∞
∑

v=1

q∗mk qv+s−1
s

k + s

(

β

β + z

)v

fNB

(

m; k + s,
βci

λ+ βci

)

ηi,j(m+ k + s− 1).

Thus

h̃i,j,2(z) =
∞
∑

v=1

ζi,j,v,2

(

β

β + z

)v

,

where

ζi,j,v,2 =
λ

βci

∞
∑

m=1

∞
∑

k=1

∞
∑

s=1

q∗mk qv+s−1
s

k + s
fNB

(

m; k + s,
βci

λ+ βci

)

ηi,j(m+ k + s− 1).

9



It is easy to see that

ζi,j,v,1 + ζi,j,v,2 =
λ

βci

∞
∑

m=0

∞
∑

k=0

∞
∑

s=1

q∗mk qv+s−1
s

k + s
fNB

(

m; k + s,
βci

λ+ βci

)

ηi,j(m+ k + s− 1) = ζi,j,v.

That is, the sum of ζi,j,v,1 and ζi,j,v,2 is the same as ζi,j,v,2 but with the summation over m and k
starting at 0 instead of 1, and with the convention that q∗0k = 1k=0. The result easily follows. �

Now that we have computed h̃i,j(z), we would like to replace the Erlang rv’s Gj by the threshold values
that they approximate. As pointed out before, this can be achieved by letting each of the parameters
nj = γjn used in the definition of the rv’s Gj become arbitrarily large. Conveniently, this parameter nj
appears in h̃i,j(z) only in its term ηi,j(s). We recall the well-known result that when we take the limit
as n goes to ∞ of a Negative Binomial with parameters (n, p), where p is of the form p = 1/(1 + φ/n),
then it converges to a Poisson rv with mean φ (see, e.g., [14]). Hence, we have

lim
n→∞

ηi,j(s) = FP (s, x(λ+ βci)Γj−1)− FP (s, x(λ+ βci)Γj), (14)

where FP (·, λ) is the cdf of a Poisson rv with mean λ, and Γj =
∑j

l=1 γl (with the convention Γ0 =
0,Γm = ∞, FP (s, 0) = 1, and FP (s,∞) = 0). Note that since FP (n, λ) is decreasing in λ, we have
that limn→∞ ηi,j(s) > 0 for all i, j = 1, . . . ,m, which in turn implies that the ζi,j,v are all positive.
From now on, we assume ηi,j(s) is calculated by taking the limit n → ∞, and is thus given by (14).
Note also that

∑m
j=1 ηi,j(s) = 1, which means we can interpret ηi,·(s) as a probability distribution over

{1, . . . ,m} for each i = 1, . . . ,m.

Going back to our goal of finding ψ̃(z) and then inverting it, we will use the identity

(I−A)−1 =
∞
∑

i=0

Ai,

which holds when the spectral radius of A is less than one. In our case, the matrix A is given by H(z),
and to get a better insight of its properties, we rewrite each entry h̃ij(z) of H(z) as

h̃i,j(z) = Cij

(

β

β + z

)

,

where Cij(z) =
∑∞

l=1 ζi,j,lz
l is a defective pgf. More precisely, it is easy to see that ζi,j,l > 0, and we

also have
∑∞

l=1 ζi,j,l < 1. This is because
∑m

j=1 h̃i,j(z) = h̃i(z) for all i = 1, . . . ,m, and in turn h̃i(z) is
of the form

h̃i(z) =
∞
∑

r=1

λqr,ρi
βci

(

β

β + z

)r

,

where, as discussed in Remark 2,
∑∞

r=1
λ
βci
qr,ρi = ψcl,i(0) = min(λµ/ci, 1).

Putting all this together, we have that

m
∑

j=1

|h̃i,j(z)| <
∞
∑

r=1

λ

βci
qr,ρi ≤ 1

10



for any z > 0, and thus we conclude that the spectral radius of H(z) is less than 1 [13], which means
we can write

ψ̃(z) =

(

∞
∑

l=0

Hl(z)

)

ṽ(z)

for any z > 0. We then write the (i, j)th entry of Hl(z) as C∗l
i,j

(

β
β+z

)

, where

C∗l
i,j(z) =

∞
∑

k=0

ζ∗li,j,kz
k

and the ζ∗li,j,k’s for l ≥ 0 are defined as

ζ∗0i,j,k =1i=j,k=0,

ζ∗1i,j,k =ζi,j,k, k ≥ 1

ζ∗li,j,k =
m
∑

r=1

k−1
∑

v=1

ζ
∗(l−1)
i,r,v ζr,j,k−v, l > 1, k ≥ 1. (15)

Note that ζ∗li,j,0 = 0 for all l ≥ 1. Hence,

ψ̃i(z) =
∞
∑

l=0

m
∑

j=1

∞
∑

k=0

ζ∗li,j,k

(

β

β + z

)k λ

β2cj

∞
∑

r=0

Q̄r,ρi

(

β

β + z

)r+1

=
∞
∑

l=0

m
∑

j=1

∞
∑

k=0

∞
∑

r=0

λ

β2cj
ζ∗li,j,kQ̄r,ρi

(

β

β + z

)k+r+1

=
∞
∑

w=0

(

β

β + z

)w+1 ∞
∑

l=0

m
∑

j=1

w
∑

r=0

λ

β2cj
Q̄r,ρiζ

∗l
i,j,w−r. (16)

Equation (16) immediately leads to the main result of this paper, which is stated next.

Theorem 1 For a deficit-adaptive premium policy characterized by parameters (c1, . . . , cm, x1, . . . , xm−1),
the probability of ruin for an initial premium rate ci is given by

ψi(u) =
∞
∑

w=0

κi,weβ,w+1(u), i = 1, . . . ,m,

where

κi,w =
∞
∑

l=0

m
∑

j=1

w
∑

r=0

λ

β2cj
Q̄r,ρiζ

∗l
i,j,w−r, w ≥ 0

with Q̄r,ρi and ζ
∗l
i,j,k are given by (8) and (15), respectively.

In the following example, we use Lemma 1 to derive an expression for the probability of ruin when claim
sizes are exponentially distributed and the adaptive policy involves only two premium rates (m = 2).

11



Example 1 In the exponential case, we have that q1 = 1 and qr = 0 for all r > 1 in the mixed Erlang
representation. This implies that q∗mk is 1 if k = m and 0 otherwise. Therefore,

ζi,j,v =
λ

βci

∞
∑

m=0

∞
∑

k=0

∞
∑

s=1

q∗mk qv+s−1
s

k + s
fNB

(

m; k + s,
βci

λ+ βci

)

ηi,j(m+ k + s− 1)

is non-zero only when v = 1, s = 1, and k = m and is then given by

ζi,j,1 =
λ

λ+ βci

∞
∑

m=0

1

m+ 1

(

2m

m

)(

λβci
(λ+ βci)2

)m

ηi,j(2m).

Hence,

h̃i,j(z) = ζi,j,1
β

β + z
, i, j = 1, 2.

Since our matrix H̃(z) is only 2 × 2 and each term is of the form βζi,j,1/(β + z), it is fairly easy to
directly compute (I− H̃(z))−1 in (3). More precisely, we get

(I− H̃(z))−1 =
β + z

pH(β + z)

[

β + z − βζ2,2,1 βζ1,2,1
βζ2,1,1 β + z − βζ1,1,1

]

,

where pH(β + z) = (β + z − βζ1,1,1)(β + z − βζ2,2,1) − β2ζ1,2,1ζ2,1,1 is the characteristic polynomial of
H, where hi,j = βζi,j,1, i, j = 1, 2.

Next, we need to determine ṽi(z). Recall that

ṽi(z) =
λ

β2ci

∞
∑

r=0

Q̄r,ρi

(

β

β + z

)r+1

,

where

Q̄r,ρi =

∞
∑

s=r+1

∞
∑

k=s

qk

(

β

β + ρi

)k−s+1

.

In the exponential case, it is easy to see that when ci ≥ λ/β, then ρi = λ/ci − β. Thus we have that

Q̄0,ρi =
β

β + ρi
=

{

1 if λ < βci
βci
λ if λ ≥ βci,

and Q̄l,ρi = 0 for all l ≥ 1. Thus

ṽi(z) =
min(λ/βci, 1)

β + z
.

Hence, we get

ψ̃2(z) =
βζ2,1,1min

(

λ
βc1
, 1
)

+ (β + z − βζ1,1,1)min
(

λ
βc2
, 1
)

(β + z − φ1)(β + z − φ2)
,

where φ1 and φ2 are the roots of pH(β + z), which we assume are distinct. These roots also happen
to be the eigenvalues of the matrix H. (Note that the more general infinite series approach stated in
Theorem 1—based on the powers of H(z)—does not require us to identify eigenvalues and hence make
assumptions as to their distinctness, as is done here. In fact, the approach used in this example can

12



only be used when the claim size distribution is a mixed Erlang of finite (ideally small) order. We use
it here as it allows us to provide a more compact representation for the probability of ruin, as we will
see shortly.)

Using partial fractions, it follows that

ψ̃2(z) =
a

β + z − φ1
+

b

β + z − φ2

where

a =
βζ2,1,1min

(

λ
βc1
, 1
)

+ (φ1 − βζ1,1,1)min
(

λ
βc2
, 1
)

φ1 − φ2

b =
βζ2,1,1

λ
βc1

+ (φ2 − βζ1,1,1)
λ

βc2

φ2 − φ1
= min

(

λ

βc2
, 1

)

− a.

Finally, one obtains
ψ2(u) = ae−u(β−φ1) + be−u(β−φ2). (17)

Similar steps can be used to determine an expression for ψ1(u).

Remark 3 Had we proceeded as in Theorem 1 to get an expression for ψi(u), we would have obtained a
different (equal) representation given by an infinite sum of Erlang terms with common scale parameter
β. Here we get an expression (17) that is a linear combination of two exponential terms with different
scale parameters. This comes from the fact that a mixed Erlang with different scale parameters can
also be represented using a common scale parameter [26].

3 Bayesian framework and strategies for the insurer

The goal of this section is to show that by using a Bayesian framework together with the adaptive
premium policy described in the previous section, the insurer is able to achieve a sounder risk manage-
ment approach than by fixing the premium rate to a certain constant. Before we describe this idea in
detail, we first review two possible ways of fixing the premium rate.

Strategy 1: The Classical Approach

In the classical setting, the arrival rate of the Poisson process is assumed to be fixed and known. The
insurer determines the premium rate so that a certain probability of ruin is achieved. More precisely,
for λ = λ0, the premium rate c0 is defined as

c0 = inf{c ≥ 0 : ψcl(u, c, λ0) ≤ ψ0}.

for a given ruin probability threshold ψ0 < 1. For instance, when the claims are exponentially dis-
tributed with mean β−1, c0 is the unique solution to

λ

c0β
e−u(β−λ/c0) = ψ0.

Strategy 2: Fixed premium rate and mixed Poisson process

13



In practice, the arrival rate λ of the claim arrival Poisson process is usually not known with certainty.
Hence fixing c to achieve a certain threshold ψ0 for a fixed λ0 can be highly misleading. As λ ≥ λ0
increases, the probability of ruin increases to reach 1 when λ = c0/µ. In the second approach, we
propose to still consider a constant premium rate policy, but acknowledge the uncertainty about λ
when determining an appropriate premium rate.

More precisely, we now assume {Nt, t ≥ 0} is a mixed Poisson process, as in [12, 23, 25]. That is, given
Λ = λ, {Nt, t ≥ 0} is an ordinary Poisson process with rate λ and Λ has a certain pdf that we denote
by dB(λ). As discussed in [23], the probability of ruin is given by

ψb(u, c) :=

∫ c/µ

0
ψcl(u, c, λ)dB(λ) +

(

1−B

(

c

µ

))

,

or equivalently
ψb(u, c) = EΛ(ψcl(u, c,Λ)).

This highlights the fact that in this setting, we think of the classical probability of ruin ψcl(u, c,Λ) as
a random variable rather than a fixed quantity.

For exponential claim sizes and when the mixing rv Λ is Erlang distributed, the probability of ruin
ψb(u, c) can be obtained explicitly, as illustrated in the following example.

Example 2 For exponential claim sizes and Λ ∼ Erlang(k, a), we have [12, pp.224–225]

ψb(u, c) =

∫ βc

0

λ

βc
e−u(β−λ/c)ea,k(λ)dλ+ (1− Ea,k(βc))

=ke−uβ a
k

βc
(a− u/c)−(k+1)Ea−u/c,k+1(βc) + (1− Ea,k(βc)).

With this model, we can then pursue a strategy similar to the one used in the classical setting. Namely,
we find the value cb,0 such that

cb,0 = inf{c ≥ 0 : ψb(u, c) ≤ ψ0}.

If we compare these two strategies, we have the following result.

Proposition 1 With exponential claim sizes, if λ0 = E(Λ) then c0 ≤ cb,0 and ψb(u, c0) ≥ ψ0.

Proof. We first note that

ψcl(u, c, λ) =

{ λ
cβ e

−u(β−λ/c) if λ < cβ

1 otherwise

is a convex function of λ. Hence by Jensen’s inequality, we have that

ψcl(u, c, λ0) = ψcl(u, c,E(Λ)) ≤ E(ψcl(u, c,Λ)) = ψb(u, c).

Since ψcl(u, c, λ) is decreasing with c, we must necessarily have c0 ≤ cb,0. �
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What this result means is that if, in Strategy 1, we make the assumption that λ is equal to its mean
under the model used in Strategy 2, then we will be choosing a premium rate that is smaller than cb,0.
Thus if the reality is that we do not know what the true value of λ is but are fixing the premium rate
as if λ = E(Λ), our actual probability of ruin is greater than ψ0.

Strategy 3: Deficit-adaptive premium rate and mixed Poisson process

Continuing with the mixed Poisson process presented in Strategy 2, we now want to incorporate our
deficit-adaptive premium policy, as described in Section 2 and in the special case where there are m = 2
different premium levels and the claim sizes are exponentially distributed. The Bayesian framework
from which the above mixed Poisson process arises provides a nice motivation for this type of premium
policy. For instance, one interpretation is to think that c2 (c2 < c1) represents our initial “guess” as
to what the rate should be, and that it is associated with the assumption that Λ is “not too large”.
For example, one may choose a threshold λ0 and think of c2 as an appropriate premium rate when
Λ ≤ λ0. However, given that the true value of Λ may be larger than λ0, we propose to observe the
time-to-drop variable Ti: a relatively small Ti can be viewed as an indication that our belief about Λ
might be wrong, and that we should switch to a higher rate c1 that is more conservative in the context.

Now we need to formalize this into a strategy to choose the three parameters (c1, c2, x1) that characterize
our adaptive premium policy. In addition to a target probability of ruin ψ0, we also require an error level
ǫ0 that gives the maximum allowed probability of having a “bad” risk, conditioned on having observed
the case T > x1 which leads to choose the lower premium rate. We then propose the following strategy:

1. Determine c2 = inf{c ≥ 0 : ψcl(u, c, λ0) ≤ ψ0}.

2. Determine x1 = inf{x ≥ 0 : P (Λ > λ0|Ti > x) ≤ ǫ0} for a surplus process based on the
premium rate c2.

3. Determine c1 = inf{c ≥ 0 : EΛ(ψ2(u,Λ)) ≤ ψ0}, where ψ2(u, λ) is the probability of ruin for our
deficit-adaptive premium policy based on the parameters (c, c2, x1) given an ordinary Poisson
process with rate λ (and as established in Section 2).

For the second step, one needs to compute

P (Λ > λ0|Ti > x1) =

∫∞

λ0

∫∞

x1
g(t, λ)dtdB(λ)

∫∞

0

∫∞

x1
g(t, λ)dtdB(λ)

,

where g(t, λ) is the (defective) density of the time until the first drop below the surplus for an ordinary
Poisson process with rate λ. As shown in [16] (see also [7, 10]), for exponential claim sizes and premium
rate c, the defective density g(t, λ) is given by

g(t, λ) = e−β(u+ct)λe−λt +
∞
∑

n=2

nu+ ct

n(n− 1)
eβ,n−1(u+ ct)

λntn−1e−λt

(n− 1)!
.

As for the third step, since λ appears in a non-straightforward way in the expression ψ2(u, λ), the
expectation EΛ(ψ2(u,Λ)) must be computed numerically, and is then fed into another numerical routine
that determines the value of c1 = inf{c ≥ 0 : EΛ(ψ2(u,Λ)) ≤ ψ0} (this is implemented in Matlab in
the experiments of Section 4).

Comparison of Strategies 2 and 3
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There is no obvious and easy way to compare Strategy 2 and Strategy 3. One possible approach would
be to compute some measure of expected average premium paid (over time) for Strategy 3 and compare
it with the rate c from Strategy 2. However, at first sight, computing this appears to be a difficult
problem. An easier alternative is to derive an upper bound for

E

∫ T

0

c(t)

T
dt,

where T is the time to ruin and c(0) = c2. In the above equation, the expectation is taken over the
claim sizes, inter-arrival times, and also over the parameter Λ. A naive upper bound can be obtained
using the following argument: if the surplus never drops below u, then we will always stay at the rate
c2. If it is not the case and we do drop at some point, then the premium rate is no larger than c1.
Hence using the fact that

P (no drop below u is ever observed) = 1− ψcl(0, c2, λ),

we get

E

∫ T

0

c(t)

T
dt ≤ c̄, where c̄ = c2 + (c1 − c2)EΛ (ψcl(0, c2,Λ)) .

4 Examples

We now illustrate the above strategies with two simple examples.

Example 3 For this first example, we use the parameters β = 1, u = 5, λ0 = 2, Λ ∼ Erlang(2, 1),
ψ0 = 0.05, ǫ0 = 0.05.

For Strategy 1, we find that c = 3.78, while for Strategy 2, we have c = 6.23. For Strategy 3, we find
x1 = 1.9721 and c1 = 7.06 (note that by definition, c2 is fixed to the value 3.78 used for Strategy 1).

To compare the three strategies, we plot the probability of ruin in each case as a function of λ, as
shown in Figure 1. For Strategy 3, we plot ψ2(u), that is, we plot the probability of ruin when the
initial premium rate is fixed to 3.78. The upper bound on the average premium paid is c̄ = 5.40, which
is smaller than the rate c = 6.23 from Strategy 2. However, as we can see on the RHS of Figure 3,
Strategy 3 provides a lower ruin probability than Strategy 2 as λ gets large. We also show the probability
of ruin obtained with c = c̄, which appears to be larger than the one corresponding to Strategy 3 for
most values of λ.

It is worth pointing out that in this figure, when λ becomes larger than the threshold βc2 = 3.78 at which
the security loading corresponding to c2 becomes negative, the function ψ2(u) starts increasing much
more slowly, in a way that violates convexity. In fact, it is precisely this behaviour that allows ψ2(u) to
become smaller than the probability of ruin corresponding to Strategy 2. Consequently it reaches 1 at a
larger value of λ, corresponding to βc1 = 7.06. The intuition is that when λ > βc2, our premium rate
policy can “detect” that the initial premium rate c2 is too small, and will correctly choose to charge the
higher rate of c1 in that case.

Example 4 In this second example, we use the parameters β = 1, u = 7, λ0 = 2, Λ ∼ Erlang(2, 1),
ψ0 = 0.01, ǫ0 = 0.05.
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Figure 1: Probability of ruin as a function of λ for Example 3.

For Strategy 1, we find that c = 4.40, while for Strategy 2, we have c = 8.39. For Strategy 3, we find
x1 = 1.6301 and c1 = 9.40, and the upper bound on the average premium paid is c̄ = 6.58, which is
significantly smaller than the rate c = 8.39 from Strategy 2. We also see on Figure 4 that the probability
of ruin for Strategy 3 appears to be dominated by that from Strategy 2 as λ gets large. As in the previous
example, the probability of ruin obtained with c = c̄ appears to be larger than the one corresponding to
Strategy 3 for most values of λ.

5 Conclusion

In this paper, we have proposed a deficit-adaptive premium policy that chooses between a finite number
of premium rates in an adaptive way, using the time elapsed between two consecutive drops below the
minimum surplus as a decision variable. We have provided exact probabilities of ruin in the case of a
Poisson arrival process and mixed Erlang claim sizes. We have then proposed a strategy for choosing
the parameters describing the adaptive premium rate policy and compared it with two other strategies
based on fixed premium rates. For the two examples considered, the proposed strategy appears to be
superior. We remark that the Bayesian framework discussed in Section 3 could easily be modified to
include uncertainty about the parameters of the claim size distribution rather than the arrival rate λ
of the claim arrival process. This is because the time elapsed between consecutive drops depends on
those parameters as well.

For future work, we would like to extend our results to a more general claim arrival process and find
a better bound on the expected average rate paid with our proposed strategy, in order to have a more
precise way of evaluating the usefulness of our approach.
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Figure 2: Probability of ruin as a function of λ for Example 4.
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