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Abstract

The term low-discrepancy sequences is widely used to refer to s-dimensional
sequences X for which the bound D∗(N,X) ≤ cs(logN)s +O((logN)s−1) is
satisfied, where D∗ denotes the usual star discrepancy. In this paper, we
study such bounds for (t, s)-sequences and a newer class of low-discrepancy
sequences called (t, e, s)-sequences, introduced recently by Tezuka [16]. In
the first case, by using a combinatorial argument coupled with a careful
worst-case analysis, we are able to improve the discrepancy bounds from [5]
for (t, s)-sequences. In the second case, an adaptation of the same pair of
arguments allows us to improve the asymptotic behaviour of the bounds from
[16] in the case of even bases.

Keywords: Discrepancy bounds, Atanassov’s method, (t, s)-sequences.

1. Introduction

Low-discrepancy sequences are designed to overcome the lack of unifor-
mity that is inherent in random sampling. Their superiority over random
sampling is often assessed by examining the behaviour of their so-called
star discrepancy D∗(N,X), where X denotes a given sequence of points
in Is := [0, 1)s, and N is the number of points considered. The goal is
then to show that for some carefully designed constructions X, the function
D∗(N,X)/N converges to 0 with N faster than random sampling. However,
exact calculations of this discrepancy measure are very difficult to perform.
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For that reason, over the years the star discrepancy has instead been studied
by providing bounds for it and studying their behaviour. More precisely, the
idea is to establish bounds of the form

D∗(N,X) ≤ cs(logN)s +O((logN)s−1), (1)

where cs is a constant independent of N . A sequence X for which such a
bound can be established is usually referred to as a low-discrepancy sequence.
The first constructions that were shown to satisfy these bounds were those
proposed by Halton [7], Sobol’ [14] and Faure [3]. The two latter belong
to the general family of (t, s)-sequences in base b, which was introduced by
Niederreiter in [10].

In the above mentioned work, formulas for the constant cs were also estab-
lished. But over the last few years, there has been a number of improvements
to these previously known bounds. The most relevant to our work are those
provided by Atanassov [1], Kritzer [9], Faure and Lemieux [5], Faure and
Kritzer [4], and Tezuka [16]. More precisely, Atanassov’s result was very sig-
nificant, as it provided an improvement by a factor of s! for Halton sequences.
Then, quite recently, Kritzer [9] improved the constants for (t, s)-sequences
in the case s ≥ 2 by a factor 1/2 for an odd base and b/(2(b+ 1)) for an even
base b ≥ 4. In parallel, Faure and Lemieux [5] obtained an improvement
by a factor of ((b − 1)/b)s in the case of even bases b, still in the case of
(t, s)-sequences in base b, but using the approach proposed by Atanassov in
[1] for Halton sequences. Shortly after that, Faure and Kritzer improved this
result by a constant b2/2(b2 − 1) for even bases [4]. Finally, and still using
Atanassov’s method, Tezuka was able to provide bounds with an improved
constant cs for a family of constructions that he calls (t, e, s)-sequences [16].
Note that the proofs in [3], [9] and [10] use an argument introduced by Sobol’
[14] that is based on the study of the (t,m, s)-nets and involves a double re-
cursion on m and s while [4], still based on the study of the (t,m, s)-nets,
needs only a recursion on s.

In this paper, we propose a variant to Atanassov’s method for deriving
discrepancy bounds. It consists in replacing one of the key arguments based
on diophantine geometry by an exact counting argument, together with a
careful worst-case analysis of signed digits used to represent a given volume
over which the local discrepancy is measured. This variant allows us to get
tighter bounds for (t, s)-sequences in base b, compared to the recent bounds
from [5] and [4], especially in higher dimensions. In addition, and still using
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the same pair of arguments, we are able to provide a smaller constant cs than
in [16] in the case of (t, e, s)-sequences in base b.

This paper is organized as follows: in Section 2 we provide background
definitions, review known discrepancy bounds, and provide some of the key
lemmas used in [5]. The next two sections are devoted to the respective
cases of (t, s)-sequences and (t, e, s)-sequences in base b, and in each section
we provide our new bounds and comment on the improvement they provide
over other known bounds.

2. Basic definitions and some key lemmas

We start with a review of the notion of discrepancy, which will be used
throughout the paper. Various types exist, but here we only consider the
so-called extreme discrepancy, which corresponds to the worst case error in
the domain of complexity of multivariate problems. Assume we have a point
set PN = {X1, . . . , XN} ⊆ Is := [0, 1]s and denote by J (resp J ∗) the set of
intervals J of Is of the form J =

∏s
j=1[yj, zj), where 0 ≤ yj < zj ≤ 1 (resp.

J =
∏s

j=1[0, zj)). Then the discrepancy function of PN on such an interval
J is the difference

E(J ;N) = A(J ;PN)−NV (J),

where A(J ;PN) = #{n; 1 ≤ n ≤ N,Xn ∈ J} is the number of points in PN

that fall in the subinterval J , and V (J) =
∏s

j=1(zj − yj) is the volume of J .
Then, the star (extreme) discrepancy D∗ and the (extreme) discrepancy

D of PN are defined by

D∗(PN) = sup
J∈J ∗

|E(J ;N)| and D(PN) = sup
J∈J
|E(J ;N)|.

It is well known thatD∗(PN) ≤ D(PN) ≤ 2sD∗(PN). For an infinite sequence
X, we denote by D(N,X) and D∗(N,X) the discrepancies of its first N
points. Note that several authors multiply by a 1/N factor when defining
the above quantities.

Moving on to (t, s)-sequences, this concept was introduced by Niederreiter
[10] to give a general framework for various constructions using generating
matrices applied to van der Corput sequences, including Sobol’ sequences
[14], Faure sequences [3], and later a more general class of constructions
referred to as Niederreiter-Xing sequences [12].



A variant of Atanassov’s method 4

Definition 1. Given an integer b ≥ 2, a b-adic elementary interval in base
b in Is is an interval of the form

∏s
i=1[aib

−di , (ai + 1)b−di) where ai, di are
nonnegative integers with 0 ≤ ai < bdi for 1 ≤ i ≤ s.
Given integers t,m with 0 ≤ t ≤ m, a (t,m, s)-net in base b is an s-
dimensional set with bm points such that any elementary interval in base
b with volume bt−m contains exactly bt points of the set.
An s-dimensional sequence (Xn)n≥1 in Is is a (t, s)-sequence if the subset
{Xn : kbm < n ≤ (k + 1)bm} is a (t,m, s)-net in base b for all integers k ≥ 0
and m ≥ t.

In order to give sense to new important constructions, Tezuka [15] and
then Niederreiter and Xing [11, 12] introduced a new definition using the
so-called truncation operator that we now define.

Truncation : Let x =
∑∞

i=1 xib
−i be a b-adic expansion of x ∈ [0, 1], with

the possibility that xi = b − 1 for all but finitely many i. For every integer
m ≥ 1, we define the m-truncation of x by [x]b,m =

∑m
i=1 xib

−i (depending
on x via its expansion). In the case where X ∈ Is, the notation [X]b,m means
an m-truncation is applied to each coordinate of X.

Definition 2. An s-dimensional sequence (Xn)n≥1, with prescribed b-adic
expansions for each coordinate, is a (t, s)-sequence (in the broad sense) if
the subset {[Xn]b,m; kbm < n ≤ (k + 1)bm} is a (t,m, s)-net in base b for all
integers k ≥ 0 and m ≥ t.

The former (t, s)-sequences are now called (t, s)-sequences in the narrow
sense and the others just (t, s)-sequences (Niederreiter-Xing [12], Definition
2 and Remark 1); in this paper, we will sometimes use intentionally the
expression in the broad sense to emphasize the difference.

Going back to the discrepancy bounds of the form (1) that were men-
tioned in the introduction, low-discrepancy sequences X that satisfy such
inequalities are often compared to each other by calculating the constant cs
in (1), and studying its behaviour as a function of the dimension s. Here is
a summary of the sequence of improvements for these constants cs that have
been obtained in the literature:

cNi
s =


bt

s

(
b−1
2 log b

)s
for s = 2, s = 3 & b = 2, s = 4 & b = 2

bt

s!
b−1
2b b

2
c

(
b b
2
c

log b

)s
in all other cases

(from [10]);
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cKr
s =


bt

s!
1
2

(
b−1
2 log b

)s
if b is odd

bt

s!
b−1

2(b+1)

(
b

2 log b

)s
if b is even

(from [9]);

cFL
s =

bt

s!

(
b− 1

2 log b

)s

if b is an even base (from [5]);

cFK
s =

bt

s!

b2

2(b2 − 1)

(
b− 1

2 log b

)s

if b is an even base (from [4]).

Hence cKr
s for an odd base and cFK

s for an even base are currently the
best constants cs for general (t, s)-sequences.

In the next section, we provide a new bound for (t, s)-sequences with
associated constant cs equal to cFL

s , but the other terms in the bounds differ
from what was obtained in [5]. In moderate to large dimensions and for
reasonable values of N , our new bound is smaller than the ones from [5] and
[4], as illustrated through numerical results in [6].

In what follows, PN(X) denotes the set containing the first N points of
a sequence X and until the end, we set n := blogN/ log bc. Also, several
results in this section apply to the truncated version of the (t, s)-sequence
under consideration, a concept that we now define.

Definition 3. Let X be a (t, s)-sequence in base b, with its kth term defined

as Xk = (X
(1)
k , . . . , X

(s)
k ), for k ≥ 1. Let

[PN(X)] = {([X(1)
k ]b,n+1, . . . , [X

(s)
k ]b,n+1), 1 ≤ k ≤ N}.

We refer to [PN(X)] as the first N points of a truncated version of the se-
quence X.

We now recall three lemmas from [5], which will be useful in the forth-
coming two sections. The first result would be trivial without the truncation
operator.

Lemma 1. Let X be a (t, s)-sequence in base b and J =
∏s

i=1[bib
−di , cib

−di)
with integers bi, ci satisfying 0 ≤ bi < ci ≤ bdi. Then for N ≥ bd1 · · · bds,
A(J ; [PN(X)]) is a nondecreasing function of N .

The next lemma directly follows from the definition of (t, s)-sequences,
but it requires some adaptation due to the truncation operator.
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Lemma 2. Let X be a (t, s)-sequence and let J =
∏s

i=1[bib
−di , cib

−di) where
bi, ci are integers satisfying 0 ≤ bi < ci ≤ bdi . Then, for integers N ≥ 1 and
u ≥ 1 we have

A(J ; [PN(X)]) = ubt(c1 − b1) · · · (cs − bs) if N = ubtbd1 · · · bds ,

|E(J ; [PN(X)])| ≤ bt
s∏

i=1

(ci − bi) for all N ≥ 1 and

A(J ; [PN(X)]) ≤ bt
s∏

i=1

(ci − bi) if N < btbd1 · · · bds .

Definition 4. Consider an interval J ⊆ Is. We call a signed splitting of J
any collection of intervals J1, . . . , Jn and respective signs ε1, . . . , εn equal to
±1, such that for any (finitely) additive function ν on the intervals in Is, we
have ν(J) =

∑n
i=1 εiν(Ji).

The following lemma, slightly reformulated, is taken directly from [1,
Lemma 3.5] (see also [2, Lemma 3.40]), and as mentioned above, was also
used in [5].

Lemma 3. Let J =
∏s

i=1[0, z
(i)) be an s-dimensional interval and let ni ≥ 0

be given integers for 1 ≤ i ≤ s. Set z
(i)
0 = 0, z

(i)
ni+1 = z(i) and, if ni ≥ 1, let

z
(i)
j ∈ [0, 1] be arbitrary given numbers for 1 ≤ j ≤ ni. Then the collection

of intervals
∏s

i=1[min(z
(i)
ji
, z

(i)
ji+1),max(z

(i)
ji
, z

(i)
ji+1)), with signs ε(j1, . . . , js) =∏s

i=1 sgn(z
(i)
ji+1 − z

(i)
ji

), 0 ≤ ji ≤ ni, is a signed splitting of J .

3. Discrepancy bound for (t, s)-sequences

In this section, we provide a sharper bound than the one in [5] for (t, s)-
sequences (in the broad sense). We first prove two new lemmas that will
replace [5, Lemma 3] in the new proof of [5, Theorems 2 and 3].

Lemma 4. Let k ≥ 1 and n ≥ 0 be two integers. The number of nonnegative
integer solutions of the inequality 0 ≤ x1 + · · ·+ xk ≤ n is equal to

(
n+k
k

)
.

Proof. For the sake of completeness, we give an elementary proof of this well
known combinatorial property:

First we consider the equation x1 + · · · + xk = n over positive integers
and show that the number of solutions is

(
n−1
k−1

)
(with the convention

(
c
l

)
= 0
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if l > c). Indeed, a solution (x1, . . . , xk) is characterized by the (k− 1) sums
si = si−1 + xi (1 ≤ i ≤ k − 1), xk being given by n − sk−1, these sums
belonging to the set {1, 2, . . . , n− 1}. Hence, the number of solutions is the
number of combinations of order (k − 1) for a set of (n− 1) elements.

Then, we show that the same equation in nonnegative integers has
(
n+k−1
k−1

)
solutions by using new unknowns yi = xi+1, which amounts to the preceding
equation with the right hand side equal to n+ k.

Finally, summing up the number of solutions for each possible value m =
0, . . . , n, we obtain the desired result thanks to a classical relation on binomial
coefficients.

Lemma 5. Let n ≥ 0, k ≥ 1 be integers. For integers j ≥ 0 and 1 ≤ i ≤ k,
let c

(i)
j ≥ 0 be given numbers such that c

(i)
2h+1 ≤ c and c

(i)
2h ≤ c′ for any h ≥ 0,

where c and c′ are some fixed nonnegative numbers. Then

∑
(j1,...,jk)∈S

k∏
i=1

c
(i)
ji
≤ 1

k!

(
c+ c′

2

)k k∏
l=1

(n+ 2l), (2)

where S = {(j1, . . . , jk) ; ji ≥ 0 for all i and 0 ≤ j1 + · · ·+ jk ≤ n}.

Proof. Let N(l, k, n) be the number of k-tuples (j1, . . . , jk) in S that have
exactly l even terms and k − l odd terms. To determine this number, we
first choose which ji are odd and which ones are even (there are

(
k
l

)
possible

configurations). Then, for a given configuration, the even terms have the
form ji = 2hi and the odd ones have the form ji = 2hi + 1, with 0 ≤ hi ≤
b(n− (k− l))/2c. Hence, the number of k-tuples (j1, . . . , jk) ∈ S of the form
ji = 2hi for l terms and ji = 2hi + 1 for (k− l) terms is equal to the number
of k-tuples (h1, . . . , hk) satisfying 0 ≤ h1 + · · · + hk ≤ b(n − (k − l))/2c.
According to Lemma 4, this number is equal to

(bn−k+l
2
c+k

k

)
, so that

N(l, k, n) =

(
k

l

)(
bn−k+l

2
c+ k

k

)
.

Now, our assumption on the coefficients c
(i)
ji

implies the LHS of (2) is bounded
by

k∑
l=0

N(l, k, n)c′lc(k−l) =
k∑

l=0

(
k

l

)
c′lc(k−l)

(
bn−k+l

2
c+ k

k

)
, (3)
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where we use the convention that 00 = 1 (when exactly one of c or c′ is zero).

This can in turn be bounded by
∑k

l=0

(
k
l

)
c′lc(k−l)

(bn
2
c+k

k

)
since l ≤ k. Finally,

thanks to the binomial formula, the left hand side of (2) is bounded by

1

k!
(c+ c′)

k
k∏

l=1

(n
2

+ l
)

=
1

k!

(
c+ c′

2

)k k∏
l=1

(n+ 2l).

We can now prove the main result of this section.

Theorem 1. For any (t, s)-sequence X (in the broad sense) in any base b
and for any N ≥ 1 we have

D∗(N,X) ≤ bt

s!

(
b− 1

2

)s s∏
k=1

(
logN

log b
+ γbk

)
(4)

+ bt
s−1∑
k=0

b

k!

(
b− 1

2

)k k∏
l=1

(
logN

log b
+ γbl

)
,

where γb = (2− b (mod 2)).

Proof. As in [3] and [1], we will use special numeration systems in base b —
using signed digits aj bounded by bb/2c — to expand reals in [0, 1). That is,
we write z ∈ [0, 1) as

z =
∞∑
j=0

ajb
−j

{
with |aj| ≤ b−1

2
if b is odd

with |aj| ≤ b
2

and |aj|+ |aj+1| ≤ b− 1 if b is even.
(5)

The existence and uniqueness of such expansions are obtained by induction,
see [1, p. 21–22] or [17, p. 12–13] where more details are given. For later
use, it is worth pointing out that the expansion starts at b0 and as a result,
it is easy to see that a0 is either 0 or 1.

We now begin the proof: Let (z(1), . . . , z(s)) ∈ [0, 1)s and consider b-

adic expansions z(i) =
∑∞

j=0 a
(i)
j b
−j according to the numeration systems

(5) above. We are going to define a signed splitting associated to J =∏s
i=1[0, z

(i)) using these b-adic expansions.

Recall that n = blogN/ log bc and define z
(i)
0 = 0 and z

(i)
n+2 = z(i). Then,

consider the numbers z
(i)
k =

∑k−1
j=0 a

(i)
j b
−j for k = 1, . . . , n + 1. Applying
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Lemma 3 with ni = n+ 1 for all 1 ≤ i ≤ s, we split up J using the numbers
z
(i)
j , with 0 ≤ j ≤ n+ 2, and obtain the signed splitting

I(j) :=
s∏

i=1

[min(z
(i)
ji
, z

(i)
ji+1),max(z

(i)
ji
, z

(i)
ji+1)), 0 ≤ ji ≤ n+ 1, (6)

with signs ε(j) =
∏s

i=1 sgn(z
(i)
ji+1 − z

(i)
ji

), where j = (j1, . . . , js).

Since V and A( . ; [PN(X)]) are both additive, A(J ; [PN(X)])−NV (J) =
E(J ; [PN(X)]) may be expanded as

E(J ; [PN(X)]) =
n+1∑
j1=0

· · ·
n+1∑
js=0

ε(j)E(I(j); [PN(X)]) =: Σ1 + Σ2, (7)

where we rearrange the terms so that in Σ1 we put the terms such that
bj1 · · · bjs ≤ N (i.e. such that j ∈ S, see Lemma 5 with k = s) and in Σ2 the
rest. Notice that in Σ1, the j′is are small, so the corresponding I(j) is bigger.
Hence, Σ1 deals with the coarser part of J whereas Σ2 deals with the finer
part of J . Notice also that if ji = n + 1 for some i, then bj1 · · · bjs > N , so
that s-tuples j for which some ji = n + 1 are not taken into account in Σ1.
Hence, according to the definition of intervals I(j), Lemma 2 applies to all
intervals I(j) with j ∈ Σ1 and gives:

|E(I(j); [PN(X)])| ≤ bt
s∏

i=1

| z(i)ji+1 − z
(i)
ji
| bji = bt

s∏
i=1

| a(i)ji
|. (8)

To prove Theorem 1, we are going to bound |Σ1| by the first term in (4)
and |Σ2| by the second term. First, we deal with Σ1. Using (8), we need to
prove ∑

(j1,...,js)∈S

s∏
i=1

|a(i)ji
| ≤ 1

s!

(
b− 1

2

)s s∏
k=1

(
logN

log b
+ γbk

)
. (9)

• Let us first consider the simpler case where b is odd. Since from expan-
sion (5) we have |a(i)ji

| ≤ (b− 1)/2, we get
∏s

i=1 |a
(i)
ji
| ≤

(
b−1
2

)s
. Hence

∑
(j1,...,js)∈S

s∏
i=1

|a(i)ji
| ≤

(
b− 1

2

)s ∑
(j1,...,js)∈S

1 =

(
b− 1

2

)s(
n+ s

s

)
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thanks to Lemma 4 (in the case where k = s) and the result follows since(
n+s
s

)
= (n+ s) . . . (n+ 1)/s!.

• The case where b is even needs a more careful analysis. Consider a term
in the sum on the left-hand side of (9),

∏s
i=1 |a

(i)
ji
|:

First, for a single coordinate i, we have an mi-tuple (a
(i)
0 , . . . , a

(i)
mi) with mi

depending on the condition 0 ≤ j1 + · · · + js ≤ n (for instance, if jl = 0 for
all l 6= i then mi = n). We argue that any configuration for the coefficients

a
(i)
l gives a sum in (9) lower than the sum obtained for the worst case con-

figuration occurring when, for all coordinates i, |a(i)l | = b/2 for all even l —

in which case, from (5), |a(i)l | < b/2 for odd l. Indeed, let r be the smallest

even index such that |a(i)r | 6= b/2 and let g > r be the smallest index such

that |a(i)g | = b/2 (if |a(i)l | < b/2 for all indices, clearly we have a configura-

tion leading to a sum lower than the worst case sum). Then, switching a
(i)
g

with a
(i)
r we get a new configuration in which there is one more even index l

such that |a(i)l | = b/2. Repeating this procedure, we arrive at a conf igura-

tion ( b
2
, a

(i)
1 ,

b
2
, . . . , a

(i)
2e−1,

b
2
, a

(i)
2e+1 . . . , a

(i)
mi) in which |a(i)l | < b/2 for all l > 2e,

where e is some integer. Hence any configuration still gives a bound lower
than the one to be deduced from the announced worst case configuration.
Now, the same process applied to each coordinate leads to a worst-case con-
figuration of the digits a

(i)
ji

to which Lemma 5 can be applied directly, with

c
(i)
j = |a(i)l |, c = (b − 2)/2, c′ = b/2 and k = s. Hence we obtain the desired

formula (9).

The way we deal with Σ2 is similar to what is done in the proof of Theorem
2 in [5]. However, recall that the signed splitting of J used here is such that

z(i) = z
(i)
n+2 instead of having z(i) = z

(i)
n+1 as in [5]. This allows us to use

Lemma 2 to bound the discrepancy on intervals I(j) as long as ji ≤ n for all
i, a condition that is met when dealing with Σ1. So for Σ2, we split the sum
over {j; bj1 . . . bjs > N} into subsets B0, . . . , Bs−1 where B0 = {j; bj1 > N}
and Bk = {j; bj1 . . . bjk ≤ N, bj1 . . . bjk+1 > N} for k = 1, . . . , s − 1. We
note that B0 6= ∅ since we must have j1 = n + 1. In order to evaluate its
contribution to Σ2, we proceed as follows. Let r ≥ 1 be the largest integer
such that br−1 ≤ N , so that r = n + 1. Hence, j ∈ B0 if and only if j1 = r,
j2, . . . , js being arbitrary in [0, n+ 1]. Recall that J =

∏s
i=1[0, z

(i)), and set

J ′ = [0, z(1)r )×
s∏

i=2

[0, z(i)) and K = [min(z(1)r , z(1)),max(z(1)r , z(1)))×
s∏

i=2

[0, z(i)).
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If z(1) > z
(1)
r , then we have J = J ′ ∪K, and otherwise we have J ′ = J ∪K

(disjoint unions), so that

sgn(z(1) − z(1)r )E(K; [PN(X)]) = E(J ; [PN(X)])− E(J ′; [PN(X)]).

Therefore, we have ±E(K; [PN(X)]) =
∑

j∈B0
ε(j)E(I(j); [PN(X)]) and so,

E(K; [PN(X)]) is the contribution of B0 to Σ2. Now since br−1z
(1)
r ∈ Z and

| z(1) − z(1)r | = |
∞∑
j=r

a
(k+1)
j b−j| ≤

⌊
b

2

⌋
1

br
b

b− 1
≤ 1

br−1
,

we get [min(z
(1)
r , z(1)),max(z

(1)
r , z(1))) ⊆ [m1b

−r,m2b
−r) for some non-negative

integers m1,m2 satisfying 0 ≤ m2 −m1 ≤ b. Hence, K ⊂ [m1b
−r,m2b

−r) ×
[0, 1)s−2 and so, using Lemma 2 (observe that N < br ≤ bt+r) we have
A(K; [PN(X)]) ≤ bt(m2−m1) ≤ bt+1. But we also have NV (K) ≤ bt+r(m2−
m1)b

−r ≤ bt+1 which in the end gives the bound |E(K; [PN(X)])| ≤ bt+1 for
the contribution of B0.

We can then deal with the sets Bk for 1 ≤ k ≤ s− 1 in a similar fashion
to what we did for B0 (see [5, p. 72] for complete details), so that we get

|Σ2| ≤ bt
s−1∑
k=0

b
∑

{(j1,...,jk);bj1 ...bjk≤N}

k∏
i=1

|a(i)ji
|. (10)

Finally, we bound the a
(i)
ji

’s using Lemma 4 if b is odd and Lemma 5 is b
is even. Hence, we get the bound

|Σ2| ≤ bt
s−1∑
k=0

b

k!

(
b− 1

2

)k k∏
l=1

(
logN

log b
+ γbl

)
, (11)

which in turn gives the last term in the bound (4) in Theorem 1.

Remark 1. As alluded to in the above proof, we wish to point out that there
is an inaccuracy in [5] in how the signed splitting is defined. As is done here,

it should use [z
(i)
n+1, z

(i)) as the last interval for coordinate i, rather than using

[z
(i)
n , z(i)), so that when dealing with Σ1, Lemma 2 can be applied to intervals

I(j) such that one of the ji’s is n and the others are 0. This inaccuracy led
to the conclusion in [5] that the set B0 is empty, and consequently the sum
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corresponding to (10) and (11) starts at k = 1 in [5] instead of starting at 0.
Hence the term b · bt is wrongly omitted in the bound given in [5, Theorem
2]. Notice that the same correction must be applied to the last part of the
bound (13) of Theorem 3 in [5].

Remark 2. Comparing Lemmas 4–5 and [5, Lemma 3]. In both cases,

the problem is to bound
∑

(j1,...,jk)∈S
∏k

i=1 c
(i)
ji

=
∑

0≤j1+···+jk≤n
∏k

i=1 c
(i)
ji

, with

c
(i)
0 ≤ 1 and 0 ≤ c

(i)
ji
≤ c (in the case where c = c′ in Lemma 5).

• Lemma 4 immediately gives the bound ck
(
n+k
k

)
= ck(n+k) . . . (n+1)/k!,

without any condition on c
(i)
0 .

• Lemma 3 in [5] consists in studying subsets of integers ji 6= 0:
For 0 ≤ m ≤ k, thanks to the analog of [1, Lemma 3.2], we have

∑
ji1+···+jim≤n

m∏
l=1

c
(il)
jil
≤ cm

∑
ji1+···+jim≤n

1 ≤ cmnm/m!.

Then, summing over all possible subsets, we obtain the bound

∑
(j1,...,jk)∈S

k∏
i=1

c
(i)
ji
≤

k∑
m=0

(
k

m

)
(cn)m

m!
≤

k∑
m=0

(
k

m

)
(cn)mkk−m

k!
=

1

k!
(cn+ k)k.

In this proof, we took into account the fact that c
(i)
ji
≤ 1 when ji = 0 and we

used the inequality k! ≤ kk−mm!.

• The first assertion in the proof of Lemma 4 gives another way to get
the result of [5, Lemma 3], instead of using the analog of [1, Lemma 3.2]:
First, adding the solutions of equations with second members from m to n,
we have∑

m≤ji1+···+jim≤n

m∏
l=1

c
(il)
jil
≤ cm

((
m− 1

m− 1

)
+ · · ·+

(
n− 1

m− 1

))
= cm

(
n

m

)
.

Then, summing over all possible subsets, we get

∑
(j1,...,jk)∈S

k∏
i=1

c
(i)
ji
≤

k∑
m=0

cm
(
n

m

)(
k

m

)
≤

k∑
m=0

(
k

m

)
(cn)mkk−m

k!
=

1

k!
(cn+ k)k.
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Here, we bounded
(
n
m

)
by nm

m!
and 1

m!
by kk−m

k!
.

• Finally, in the case where c ≥ 1, the method of [5, Lemma 3] together
with the first assertion in the proof of Lemma 4 also gives the bound directly
obtained by Lemma 4. Instead of using bounds for

(
n
m

)
and nm

m!
, we bound

cm by ck:

k∑
m=0

cm
(
n

m

)(
k

m

)
≤ ck

k∑
m=0

(
n

m

)(
k

m

)
= ck

k∑
m=0

(
n

m

)(
k

k −m

)
= ck

(
n+ k

k

)
,

the last equality being the Vandermonde’s formula.

• In conclusion, we see that in both cases the bounds follow from the
same inequality

∑
(j1,...,jk)∈S

k∏
i=1

c
(i)
ji
≤

k∑
m=0

cm
(
n

m

)(
k

m

)
,

in which we can choose to bound the binomial coefficient
(
n
m

)
by nmkk−m/k!

or to bound cm by ck (when c ≥ 1). In both cases, these estimations seem
loose but each of them has its interest: for small bases, especially 2 and 3,
ck
(
n+k
k

)
is better but for large bases, especially b ≥ s in large dimensions,

(cn + k)k/k! is preferable. Of course, it is still possible to keep the bound∑k
m=0 c

m
(
n
m

)(
k
m

)
in the statement of Theorem 1, at the expense of simplicity

of the formulation.

4. New bound for (t, e, s)-sequences

The notion of (t, e, s)-sequences was recently introduced by Tezuka [16].
It has already had important consequences for new constructions of low-
discrepancy sequences [8, 13]. This new family of sequences is defined as
follows.

Definition 5. Given integers t,m with 0 ≤ t ≤ m and an s-tuple of positive
integers e = (e1, . . . , es), a (t,m, e, s)-net in base b is an s-dimensional point
set with bm points such that any elementary interval J =

∏s
i=1[aib

−di , (ai +
1)b−di) with 0 ≤ ai < bdi and ei|di for 1 ≤ i ≤ s, and V (J) = bt−m, contains
exactly bt points of the set. (Notice that these conditions imply that m − t
is of the form j1e1 + · · ·+ jses).
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The definition of (t, e, s)-sequences is the same as for (t, s)-sequences, with
(t,m, e, s)-nets in place of the usual (t,m, s)-nets. We also note that (t, s)-
sequences are (t, e, s)-sequences with e = (1, . . . , 1).

Note that a stronger version of this definition has been further introduced
by Hofer and Niederreiter in [8] with the condition V (J) ≥ bt−m (and bmV (J)
points in J instead of bt) in order to avoid problems with propagation rules
and other reasons.

In [16], Tezuka was able to sharpen discrepancy bounds for generalized
Niederreiter sequences (as defined in [15, Section 3] and where b is a prime
power) by characterizing them as (0, e, s)-sequences, where ei is the degree of
the irreducible polynomial over Fb used in the definition of the ith generating
matrix of the sequence [16, Theorem 1]. This is a first important application
of the new notion of (t, e, s)-sequences (see [16, Corollary 1] and our Corollary
1).

Now, concerning the main result in [16], it is quite remarkable that
Atanassov’s techniques also apply to (t, e, s)-sequences: using an adapta-
tion of these techniques, Tezuka was able to get the following bound for the
discrepancy of an arbitrary (t, e, s)-sequence X in base b when N > bt (see
his Theorem 2 in [16]):

D∗(N,X) ≤ bt

s!

s∏
i=1

(
bbei/2c
ei

(
logN

log b
− t
)

+ s

)
+

s−1∑
k=0

bt+ek+1

k!

k∏
i=1

(
bbei/2c
ei

(
logN

log b
− t
)

+ k

)
.

Not surprinsingly, using our own adaptation of Atanassov’s techniques
presented in the lemmas of the previous section, we can derive a bound with
better constant cs for even b, as stated in the following result:

Theorem 2. Let b ≥ 2 be an arbitrary integer. The star discrepancy of the
first N ≥ 1 points of a (t, e, s)-sequence X in base b satisfies

D∗(N,X) ≤ bt

s!

s∏
i=1

(
bei − 1

2ei

(
logN

log b
+

s∑
i=1

ei

)
+ s

)
+

s−1∑
k=0

bt+ek+1

k!

k∏
i=1

(
bei − 1

2ei

(
logN

log b
+

k∑
i=1

ei

)
+ k

)
. (12)
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To prove Theorem 2, we introduce two new lemmas corresponding to
Lemmas 4 and 5 in the previous section.

Lemma 6. Let k, n, and e1, . . . , ek be positive integers. Then the number of
positive integer solutions of the inequality e1x1 + · · · + ekxk ≤ n is bounded
by 1

k!

∏k
i=1

n
ei

.

The proof is the same as for the key lemma on diophantine geometry in
the paper of Atanassov [1, Lemma 3.2].

Lemma 7. Let k, n, and e1, . . . , ek be positive integers. For integers j ≥ 0
and 1 ≤ i ≤ k, let c

(i)
j ≥ 0 be given numbers such that c

(i)
0 ≤ 1, c

(i)
2h+1 ≤ fi

for any h ≥ 0 and c
(i)
2h ≤ f ′i for any h ≥ 1, where fi and f ′i are some fixed

nonnegative numbers. Then

∑
(j1,...,jk)∈S′

k∏
i=1

c
(i)
ji
≤ 1

k!

k∏
i=1

(
fi + f ′i
ei

⌊
n+

∑k
i=1 ei

2

⌋
+ k

)
, (13)

where S ′ = {(j1, . . . , jk) ; ji ≥ 0 for all i and e1j1 + · · ·+ ekjk ≤ n}.

Proof. In the same manner as in [1, Lemma 3.3], [5, Lemma 3] and [16,
Lemma 2], we split up the sum on the left-hand side (LHS) of (13) along
subsets u of {1, . . . , k} with ji > 0 if i ∈ u and ji = 0 if i /∈ u, but we add
a new splitting according to the parity of the ji’s. To this end, we consider
subsets L of u with i ∈ L if ji is even and i ∈ u\L if ji is odd:

∑
(j1,...,jk)∈S′

k∏
i=1

c
(i)
ji

=
∑

u⊆{1,...,k}

|u|∑
l=0

∑
L⊆u,|L|=l

∑
j∈S′u

jieven ⇔i∈L

k∏
i=1

c
(i)
ji
,

where S ′u = {(j1, . . . , jk) ∈ S ′ ; ei1ji1 + · · ·+ei|u|ji|u| ≤ n and ji = 0⇔ i /∈ u}.
According to the hypothesis on the coefficients c

(i)
ji

, we obtain

∑
(j1,...,jk)∈S′

k∏
i=1

c
(i)
ji
≤

∑
u⊆{1,...,k}

|u|∑
l=0

∑
L⊆u,|L|=l

∑
j∈S′u

jieven ⇔i∈L

∏
i∈L

f ′i
∏

i∈u\L

fi


≤

∑
u⊆{1,...,k}

|u|∑
l=0

∑
L⊆u,|L|=l

N(u,L, k, n)
∏
i∈L

f ′i
∏

i∈u\L

fi,
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where N(u,L, k, n) is the cardinality of the set {j ∈ S ′u ; ji even ⇔ i ∈ L}.
In order to bound N(u,L, k, n), we use a similar idea as in the proof of

Lemma 5: for i ∈ L we write ji = 2hi while for i ∈ u\L we write ji = 2hi−1.
Since ji > 0 if and only if i ∈ u, we also have hi > 0 for i ∈ u. We then note
that ∑

i∈L

2hiei +
∑
i∈u\L

(2hi − 1)ei ≤ n

if and only if ∑
i∈u

hiei ≤

⌊
n+

∑
i∈u\L ei

2

⌋
.

Hence, applying Lemma 6 we get

N(u,L, k, n) ≤ 1

|u|!
∏
i∈u

bn+
∑

i∈u ei
2

c
ei

for all u ⊆ {1, . . . , k} and L ⊆ u. In addition, we note that

|u|∑
l=0

∑
L⊆u,|L|=l

∏
i∈L

fi
∏

i∈u\L

f ′i =
∏
i∈u

(fi + f ′i).

Putting this all together, we get

LHS of (13) ≤
∑

u⊆{1,...,k}

1

|u|!
∏
i∈u

bn+
∑

i∈u ei
2

c
ei

∏
i∈u

(fi + f ′i)

≤
∑

u⊆{1,...,k}

kk−|u|

k!

∏
i∈u

bn+
∑

i∈u ei
2

c(fi + f ′i)

ei

≤ 1

k!

k∏
i=1

(
bn+

∑k
i=1 ei
2

c(fi + f ′i)

ei
+ k

)
.

This gives the desired bound (13).

Before we proceed to the proof of Theorem 2, notice that our bound in
that theorem is valid for all N ≥ 1, rather than for N > bt as in [16]. As a
tradeoff, the term logN/ log b− t found in the bound from [16] is replaced by
logN/ log b+

∑
ei in our case. This difference arises in part because we choose
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to split the bound in two sums Σ1,Σ2 according to whether or not (e, j) :=∑s
i=1 eiji is smaller than n rather than n−t (where n = blogN/ log bc). Note

that this difference has an impact on the value of the bound for finite N , but
not on its asymptotic behavior.

We are now ready to prove Theorem 2.

Proof. The proof starts similarly as our proof of Theorem 1, except that
expansions for coordinate i are done in base bei rather than b. More precisely,
we let z = (z1, . . . , zs), where

zi =
∞∑
j=0

a
(i)
j b
−eij

{
with |aj| ≤ bei−1

2
if b is odd

with |aj| ≤ bei
2

and |aj|+ |aj+1| ≤ bei − 1 if b is even.

(14)

Let ni = bn/eic + 1 and define z
(i)
0 = 0 and z

(i)
ni+1 = z(i). We then set z

(i)
k =∑k−1

j=0 a
(i)
j b
−eij, apply Lemma 3 to get a signed splitting of J =

∏s
i=1[0, z

(i))
as in the proof of Theorem 1, and write

E(J ; [PN(X)]) =

n1∑
j1=0

. . .
ns∑

js=0

ε(j)E(I(j); [PN(X)]) = Σ1 + Σ2, (15)

where Σ1 is the sum over all j such that (e, j) ≤ n and Σ2 is the sum over
the remaining terms. Using Lemma 1 from [16] (which is the analog of our
Lemma 2, but where the interval J is split according to the bei rather than
just b), we get

|E(I(j); [PN(X)])| ≤ bt
s∏

i=1

|a(i)ji
|. (16)

Based on this, we can write

|Σ1| ≤
∑

j:(e,j)≤n

|E(I(j); [PN(X)])| ≤ bt
∑

j:(e,j)≤n

s∏
i=1

|a(i)ji
|

and then apply Lemma 7 to Σ1 with k = s, n = blogN/ log bc, c(i)ji
= |a(i)ji

|,
fi = bbei/2c and f ′i = b(bei − 1)/2c. When b is odd, the application of
Lemma 7 is straightforward with fi = f ′i . When b is even, fi = bei/2 and
f ′i = (bei − 2)/2, and we repeat the argumentation developed in the proof



A variant of Atanassov’s method 18

of Theorem 1 to bound by the worst case configuration occurring in the
corresponding situation of (t, e, s)-sequences. This gives

|Σ1| ≤
1

s!

s∏
i=1

(
bn+

∑s
i=1 ei
2

c(bei − 1)

ei
+ s

)
,

which corresponds to the first term in the bound (12).
The second term corresponds to the sum Σ2 for the remaining vectors j,

which is calculated similarly as in the proof of Theorem 1 (and of Theorem 2
from [5]), but here again with the base b replaced by bei for coordinate i, as
done also in [16]. The steps we need to outline in more detail are the same as
those for the proof of Theorem 1, starting from (note the similarity with the
second-to-last inequality in the proof of Theorem 1, with the main difference
being that b is replaced by bek+1)

|Σ2| ≤
s−1∑
k=0

bt+ek+1

∑
j=(j1,...,jk):(e,j)≤n

k∏
i=1

|a(i)ji
|

≤
s−1∑
k=0

bt+ek+1

k!

k∏
i=1

(
bei − 1

ei

⌊
n+

∑k
i=1 ei

2

⌋
+ k

)
,

where the second inequality is obtained by applying Lemma 7. The result
follows easily.

We note that Sobol’ and Faure sequences, as well as the more general
family of digital (t, s)-sequences introduced in [10], are all examples of gener-
alized Niederreiter sequences [15], which are proven to be (0, e, s)-sequences
by Tezuka [16, Theorem 1]. This implies that as a corollary of Theorem 2,
we have:

Corollary 1. For a generalized Niederreiter sequence in base b, where b is a
prime power, we have that (1) holds with

cs = cFL
s :=

1

s!

s∏
i=1

bei − 1

2ei log b
.

We can compare this with the corresponding constant

cTez
s =

1

s!

s∏
i=1

bbei/2c
ei log b
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from [16]. When b is odd, the two constants are equal, but in an even base,
we have cFL

s < cTez
s . In Table 4, we provide a numerical comparison of the

two constants when b = 2 for some values of s. In these calculations, the
integers ei are the degrees of the irreducible polynomials over the finite field
F2 in non-decreasing order.

Table 1: Comparison of the constants cFL
s and cTez

s for generalized Niederreiter sequences
in base 2

Values of s
1 2 3 4 5 6 7 8

cTez
s 1.44 1.04 5.00e-1 2.41e-1 9.26e-2 4.45e-2 1.84e-2 6.62e-3
cFL
s 7.21e-1 2.60e-1 9.38e-2 3.95e-2 1.33e-2 5.99e-3 2.32e-3 7.83e-4

9 10 15 20 25 30 40 50

cTez
s 3.40e-3 1.57e-3 1.52e-5 2.20e-7 2.74e-9 6.40e-11 3.32e-15 2.18e-18
cFL
s 3.89e-4 1.74e-4 1.46e-6 1.96e-8 4.58e-10 5.14e-12 2.46e-16 1.55e-19
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