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In light of unrestricted use of first-generation penicillins, these antibiotics are now superseded by their semi-
synthetic counterparts for augmented antibiosis. Traditional penicillin chemistry involves the use of hazard-
ous chemicals and harsh reaction conditions for the production of semisynthetic derivatives and, therefore, is
being displaced by the biosynthetic platform using enzymatic transformations. Penicillin G acylase (PGA) is
one of the most relevant and widely used biocatalysts for the industrial production of β-lactam semisynthetic
antibiotics. Accordingly, considerable genetic and biochemical engineering strategies have been devoted to-
wards PGA applications. This article provides a state-of-the-art review in recent biotechnological advances
associated with PGA, particularly in the production technologies with an emphasis on using the Escherichia
coli expression platform.

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Penicillin is the first β-lactam antibiotic (βLA) to be discovered and,
approximately 80 years later, is still one of the most common antibi-
otics in terms of annual bulk production (~3 × 107 kg/year), annual
sales (~$15 billion), and market share (~65% of the total antibiotic
market) (Chandel et al., 2008; Parmar et al., 2000; Peñalva et al.,
1998). However, the unfettered use of first-generation penicillins
(i.e. penicillin G and penicillin V) in the second half of the 20th century
led to the development of many penicillin-resistant pathogens. Conse-
quently, only a small fraction of penicillins produced today are used
for therapeutic purposes, whereas the majority are used as raw mate-
rials for the production of semisynthetic penicillins (SSPs) (e.g. amoxi-
cillin and ampicillin) to further augment the potency of penicillins and
broaden their antimicrobial range (Bush, 2007; Parmar et al., 2000). In
comparison to their first-generation counterparts, SSPs are engineered
to confer novel properties, such as an improved side effect profile,
lower toxicity, and superior pharmacokinetics (Chandel et al., 2008;
Parmar et al., 2000; Peñalva et al., 1998). SSPs are commonly produced
in a two-step fashion (Fig. 1). First, bulk penicillins are transformed into
6-aminopenicillianic acid (6-APA) either chemically or enzymatically.
Next, 6-APA is further processed into SSPs enzymatically by condensa-
tion with the amide or ester of D-(−)-4-hydroxyphenylglycine and
D-(−)-phenylglycine derivatives, respectively (Bruggink et al., 1998).
On the other hand, upon expanding the 5-membered thiazolidine ring
(which is fused to the β-lactam ring) to a 6-membered thiazine ring,
penicillins can be converted to cephalosporin G and then another in-
termediate of 7-amino-desacetoxycephalonsporic acid (7-ADCA) for
subsequent enzymatic production of semisynthetic cephalosporins
(SSCs). Alternatively, SSCs can be produced using the raw material of
cephalosporin C via another intermediate of 7-aminocephalosporanic
acid (7-ACA) (Bruggink et al., 1998). A schematic overview of chemical
and enzymatic reactions for the production of a selection of semisyn-
thetic β-lactam antibiotics is presented in Fig. 1.

Given that 6-APA is the key intermediate for the production of SSPs,
its production technology and availability directly impact the stability of
theworld's antibiotic markets. Accordingly, tomeet the demand of bulk
SSPs, continual effort has been made to improve the scalability, eco-
nomics, and efficacy of the 6-APA production platform. Traditionally,
6-APAwas produced through a laborious yet effective chemical process,
in which penicillins were hydrolyzed through the use of hazardous
chemicals and solvents, such as trimethylchlorosilane, phosphorous
pentachloride, and dichloromethane, at unusually low temperatures
(Bruggink et al., 1998). Presently, nearly all bulk penicillins are
enzymatically transformed into 6-APA using penicillin acylase (E.C.
3.5.1.11, also known as either penicillin amidase or penicillin amidohy-
drolase). While the feasibility of this enzymatic approach for the produc-
tion of 6-APA has been known since the 1950s, it was not economically
favorable, primarily due to low conversion yields and high costs of
biocatalysts, until its full-scale implementation in the late 1980s. Apart
from being an environmentally amicable production process, enzymatic
conversions are regio- and stereo-specific, energetically benign, and
devoid of undesirable byproducts (Bruggink et al., 1998; Rajendhran

and Gunasekaran, 2004). As aforementioned, penicillin acylases may
also be used to synthesize a number of SSPs and SSCs by catalyzing the
fusion of novel acyl groups with a proper intermediate (i.e. 6-APA,
7-ACA, or 7-ADCA) (Table 1 and Fig. 1).

Broadly, penicillin acylases can be grouped into two classes
according to substrate specificity. Type I penicillin acylases hydrolyze
penicillin V [thus referred as penicillin V acylase (PVA)], while Type II
penicillin acylases hydrolyze penicillin G [thus referred as penicillin G
acylase (PGA)]. Moreover, PGA can be further sub-classified into Type
IIa specific to an aromatic phenylacetyl moiety and Type IIb specific to
an aliphatic moiety (Schmidt, 2010; Sudhakaran et al., 1992). Type IIa
PGAs (specifically referred as PGA herein) are the most industrially rel-
evant enzymes and it is estimated that ~85% of enzymatically produced
6-APA (~7650 tons) originates from penicillin G, with the rest from
penicillin V (Rajendran et al., 2011; Sudhakaran et al., 1992). While
PGA activity has been detected in approximately 40 different microor-
ganisms (including yeast, filamentous fungi, and bacteria), cell factories
employed for large-scale production of PGA are limited to a few bacte-
rial platforms with Escherichia coli as the major one (Rajendran et al.,
2011; Sudhakaran et al., 1992). Being a relatively mature industrial bio-
technology, microbial production of PGA, either in native or recombi-
nant hosts, remains riddled with numerous technological issues and
limitations. Earlier studies concentrated on bioprocessing and commer-
cial aspects, whereas recent efforts in genetic and protein engineering
have been aimed at constructing novel recombinant host/vector sys-
tems for PGA overproduction. Herein, we review various novel cellular,
molecular, and bioprocessing approaches undertaken to enhance mi-
crobial production of PGA.

2. Molecular aspects of PGA

2.1. Gene expression and regulation

Bacterial genes encoding PGAs and their gene expression and regula-
tion mechanisms have been extensively examined, particularly for PGA
from E. coli. In the native PGA-producing E. coli strain of ATCC 11105,
phenylacetic acid (PAA) induces the expression of its PGA-encoding
gene (pac) whereas glucose represses it and the associated regulatory
elements have been identified (Radoja et al., 1999). The physiological
and metabolic functions of these gene regulations might be associated
with the catabolism of carbonaceous aromatic compounds during the
organism's ‘free-living mode’ (Duggleby et al., 1995; Rajendhran and
Gunasekaran, 2004). However, regulation of the pac gene varies from
one organism to another. To exemplify, in Alcaligenes faecalis, the expres-
sion of pac is induced by PAA but not repressed by any carbons (Spence
and Ramsden, 2007). On the other hand, the expression of pac is also in-
duced by PAA, but repressed by tricarboxylic acid (TCA) cycle intermedi-
ates (i.e. succinate, fumarate and malate) in Providencia rettgeri (Spence
and Ramsden, 2007) and by glucose in Bacillus megaterium cultivated
with complex media (Pinotti et al., 2000). Apart from PAA induction
and catabolite repression, in vivo PGA synthesis can be temperature-
dependent as well (Deshpande et al., 1994). Based on organisms exam-
ined so far, this thermo-regulation appears to be universal in all fungi,
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Fig. 1. Chemical and biosynthetic pathways for the production of semisynthetic penicillins (SSPs) and cephalosporins (SSCs). Red/bold arrows: enzymatic reactions catalyzed by PGA;
bold/dashed arrow: enzymatic reaction catalyzed by D-amino acid oxidase (DAO) and glutaryl acylase (GA). Both methods for SSP production begin with the formation of penicillin nu-
cleus, 6-aminopenicillanic acid (6-APA), which can be acylated to produce a variety of SSPs (Bruggink et al., 1998). The traditional chemical approach proceeds under unusually low tem-
peratures to prevent splitting of the highly labile β-lactam ring. Chlorosilanes are required to protect the penicillin C(3)-carboxyl, and PCl5 facilitates the formation of imino bond at the
cleavage site for deacylation (Verweij and deVroom, 1993;Weissenburger and van derHoeven, 1970). 6-APA is then silated and converted to the desired SSPwith the appropriate reagent
(e.g. mixed anhydride) (path 1) (Verweij and de Vroom, 1993). Alternatively, enzymatic synthesis of 6-APA, and SSPs from 6-APA, via PGA does not require harsh reagents or extreme
operating conditions (path 2) (Ospina et al., 1996; Parmar et al., 2000; Wu et al., 2010). Chemical synthesis of the cephalosporin G nucleus, 7-amino-desacetoxycephalonsporic acid
(7-ADCA), proceeds with oxidative ring expansion of penicillin G (path 3) followed by similar removal of the phenylacetic acid (PAA) side chain (not shown) (de Koning et al., 1975;
Verweij and de Vroom, 1993). 7-ADCA can be converted to SSCs using silyl protection followed by acylationwith amixed anhydride in a process similar to that shown for SSP production
(Verweij and de Vroom, 1993). PGA can also readily hydrolyze cephalosporin G, derived chemically from penicillin G, yielding 7-ADCA (Erarslan, 1993; Li and Cao, 2011). PGA catalyzed
synthesis of 7-ADCA, and SSCs from 7-ADCA, occurs under mild conditions (path 3) (Li and Cao, 2011; Schroen et al., 2001). 7-aminocephalosporanic acid (7-ACA), the cephalosporin C
nucleus, can be produced by enzymatic hydrolysis of cephalosporin C using DAO and GA (Justiz et al., 1997). PGA can convert 7-ACA to SSC precursors,which are readily converted to SSCs
upon the addition of appropriate reagent (path 4) (Justiz et al., 1997; Terreni et al., 2001). The chemical route to 7-ACA is analogous to 6-APA and 7-ADCA,whereby choroacetyl chloride is
used for carboxyl protection in place of a silating agent (not shown) (Henderson et al., 2008).

1321K. Srirangan et al. / Biotechnology Advances 31 (2013) 1319–1332
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yeast, and bacteria. Therefore, PGA-producing strains are often cultivated
at temperatures lower than 30 °C. Using E. coli pac as the model gene, it
was shown that high temperatures tend to affect translation and poten-
tially posttranslational processing steps, but not transcription (Spence
and Ramsden, 2007). While the mature enzyme of PGA has an optimal
temperature of 40 °C (Table 2), its precursor polypeptide can misfold
without being properly processed at elevated temperatures (Spence
and Ramsden, 2007).

2.2. Protein structure and maturation

PGAs often have a heterodimeric structure (Table 2) derived from
a rather peculiar protein formation mechanism. In general, the pac
gene is first transcribed and translated into an inactive polypeptidyl
precursor, which then undergoes an extensive posttranslational pro-
cessing to become active. This type of protein maturation is common-
ly found in eukaryotes (cf. human insulin synthesis), but seldom in
prokaryotes. All PGA producers examined thus far are believed to
share this type of posttranslational processing, which has been thor-
oughly investigated only for PGA from E. coli (McVey et al., 2001;
Thöny-Meyer et al., 1992; Wallace, 1993). Comparative analysis of
several bacterial PGAs (Fig. 2) shows considerable sequence homolo-
gy, especially the α and β subunits (Tishkno, 2010), implying the po-
tential similarity in protein maturation.

In E. coli, pac is first transcribed and translated in the cytoplasm into
a polypeptidyl precursor (i.e. preproPGA) consisting of four domains
fromN-terminus to C-terminus: (1) 26-AA (amino acid) signal peptide;
(2) 208-AA α-subunit; (3) 54-AA endopeptide spacer; and (4) 557-AA
β subunit (Sudhakaran et al., 1992; Thöny-Meyer et al., 1992). The sig-
nal peptide is responsible for shuttling the precursor into the periplas-
mic space and mutations in this region can cause the accumulation of
nascent preproPGA in the cytoplasm (Schumacher et al., 1986). After

translocation into the periplasm, the signal peptide is removed to
form another precursor of proPGA. Subsequently, proPGA starts to
fold on itself while autoproteolytically removing the spacer region be-
tween α and β subunits in the periplasm (Kasche et al., 1999). It has
been demonstrated that such autoproteolysis can also occur in the cyto-
plasm of E. coli (Xu et al., 2005a) or in vitro (Schumacher et al., 1986).
Molecular insights into the multifaceted intra- and intermolecular
autoproteolytic reactions and folding to yield the active enzyme are
still incomplete (Deshpande et al., 1994; Ignatova et al., 2003; Spence
and Ramsden, 2007). Nevertheless, it is postulated that the α subunit
starts to fold first, whereas the junction between the spacer region
and the β subunit gets dissected, effectively exposing the catalytically
active Ser residue (see Section 2.3). The two segments of α + spacer
and β subunits assemble to form a premature heterodimeric structure
with a partial enzyme activity. Subsequently, the spacer region is
removed from the C-terminus by proteolysis, resulting in the active
heterodimer (Spence andRamsden, 2007;Wallace, 1993). This complex
maturation is critical as much of the enzyme activity can be lost due to:
(1) improper translocation of preproPGA; (2) non-specific proteolysis
by cytoplasmic and/or periplasmic peptidases; and (3) improper folding
in the periplasm (Chou, 2007; Ignatova et al., 2000, 2003).

2.3. Catalytic mechanism

X-ray crystallographic structures enable the modeling of the molec-
ular aspects of PGA. High-resolution crystallographic structures of PGA
from E. coli (Chilov et al., 2008; Duggleby et al., 1995), P. rettgeri
(McVey et al., 2001), and, more recently, A. faecalis (Varshney et al.,
2012) have been reported to reveal intimate enzyme details, such as
overall protein structure, substrate binding site, active center, and
catalytic mechanism. Although PGA is a serine hydrolase, it does not
possess the catalytic triad characteristic of many other serine proteases

Table 1
Selected β-lactam antibiotics fabricated by PGA biocatalysis.

Antibiotic Structure PGA substrates Advantages Disadvantages References

Ampicillin Phenylglycine amide &
6-APA

▪ Broad host range
▪ Active against
Gram-negative
organisms

▪ Low activity against
Gram-positive organisms

▪ Easily degraded by
Stapholococci Penicillinases

▪ High resistance rates

(Bruggink et al., 1998;
Hamad, 2010;
Moellering, 1995;
Schnarr and Smaill, 2008;
Youshko et al., 2004)

Amoxicillin Hydroxyphenyl-glycine
amide & 6-APA

▪ Highly stable, minimal
degradation

▪ Production is feasible
with a high substrate
concentration

▪ Limited activity against
Gram-negative organisms

(Alemzadeh et al., 2010;
Bruggink et al., 1998)

Cefaclor Phenylglycine methyl
ester & 7-ACA

▪ Broad spectrum efficacy
▪ Safe and well tolerated

▪ Expensive enzymatic synthesis
▪ pH sensitivity
(unstable above pH 6.5)

(Aguirrea et al., 2010;
Bruggink et al., 1998;
Spencer, 2008)

Cephalexin Phenylglycine methyl
ester & 7-ADCA

▪ Safe for use during
pregnancy

▪ Difficult synthesis due to pH
restrictions and undesirable
side products

▪ Not active against Enterococcus
spp.

(Bruggink et al., 1998;
Dashe andGilstrap, 1997;
Einarson et al., 2001;
Schnarr and Smaill, 2008;
Yang andWei, 2003)

Cefadroxil Hydroxyphenyl-glycine
methyl ester & 7-ADCA

▪ Broad spectrum efficacy
(both Gram-positive
and negative
organisms)

▪ Oral administration

▪ High solubility
▪ Subject to chemical degradation
and enzymatic hydrolysis

(Bruggink et al., 1998;
Wegman et al., 2001)
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(e.g. lipases and proteases) (Alkema et al., 2002; McVey et al., 2001).
Thus, it is a member of the structural superfamily of N-terminal nucleo-
philic (Ntn) hydrolaseswhich contain a catalytic nucleophile (generally
a Ser, Cys, or Thr) at the N-terminus as the active site for cleaving an
amide bond (Dodson and Wlodawer, 1998). Most bacterial PGAs have
a consensus Ser residue (β1), with its hydroxyl group acting as a nucle-
ophile, in the enzyme active center (Duggleby et al., 1995; McVey et al.,
2001). PGA mediates the hydrolysis of penicillin G to yield 6-APA
and PAA under slightly alkaline pH, resulting in the transfer of the
phenylacetyl moiety from 6-APA to water. Mechanistically, this
deacylation process is similar to that of serine proteases (Fig. 3). Name-
ly, a nucleophilic attack is brought upon the carbonyl carbon of the
amide bond by the Oγ hydroxyl group of Ser (β1), resulting in the for-
mation of a covalent intermediate of an acyl-enzyme complex via a tet-
rahedral transition state. When this transition state collapses through
the involvement of another two AAs of Asn (β241) and Ala (β69),
the first product, 6-APA, is released from the active site. Next, the
acyl-enzyme complex is deacylated via a nucleophilic attack by water
(or another nucleophile), yielding the second product, PAA, and the
free enzyme (Arroyo et al., 2003; Spence and Ramsden, 2007). Given
that all steps are reversible, the condensation of acyl groups with a
β-lactam nuclei becomes possible under lowwater activities and acidic
pH, yielding SSPs (Spence and Ramsden, 2007). Such catalytic revers-
ibility solidifies the importance of PGA as a generic biocatalyst for pro-
ducing a variety of β-lactam semisynthetic antibiotics.

3. Microbial platforms for PGA production

3.1. Production of heterologous PGA

The biosynthetic capacities associated with PGA entail prosperous
development of technologies for large-scale production of PGA over the
past few decades. While several microbial hosts have been explored for
the production of heterologous PGA, E. coli is unarguably the most facile
host systemdue to robust growth characteristics, high fecundity on inex-
pensive feedstock, well known physiology and metabolism, and genetic
tractability. Although certain E. coli strains (e.g. ATCC 11105) possess
an endogenous pac genewhose expression is induced by PAA, the native
pac promoter is rather weak and unsuitable for large-scale production.
Recombinant DNA technology has offered a powerful tool for enhancing
PGA production. Among several microbial PGA sources, PGA from E. coli
(EcPGA) is themost extensive one for both academic study and industri-
al applications (Rajendran et al., 2011; Sudhakaran et al., 1992). Theoret-
ically, the pac gene dosage has to be maximized and all gene expression
steps leading tomature PGA (i.e. transcription, translation, translocation,
periplasmic processing, and folding) have to be simultaneously effective
in order to overproduce PGA. However, such optimal scenario hardly oc-
curs and different host/vector systems might be subject to different ex-
pressional limitations. Hence, it is critical that the step(s) limiting
overall PGA production can be identified for development of effective ex-
pression strategies.

α βS C

600400200 8001

Sequence Similarity

Domain Structure

Fig. 2. Domain structure of the preproPGA from E. coli ATCC 1105 and its corresponding sequence similarity to other industrially significant PGAs displayed in Table 2. Active site is indicated
with a red arrow and calcium binding sites are indicatedwith blue arrows. Themultiple sequence alignment of PGAs utilizing sequences from E. coli (P06875.2), K. cryocrescens (P07941.1), P.
rettgeri (AAP86197.1), A. xylosoxidans (AAP20806.1), A. sp. CCM 4824 (AAY25991.1), A. faecalis (ABZ91986.1), B. megaterium (Q60136.1), B. badius (AAZ20308.1), and A. viscosus (P31956.1) is
constructed using AlignX with a threshold of 0.5 (Vector NTI Advance, Invitrogen, Carlsbad, CA). A full multiple sequence alignment is available in Supplementary Fig. 1.

Table 2
Biochemical properties of industrially relevant class II penicillin G acylases.

Origin: strain Location Structure Protein
sequence
homology
(%)

Optimal
hydrolysis

Additional information References

Gram
−

Gram
+

Temp
(°C)

pH

Gram negative bacteria
Escherichia coli ATCC 11105 Periplasm Heterodimer, 23 & 62 kDa 100 29 40 8.0 Model industrial PGA (Erarslan et al., 1990)
Kluyvera cryocrescens
ATCC 21285

Periplasm Heterodimer, 23 & 62 kDa 85 29 40 7.5 Highest homology to
E. coli PGA

(Alvaro et al., 1992; Bodhe
and Sivaraman, 1987)

Providencia rettgeri ATCC 31052 Periplasm Heterodimer, 24 & 62 kDa 62 32 55 7.5 (Ljubijankic et al., 2002)
Achromobacter xylosoxidans
& sp. CCM 4824

Intracellular Heterodimer, 27 & 62 kDa 51 28 60 7.5 High thermal stability (Skorb et al., 2003)

Alcaligenes faecalis ATCC
19018 & CICC AS1.767

Periplasm Heterodimer, 23 & 62 kDa 40 29 60 8.0 High thermal stability (Kasche et al., 2003;
Verhaert et al., 1997;
Zhou et al., 2003)

Gram positive bacteria
Bacillus megaterium ATCC 14945 Extracellular Heterodimer 27 & 59 kDa 29 100 37 8.0 (Chiang and Bennett, 1967;

Kang et al., 1991)
Arthrobacter viscosus ATCC 15294 Extracellular Heterodimer, 24 & 60 kDa 28 97 45–50 6.0–7.5 (Ohashi et al., 1988)
Bacillus badius PGS10 n/a Heterodimer 25 & 62 kDa 29 72 50 7.0 Broad substrate specificity (Rajendran et al., 2011)
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For the production of recombinant PGA, the pac gene from E. coli or
other microbial species is often overexpressed in high-copy episomal
plasmids to augment gene dosage under the regulation of a strong
promoter-operator system to enhance its transcription. In addition to
limitations at the transcriptional level, functional overexpression of
pac is also hampered by several other factors associated with transla-
tion, posttranslational modifications as well as physiological impacts
on the host. These can result in unexpected misfolding, aggregation or
proteolysis of various PGA species in the cytoplasm and/or periplasm.
It is estimated that up to 90% of the expressed PGA species, including
precursors, subunits, and heterodimers, could eventually become de-
graded or inactive in any stages of protein maturation due to the
above limitations (Ignatova et al., 2000, 2003). Fig. 4 provides a sche-
matic overview of various genetic strategies associatedwith themanip-
ulation of the E. coli expression system to alleviate or even eliminate the
above limitations for the overproduction of recombinant PGA. While
several of themwere developed based on general strategies for enhanc-
ing recombinant protein production in E. coli (Baneyx, 1999; Jana and
Deb, 2005; Sørensen and Mortensen, 2005), the unique PGA formation
mechanism significantly contributes to the increased level of technical
challenges and complications.

3.1.1. Limitations for pac expression in E. coli
Heterologous gene expression for recombinant protein production in

E. coli tends to be limited by transcription. Hence, thewell-regulated and

strong lac (and its derivatives such as tac, trc, and lacUV5) and T7
promoter-operator systems have been extensively utilized to enhance
gene expression at a transcriptional level (Jana and Deb, 2005). To pre-
vent the undesired glucose catabolite repression upon PGA production,
the putative cAMP receptor protein (CRP)-binding site should be exclud-
ed from the structural pac gene cloned into an expression plasmid (Chou
et al., 1999d). Being a natural inducer of all lac-derived promoter sys-
tems, lactose might be unsuitable for E. coli host strains with several
Δlac mutations, which potentially interfere with lactose transport and/
or metabolism. Hence, the non-metabolizable lactose analog, isopropyl-
β-D-thiogalactoside (IPTG), is used as an inducer instead. Unfortunately,
the use of IPTG can be economically unfavorable for large-scale cultiva-
tion. Moreover, PGA overproduction in E. coli using various lac-derived
or T7 promoter systems with IPTG induction generally leads to the for-
mation of insoluble PGAas inclusion bodies in the cytoplasmand/or peri-
plasm due to an imbalance in the flux of PGA formation pathway,
particularly at the stages of translocation and periplasmic processing
(Scherrer et al., 1994; Sriubolmas et al., 1997). In addition, the accumula-
tion of inclusion bodies, which appear to be physiologically toxic, signif-
icantly compromises the integrity of outer membrane, resulting in high
levels of cell lysis and growth inhibition (Pan et al., 2003).

Since IPTG-induction for PGA overproduction is fraughtwith techni-
cal hurdles, the use of other sugars, in particular arabinose and galac-
tose, as an alternative inducer is explored. While the binding affinity
of galactose to LacI repressor is significantly less than that of IPTG, it

Fig. 3. Proposed mechanism of hydrolysis of penicillin G mediated by PGA to yield PAA and 6-APA. Refer Section 2.3 for more detailed description. Refer the section of Abbreviations
for the full names of various abbreviations in the figure legend.

1324 K. Srirangan et al. / Biotechnology Advances 31 (2013) 1319–1332



Author's personal copy

can act both as an inducer and carbon source for the production of PGA
(De Leon et al., 2003a). In E. coli cultures supplemented with 0.5% w/v
galactose, the volumetric and specific activities of PGA were ~3.3- and
6.8-fold, respectively, those of the conventional cultures induced with
IPTG (De Leon et al., 2003a).Moreover, galactose can be evenused as in-
ducer in cultureswhere glucose is the primary carbon source to achieve
volumetric and specific activities comparable to cultures induced by
IPTG without any impact on cell growth (De Leon et al., 2003a). While
galactose-induction certainly resolves technical issues associated with
IPTG-induction, little is known as to the particular expression step(s)
or mechanism to be improved.

On the other hand, arabinose has not only been demonstrated as an
effective inducer for the trc and T7 promoters upon PGA production in
both the periplasm (by expressing the native pac gene) and the cyto-
plasm [by expressing the leaderless pac gene (LL pac)], but the induc-
tion yields high levels of active PGA with minimal formation of
insoluble bodies and hardly any physiological impact (Narayanan et
al., 2006a; Xu et al., 2006). Based on superior cell growth and similar
or even higher specific pac expression levels, culture performance for
PGA production for arabinose-induced cultures is significantly better
than that for IPTG-induced cultures. Moreover, in an extracytoplasmic
stress monitoring study in E. coli (Narayanan et al., 2008), it was ob-
served that upon IPTG-induction, there is an upregulation of several
extracytoplasmic stress response genes, such as degP, cpxP and rpoH,
as the formation of insoluble inclusion bodieswithin the periplasm trig-
gers a local stress response. These stress-responsive reporter systems
were generally less activated with no growth arrest being observed
upon arabinose-induction, implying reduced levels of physiological
stress experienced by cells (Narayanan et al., 2008). No studies atmolec-
ular levels have been conducted to mechanistically illustrate the induc-
ibility and physiological improvement of arabinose for PGA production.
Nevertheless, it is generally believed that the flux imbalance upon PGA

overproduction in vivo is primarily caused by fast transcription of the
pac gene upon IPTG-induction. Arabinose, like galactose, might have a
lower binding affinity to LacI repressor; but the binding is still effective
enough to drive slow pac transcription without causing subsequent
posttranslational processing issues to overwhelm cells.

Given the positive features associatedwith the use of arabinose for in-
ducing the expression of the pac gene regulated by the trc and T7 pro-
moters, the use of another common strong promoter system of araB, for
which arabinose is a native inducer, to regulate pac expression is worth
investigation.When arabinose is used to induce the expression of pac reg-
ulated by the araBpromoter, technical issues similar to IPTG-induction for
the trc and T7 promoters are observed, implying fast transcription can still
be a potential culprit leading to poor culture performance (Narayanan et
al., 2006b). The results also support the previous hypothesis that the en-
hanced PGA production with minimum formation of inclusion bodies
upon arabinose-induction for the trc and T7 promoter systems is likely as-
sociated with the slow pac transcription rather than any physiological or
metabolic consequences of arabinose supplementation.

Selection of proper E. coli host strains for PGA production can be
critical since the promoter inducibility and arabinose effect appears
to be largely host-dependent. Out of common E. coli host strains for
recombinant protein production, HB101 and JM109 perform well for
the production of PGA, whereas MC4100 and BL21 perform poorly
even though the same pac expression vectors are used (Narayanan
et al., 2006b). Genotypes affecting pac expression performance have
not been specifically characterized. However, certain mutations,
such as araD in MC4100, could potentially affect arabinose assimila-
tion because of potential accumulation of L-ribulose-5-phosphate, a
known toxic metabolite, and strains with such mutations should not
be used as the expression host.

Heterologous gene expression for recombinant protein production
in E. coli is seldom limited by translation due to the abundance of

Fig. 4. Genetic strategies for enhancing the production of PGA in E. coli. Refer Section 2.1 for detailed description of PGAmaturation. Genetic strategies displayed are discussed in detail in
the following sections: (1) Coexpression of periplasmic chaperones, Section 3.1.2. (2) Coexpression of cytoplasmic chaperones, Section 3.1.2. (3) Cytoplasmic PGA expression,
Section 3.1.2. (4) Transcriptional regulation, Section 3.1.1. (5) Coexpression of translocational machinery, Section 3.1.3. (6) Coexpression of release proteins for extracellular PGA produc-
tion, Section 3.1.4. (7) Knockout of outer membrane protein or murien lipoprotein for extracellular PGA production, Section 3.1.4.
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ribosomes/tRNAs and effective coupling between transcription and
translation. However, translation can still become limiting by several
genetic factors, such as the efficiency of translation initiation and the
stability and secondary structure of the nascent mRNA. Since the initia-
tion of translation is often regarded as the limiting step and the most
highly regulated phase in translation, researchers have focused on
augmenting translation by modifying the region of ribosome binding
site (RBS). The spacer region between the RBS and the start codon of
pac mRNA is only four nucleotides and this may potentially limit
translation given that the optimal spacer region is between 5 to 13 nu-
cleotides (Stormo, 2000). PGA production was greatly enhanced, pre-
sumably through the improved efficiency of translation initiation by
increasing the number of nucleotides of the spacer region (Akkaya et
al., 2012; Chou et al., 1999d). The translation efficiency can be also en-
hanced by increasing the stability of pacmRNA, leading to higher levels
of PGA activity (Viegas et al., 2005).

In addition to the efficiency of transcription and translation, another
important parameter limiting recombinant protein production is gene
dosage, which is often associatedwith plasmid copy number and stabil-
ity (Valesova et al., 2004). The overproduction of recombinant PGA in
E. coli can be achieved using certain segregationally stable host/vector
systems. It is discerned that the pac expression vector pKA18 can be
stably maintained in an E. coli strain RE3 without plasmid loss for
prolonged PGA production for up to 8 successive batch cultivations
(approximately equivalent to 108 generations) (Valesova et al., 2004).
Additionally, the pac gene cloned in an asd+-expression vector can be
stably overexpressed without plasmid loss even in the absence of anti-
biotic selection (Vohra et al., 2001).

3.1.2. “Engineering” E. coli cell physiology
As mentioned above, E. coli cells overproducing recombinant PGA

are often under immense physiological and metabolic burdens, par-
ticularly upon the accumulation of misfolded PGA aggregates as in-
clusion bodies. Ultimately, they are subject to growth arrest, cell
lysis and even cell death, encroaching on the cells' capacity for recom-
binant protein production. Nevertheless, cells are equipped with sev-
eral stress-responsive mechanisms interplaying at various levels in
order to survive and proliferate under ever-changing physiological
and metabolic stresses (Chou, 2007). These mechanisms and the in-
volved molecules can be manipulated to reduce intracellular stresses,
improve cell physiology, and, most importantly, enhance culture per-
formance in PGA production.

The majority of insoluble PGA aggregates reside in the periplasm in
the form of proPGA, implying periplasmic processing (for removing the
spacer region) is a critical step limiting the overall production of PGA
(Scherrer et al., 1994; Sriubolmas et al., 1997). This periplasmic process-
ing is an autoproteolytic step (Ignatova et al., 2003) with proper folding
of proPGA as a prerequisite for successful maturation. Cells over-
whelmed by the accumulation of periplasmic inclusion bodies ex-
perience high levels of extracytoplasmic (which includes the inner
membrane, periplasm, and outer membrane) stress and are subject to
lysis and growth arrest. A natural mechanism for cells to overcome
physiological stress is to selectively express heat-shock proteins
(HSPs), in either cytoplasm or periplasm depending on the stress loca-
tion, with protease (to degrade misfolded proteins) and/or chaperone
(to assist or recover close-to-misfolded proteins) activities (Chou,
2007). To date, several genetic stratagems have been implemented to
suppress the physiological stress and assuagemultifaceted complexities
arising from recombinant protein overproduction based on improving
protein solubility, stability, secretion efficacy, and even disulfide bond
formation. Generally, these involve the concomitant expression of re-
combinant protein with various HSPs.

Among various periplasmic HSPs, DegP (which possesses both prote-
ase and chaperone activities) has been demonstrated extremely effective
in assisting PGAmaturation and reducing the amount of inclusion bodies
(Lin et al., 2001a). Physiological stress and growth arrest associated with

PGA overproductionwere significantly reduced uponDegP coexpression,
though it was discerned that DegP was not required for PGA maturation
based on the observation that theΔdegPmutant strainwas still capable of
producing active PGA (Lin et al., 2001a). These findings are in agreement
with the current understanding that the periplasmic processing from
proPGA to heterodimeric PGA is an autoproteolytic cleavage on the
Thr263–Ser264 bond. Interestingly, the physiological improvement and en-
hanced PGA production were associated with the protease activity of
DegP since the coexpression of DegPSer210Ala, a DegP mutant lacking the
protease activity whilst retaining the chaperone activity, was incapable
of suppressing the physiological stress caused by pac overexpression
(Pan et al., 2003). It is then speculated that DegP plays a role in aiding
the autoproteolysis of proPGA, thus effectively reducing the inundation
of precursor proteins and streamlining the PGA maturation process in
the periplasm. Nevertheless, molecular details of the interaction between
DegP with the nascent proPAC polypeptides remain largely unclear. For
instance, co-expression of DegP-homologous periplasmic proteases,
DegQ or DegS, could not rescue the curtailed culture performance upon
pac overexpression (Pan et al., 2003). The effect of another periplasmic
chaperone of FkpA on pac overexpression was also investigated (Wu et
al., 2007). Compared to the wild-type strain, the ΔfkpA mutant strain
overexpressing pac had deteriorated cell physiology, but the pac ex-
pression level was slightly affected. While exogenous coexpression of
fkpA did not significantly enhance pac expression in the wild-type strain,
coexpression of either degP or fkpAwas able to complement the deterio-
rated cell physiology and pac expression in the ΔdegP/ΔfkpA double mu-
tant strain (Wu et al., 2007), implying the two periplasmic chaperones
share certain overlapping functions.

Though the protease activity of DegP has been identified to be as-
sociated with the enhancement of pac overexpression, the contribu-
tion from the chaperone function cannot be completely excluded.
To address this issue, the event of PGA maturation was relocated
from the periplasm to cytoplasm, in which several known chaperones
can be readily tested. The relocation of PGA maturation was achieved
through the expression of the leader-less pac gene (LL pac) and the
primary expression product of proPAC was overexpressed for matu-
ration in the cytoplasm (Kang et al., 2005; Xu et al., 2005a, 2005b).
While maturation can occur to form active PGA in the cytoplasm of
E. coli, most of the expressed proPGA polypeptides aggregate into in-
soluble inclusion bodies, similar to the technical issue associated with
periplasmic processing. Coexpression of cytoplasmic chaperones of
DnaK/J-GrpE and GroEL/ES and/or trigger factors potentially en-
hanced pac expression performance and relieved physiological stress,
implying proper folding of proPAC can be critical for successful matu-
ration (Xu et al., 2005a, 2005b).

3.1.3. Effect of translocation efficiency in E. coli
Scherrer et al. (1994) and Sriubolmas et al. (1997), observed that

misfolded PGA precursors accumulated in both the cytoplasm and peri-
plasm as inclusion bodies under pac overexpression conditions. It was
suggested that, in addition to periplasmic processing, translocation ma-
chineries may also be overwhelmed. While most protein translocations
from the cytoplasm to the periplasm occur via the Sec system, which rec-
ognizes N-terminal signal peptides of distinct sizes and compositions
(Berks et al., 2000), the Tat (Twin-Arg translocation) transport system
can specifically export proteins with signal peptides containing the
Twin-Arg signature motif [i.e. (Ser/Thr)-Arg-Arg-x-Phe] in the N-
domain (Berks, 1996). The signal peptide of preproPGA has two
N-domain Arg residues which are non-consecutive, and, therefore, does
not conform to the typical Tat recognition motif (Schumacher et al.,
1986). Despite this fact, preproPGA translocation may be Tat-dependent
in E. coli since translocation of preproPGA was completely blocked in a
mutant strain (JARV15) bearing deletions of Tat machinery proteins
TatA and TatE (Ignatova et al., 2002). However, multiple pathways for
translocation of preproPAC were proposed since no translocation incom-
petencewas observed for the expressionof a PGAderivative,with a single
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mutation (i.e. R6S) in the signal peptide of preproPGA, in JARV15
(Ignatova et al., 2002). Interestingly, translocation inhibition can also
be suppressed by replacing the native PGA signal peptide with the
Sec-targeting signal peptide of OmpT so the resulting fusion of OmpT-
proPGA can still be exported to the periplasm in JARV15, presumably
via the Sec pathway (Ignatova et al., 2002). With the use of the
OmpT-proPGA fusion, coexpression of Sec components (i.e. SecA, SecB,
andSecF) enhanced theproductionof PGA (Ignatova et al., 2003). Though
Sec-dependent translocation typically occurs more effectively than
Tat-dependent translocation (Berks et al., 2000), depending on the host
strain, translocation of PGA precursors via the Sec-pathway does not nec-
essarily lead to an increased PGAactivity (Ignatova et al., 2003). However,
the fate of preproPGAwith regard to translocation is presently unclear as
new evidence suggests that the Sec-pathway is the dominant transloca-
tion route (Akkaya et al., 2012). PGA activity in total cell preparations of
mutant strain DADE, bearing deletions in TatA, B, C, D and E, was ~70%
of that observed in the parent strain (MC4100). Western blotting con-
firmed the presence of similar levels of the PGAβ-subunit, indicating suc-
cessful translocation and post-processing of preproPGA (Akkaya et al.,
2012). As aforementioned, PGA precursors can be translocated across
the inner membrane via multiple secretion systems, including the
Sec-pathway. Among several Sec-components, SecB is a cytoplasmic
chaperone known to stabilize precursors of proteins destined for translo-
cation (Topping et al., 2001). SecB appears to be critical for functional pac
expression, presumably at the stage of translocation, since minimal PGA
activitywas detectedwhen pacwas expressed in a secBmutant and func-
tional expression of pac can be restored upon basal level of secB
coexpression in a secB mutant (Chou et al., 1999b). However, over-
expression of secB resulted in increased levels of PGA precursors, either
soluble or insoluble, located primarily in the periplasm with minimal
improvement in PGA activity (Chou et al., 1999b). The results suggest
that SecB can potentially assist translocation of preproPGAbymediating
their stability even though the translocation is primarily Tat-dependent.
Nevertheless, the improvement in translocation does not seem to im-
prove the overall PGA production, suggesting that translocation might
not be a limiting step. In fact, periplasmic processing tends to be a key
step limiting the overall PGA production since themajority ofmisfolded
PGA precursors often accumulated in the periplasm upon pac over-
expression (Scherrer et al., 1994; Sriubolmas et al., 1997). Finally, the
potential importance of cofactor Ca2+ on the translocation and peri-
plasmic processing of PGA precursors was noted base on the observa-
tions that (1) Ca2+ can potentially facilitate periplasmic processing
(Ignatova et al., 2005) and (2) preproPGA accumulated in the cytoplasm
during fedbatch cultivation with modified M9 media lacking Ca2+ and
PGA production was greatly enhanced with minimal accumulation of
PGA precursors when Ca2+ was supplemented (Kasche et al., 2005).
This obviously represents a simple and cost-effective biochemical ap-
proach to improve PGA maturation and culture performance.

3.1.4. Extracellular secretion in E. coli
Extracellular secretion has been proposed as an alternative strategy

for the production of PGA. In addition to typical advantages associated
with recombinant protein secretion (Choi and Lee, 2004), the strategy
should be theoretically effective because (1) PGA is a periplasmic
protein, which only requires another export step across the outer
membrane to be extracellularly secreted, and (2) extracellular release
of PGA is expected to reduce the overwhelming accumulation of
misfolded PGA species in the periplasm and thus the associated
extracytoplasmic stress. Twomain genetic approaches, i.e. coexpression
of outer-membrane permeation proteins and genetic manipulation of
host outer membrane components (Fig. 4), have been employed for
extracellular secretion of PGA with varying success.

Several outer-membrane permeation proteins, such as bacteriocin
release protein (encoded by brp) and colicin E1 lysis protein (encoded
by kil), can mediate the permeation of the outer membrane of E. coli
through the interactionwith outer-membrane phospholipids or protein

components (van der Wal et al., 1995). Periplasmic proteins are extra-
cellularly secreted as a result. PGA can be extracellularly secreted
upon coexpressing the kil gene, but the host cell physiologywas severe-
ly deteriorated, resulting in growth inhibition and reduced cell viability
(Ignatova et al., 2003). Similarly, BRP-mediated extracellular secretion
of PGA was also investigated (Lin et al., 2001b). However, secretion
levels above 40% of the total PGA activity were accompanied with seri-
ous physiological deterioration and growth inhibition of the PGA-
producing cells, implying the presence of extracytoplasmic stress. This
strategy is considered ineffective since it neither increases the overall
PGA activity as compared to the control of intracellular PGA production
nor reduces inclusion body formation.

Some success has been reported for the extracellular production of
recombinant PGA by E. coli mutant strains defective in the outer
membrane. A promising application of this strategy is the use of
L-form E. coli strains which completely lack the outer membrane
(Gumpert et al., 1996). PGA maturation can still occur in the absence
of a defined periplasmic space possibly because the processing is an
autoproteolytic step. Interestingly, active PGA can be produced even
at elevated temperatures (e.g. 37 °C). While extracellular secretion
of PGA appears to be efficient, these L-form E. coli strains are extreme-
ly sensitive to environmental conditions, making them unsuitable for
industrial applications. Several ‘leaky’ E. coli mutants bear mutations
in one or more genes encoding outer-membrane protein components.
An E. coli mutant strain (JE5505) deficient in the lpp gene encoding
murein lipoprotein was employed for the extracellular production
of PGA (Orr et al., 2012a). With proper modulation of medium com-
position, PGA was overproduced with an extremely high secretion
efficiency, i.e. 90% of the total PGA activity was detected in the extra-
cellular medium. However, the extracytoplasmic stress and inclusion
body formation appear to be persistent even though most of the
overproduced PGA gets secreted extracellularly. While this host strain
of JE5505 can still suffer physiological deterioration to some extents
under PGA-overproducing and secretion conditions, its sensitivity to
environmental conditions is relatively low and, therefore, the applica-
tion for high-cell-density cultivation for PGA production is believed to
be feasible. Also importantly, simultaneous overproduction and ex-
tracellular secretion of PGA significantly facilitates downstream re-
covery and purification primarily based on the application of ion-
exchange chromatography (Orr et al., 2012a).

3.1.5. Heterologous expression of various bacterial pac genes in E. coli
Todate, in addition to pac from E. coli (encoding EcPGA), a selection of

other bacterial pac genes have been heterologously expressed in E. coli,
including pac from B. megaterium (Kang et al., 1991), P. rettgeri (Cheng
et al., 2006; Chou et al., 2000; Huang et al., 2002), K. cryocrescens
(Cheng et al., 2006; Garcia and Buesa, 1986; Jiang et al., 2007; Wen et
al., 2005), A. faecalis (Cheng et al., 2006, 2007; Deak et al., 2003; Wang
et al., 2006), Arthrobacter viscosus (Ohashi et al., 1989), Achromobacter
xylosoxidans (Cai et al., 2004) and Thermus thermophilus (Torres et al.,
2012). These bacterial PGAs can outperform EcPGA in terms of certain
enzymatic properties, such as high molecular stability, wide operation
range, broad substrate specificity, and high environmental tolerance,
etc. For example, PGA from A. faecalis (AfPGA) is an attractive enzyme
due to its broad pH optimum, greatly enhanced enantioselectivity (van
Langen et al., 2000), and excellent thermostability presumably resulting
from a unique disulfide bridge in the β-subunit (Verhaert et al., 1997).
High-level expression of AfPGA has been achieved in a high-cell-
density E. coli batch culture with dextrin as the sole carbon source
(Cheng et al., 2007). Similar to the approach based on chaperone
coexpression to enhance the production of EcPGA, coexpression of
isoaspartate methyltransferase (PIMT), an enzyme recognizing L-
isoaspartyl residues resulting primarily from the spontaneous re-
arrangement of aspartyl and asparaginyl residues (Kern et al., 2005),
can suppress inclusion body formation under physiological stress to sig-
nificantly enhance the production of AfPGA (Wang et al., 2006). PGA
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from A. xylosoxidans (AxPGA) is another attractive PGA with a thermo-
stability [t1/2,55 °C (enzyme half-life at 55 °C) of 55 min] significantly
outperforming EcPGA (t1/2,55 °C of 5 min) and AfPGA (t1/2,55 °C of
15 min) and its heterologous expression in E coli has been demonstrat-
ed (Cai et al., 2004).

Heterologous expression of a novel PGA from T. thermophilus
(TtPGA), an inherently thermostable enzyme with a half-life of 9.2 h
at an optimal temperature of 75 °C, in E. coli has been recently reported
(Torres et al., 2012). However, the function expression suffered amajor
limitation of the lack of periplasmic processing when the signal peptide
from EcPGA was used to translocate TtPGA precursors into the peri-
plasm of E. coli. Instead, the protein was targeted in the cytoplasm of
E. coli by expressing the leaderless pac gene from T. thermophilus
(Torres et al., 2012). Various cytoplasmic chaperones, i.e. DnaK/J and
GrpE, trigger factor (TF) and GroEL/ES, were coexpressed to facilitate
TtPGA maturation in E. coli. Although the production of TtPGA precur-
sors increased upon chaperone coexpression, particularly TF and
GroEL/ES in combination provided the greatest enhancement, PGA ac-
tivity did not increase proportionally. Similar to the observation for
the production of EcPGA, Ca2+ supplementation markedly improved
the heterologous expression of TtPGA in E. coli (Torres et al., 2012). Con-
tinued effort for functional expression of TtPGA in E. coli is warranted
given its exceptional stability at elevated temperatures.

Heterologous expression of PGA from P. rettgeri (PrPGA) in E. coli
was feasible at elevated temperatures (e.g. 37 °C) more favorable for
cell growth (Chou et al., 2000; Huang et al., 2002). Unlike the case of
EcPGA production, functional expression of PrPGA in E. coliwas not lim-
ited by posttranslational processing as insoluble PrPGA precursorswere
hardly detected, even at elevated temperatures which can significantly
impact posttranslational processing and folding. Given the advantage of
high-temperature cultivation for heterologous expression of PrPGA in
E. coli, PrPGA may exhibit a lower enzyme activity towards synthesis
of SSCs as compared to PGAs from other species (Cheng et al., 2006).
PGA from Kluyvera cryocrescens (KcPGA) may provide certain technical
advantages over EcPGA, such as easier immobilization, enhanced stabil-
ity upon exposure to elevated temperatures, pH fluctuations, and or-
ganic solvents (Wen et al., 2005). Heterologous expression of KcPGA
in E. coli has been reported (Cheng et al., 2006). In a comparative
study using four heterologously expressed PGAs (i.e. EcPGA, PrPGA,
AfPGA, and KcPGA), KcPGA showed the highest synthesis/hydrolysis
(S/H) ratio towards cephalexin synthesis, suggesting its high industrial
applicability (Cheng et al., 2006).

3.2. Production of recombinant PGA in platforms alternative to E. coli

Primarily due to the lack of recombinantDNA tools,most naturalmi-
crobial PGA producers are not genetically amenable and, therefore, are
seldom employed as an expression host for large-scale PGA production.
While E. coli represents the most common host for the production of
recombinant PGA, other expression systems, primarily Gram-negative
Bacillus and eukaryotic yeast, have been explored but with limited suc-
cess and are briefly reviewed herein. Other hosts, such as Pseudomonas
aeruginosa which was used for expressing pac from E. coli (Krzeslak et
al., 2009), appear to be uncommon and therefore are not reviewed.

3.2.1. Gram-positive Bacillus expression systems
The potential of using Bacillus strains for recombinant protein pro-

duction has recently gained much attention (Westers et al., 2004). A
major technical advantage for this microbial expression system is the
capacity for extracellular secretion of recombinant proteins due to the
lack of an outer membrane. This biological feature can potentially
resolve the major limitation associated with pac overexpression in
E. coli, i.e. the periplasmic accumulation of PGA precursors and associat-
ed extracytoplasmic stress. Two PGA-producing Bacilli, B. megaterium
and B. subtilis have been explored (Rajendhran et al., 2003; Yang et al.,
2001, 2006). Due to the existence of natural PGA-producing Bacillus

species (Table 2), these Bacillus strains potentially possess the necessary
posttranslational processing mechanisms for PGA maturation. In addi-
tion, unlike E. coli and other microbes, PGA production in Bacillus is
not subject to glucose catabolite repression (Yang et al., 2006) and
this can facilitate large-scale cultivation. Similarly to Bacillus, the
Gram-positive A. viscosus extracellularly secretes PGA into the culture
medium and, therefore, it is believed that the two microbes share a
compatible mechanism for PGA maturation. Cloning and expression of
recombinant PGA from A. viscosus in B. subtilis as a host has been dem-
onstrated (Ohashi et al., 1988). In fact, compared to PGA production in
native A. viscosuswhich normally requires PAA-induction, recombinant
Bacillus did not require PAA-induction but had a much higher PGA
productivity.

Although PGA production in Bacillus in early works relied on
PAA induction at low temperatures (25-30 °C), recently developed
Bacillus strains were capable of constitutive fermentation for PGA
production at an optimal growth temperature of 37 °C, (Yang et al.,
2001). This was accomplished through cloning the native pac gene
from B. megaterium into a plasmid for subsequent transformation
into the more genetically docile B. subtilis. Though plasmid instability
is a common issue for large-scale cultivation of B. subtilis, this recom-
binant B. subtilis demonstrated a high plasmid stability during PGA
production. In addition, deficient in six protease genes, the B. subtilis
pac expression system had low extracellular protease activities, con-
tributing its high PGA productivity. The effect of medium composition
for Bacillus species has been studied in detail as a means to improve
PGA production. Various carbon and nitrogen sources were analyzed
for their effect on both bacterial growth and PGA production, which
tends to be repressed by high glucose levels and is closely related to
nitrogen sources under low glucose concentrations (Pinotti et al.,
2000; Silva et al., 2006). Inorganic nitrogen salts have no major effect
on PGA production while urea has negative effects (Rajendhran et al.,
2003). It is therefore ideal to supplement the medium with more
complex nitrogen sources, such as free amino acids or alcalase
digested casein. Casein hydrolysis makes key amino acids available
for assimilation (in particular, tryptone is preferentially consumed)
and represents a cost-effective means of increasing nitrogen resources
in the medium, leading to enhanced PGA production (Pinotti et al.,
2007). Also, several carbon sources suitable for PGA production in
Bacillus expression systems have been identified, including partially de-
graded starch (Zhang et al., 2006), sucrose, fructose, mannitol, xylose
(Rajendhran et al., 2003), and cheese whey (Pinotti et al., 2007; Silva
et al., 2006).

3.2.2. Eukaryotic expression systems
The complex posttranslational processing for PGA maturation war-

rants exploration of functional expression of PGA in yeast hosts, such as
Saccharomyces cerevisiae and Pichia pastoriswhich typically possess diver-
sified capacities for posttranslational processing/modification of proteins.
Yeast platforms also offer technical advantages of high-cell-density culti-
vation and well-characterized expression vectors (Cregg et al., 2000;
Maresova et al., 2010; Mattanovich et al., 2012). S. cerevisiae CBL1-30
has been explored as a host for expression of the pac genes from E. coli
and P. rettgeri with both gene products being extracellularly secreted
into the medium (Ljubijankic et al., 2002; Ljubijankić et al., 1999). While
the production of P. rettgeri PGA in S. cerevisiae significantly outperformed
bacterial expression systems (possibly due to partial glycosylation of the
α-subunit of P. rettgeri PGA), this is not the case for the production of
E. coli PGA in S. cerevisiae (Ljubijankić et al., 1999).The production of
P. rettgeri PGA in S. cerevisiae was further enhanced by manipulating
culture conditions for high-cell-density cultivation and the extra-
cellular secretion of P. rettgeri PGA also facilitated the subsequent
purification (Ljubijankic et al., 2002). Heterologous production of
P. rettgeri PGA in P. pastoris was far more effective than the produc-
tion in S. cerevisiae and the PGA product had a high thermostability
possibly due to extensive glycosylation (Senerovic et al., 2009;
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Ševo et al., 2002). Stable integration of multiple copies of the pac
gene into the P. pastoris genome resolved the issue of episomal
plasmid instability in S. cerevisiae, resulting in enhanced PGA produc-
tion (Cregg et al., 2000; Ševo et al., 2002). Heterologous production of
E. coli PGA in the cytoplasm of P. pastoris was ineffective and the PGA
product was less active possibly because of partial glycosylation and
non-specific proteolysis at the N-terminus of the α-subunit (Maresova
et al., 2010).

4. Bioprocess development for PGA production in E. coli

Given the availability of various expression platforms, to date,
large-scale production of PGA is almost exclusively performed
using recombinant E. coli containing a bacterial pac gene, of which
E. coli pac is the most popular one. High-level pac expression and
high-cell-density cultivation have to be simultaneously conducted
to optimize the culture performance for subsequent harvest and pu-
rification of PGA. Extensive purification of PGA is unnecessary for
most of industrial applications. The unique gene expression and pro-
tein maturation mechanisms make large-scale production of PGA
challenging andmajor biochemical engineering approaches focusing
on strain manipulation, cultivation method, and downstream pro-
cessing are summarized herein.

4.1. Strain manipulation

Like almost all bioprocesses, development of superior and robust bi-
ological strains is critical for large-scale production of PGA. Recombi-
nant DNA technology has been extensively applied to construct novel
E. coli host/vector systems to enhance pac expression by eliminating
various potential expression limitations described in Section 3. Basical-
ly, all intracellular steps leading to PGA synthesis and maturation, i.e.
transcription, translation, translocation, periplasmic processing, folding,
and extracellular secretion (if applied), have to be effective. In addition,
the physiological stress associated with pac overexpression has to be
minimized so that these PGA-overproducing cells can be cultivated to
a high cell density. Since native pac expression in E. coli ATCC 11105
and B. megaterium ATCC 14945 is subject to the induction by PAA, an
unfavorable carbon potentially inhibiting cell growth, and the repres-
sion by glucose, a common and favorable carbon source for microbial
cultivations, these undesired regulations can be modified at the stage
of the construction of expression vectors by using a strong promoter
or by truncating the native pac regulatory region (Chou et al., 1999c;
Merino et al., 1992; Spence and Ramsden, 2007). Novel E. coli mutant
strains with an enhanced PGA-producing capacity and more robust
physiological state can be screened for being used as the expression
host (Arshad et al., 2010a,b; Chou et al., 1999a; Quratulain et al.,
2006). Genetically engineered E. coli host/vector systems with superior
adaptability to harsh culture environment associated with PGA over-
production can be strategically derived to optimize culture performance
(Arroyo et al., 2003; Rajendhran and Gunasekaran, 2004).

4.2. Cultivation method

Medium formulation often represents a major task for high-
cell-density microbial cultivation and it should be tailored to sustain
both cell growth and pac overexpression. For cultivationswith extracel-
lular production of PGA, medium development is of utmost importance
as it can potentially affect the stability, recovery, and purification of se-
creted PGA. Glucose can be used as the primary carbon source for pro-
duction strains which are not subject to catabolite repression.

Other carbons, such as glycerol, sucrose, lactose, etc. had varying ef-
fects (Pinotti et al., 2007; Rajendhran et al., 2003). PGA production is
also affected by nitrogen source as well as the carbon-to-nitrogen
ratio (Bhattacharya et al., 1993; Chou et al., 1999c). High PGA activities
have been reported with the use of peptide nitrogen sources, such as

tryptone and peptone, as well as complex sources, such as yeast extract
and beef extract (Gumpert et al., 1996; Orr et al., 2012a; Rajendhran et
al., 2003). Replacing peptides with free amino acids as the nitrogen
source significantly increases the production of PGA in B. megaterium
ATCC 14945 (Pinotti et al., 2007). Proper supplementation of Ca2+, an
identified cofactor involved in translocation and periplasmic process-
ing, in the feed medium for fedbatch cultivation of E. coli BL21(DE3)
resulted in a significant increase in PGA activity (Kasche et al., 2005).

To produce PGA (either native or heterologous) in microbial ex-
pression systems, cultivation is often conducted at mild temperatures
(e.g. 25–30 °C) as translation and posttranslational processing are neg-
atively impacted by high temperatures (e.g. 37 °C) (Bhattacharya et al.,
1993; Chou et al., 2000; Keilmann et al., 1993; Spence and Ramsden,
2007). An exception is heterologous expression of pac from P. rettgeri
in E. coliHB101, which is feasible at 37 °C as long as pH remains neutral
(Chou et al., 2000; Huang et al., 2002).While culture pHmight not have
a major effect and is generally maintained near neutral to promote op-
timal cell growth, increased PGA production in E. coli at slightly basic pH
was reported (Gale and Epps, 1942; Spence and Ramsden, 2007).
Approximately eight-fold increase in volumetric PGA activity was ob-
served upon increasing pH from 7 to 8.5 in batch cultivation of E. coli
ATCC 11105, whereas hardly any PGA activity was detected at pH 6
(Bhattacharya et al., 1993).There are conflicting reports on the effect of
dissolved oxygen (DO) on PGA production. Specific PGA activity reached
amaximumwhenDOwasmaintained at 20% (air saturation) in fedbatch
cultures of E. coli ATCC 9637, but declined with decreasing DO (Liu et al.,
1999). Hence, common industrial practice is to maintain DO above 15%
to enhance PGA production (Spence and Ramsden, 2007). In contrast, a
maximum PGA activity (both specific and volumetric) was observed at
1% DO of E. coli JM101 cultivation and the activity declined with increas-
ing DO until plateauing at ~10% DO (De Leon et al., 2003b). Similar DO
effect was reported in another study, where PGA activity (both specific
and volumetric) was maximized at a low DO (b10%) in E. coli ATCC
11105 cultivation. However, cell growth is often arrested under low
DO conditions, impacting the industrial feasibility of such cultures
(Gebauer et al., 1987).

The popular use of various lac-based and T7 promoters for the pro-
duction of recombinant PGA drives the exploration of novel induction
strategies, particularly the inducer type in light of technical limitations
discussed in Section 3. For the conventional inducer of IPTG, the culture
is often induced to initiate PGA production in the exponential phase
though late induction in the early stationary phase sometimes can
lead a better culture performance (Jiang et al., 2007). In fact, the produc-
tion of recombinant PGA in E. coli appears to be mixed-growth-
associated (De Leon et al., 2003b; Ramirez et al., 1994), implying the
feasibility of late induction during a slow growth phase, even for
fedbatch cultivations. Alternatively, sugars, such as arabinose and galac-
tose,may prove to be a suitable inducer to replace IPTG for certain E. coli
host strains since high PGA activities can be obtained without causing
severe physiological stress, growth arrest, and inclusion body formation
(De Leon et al., 2003a; Narayanan et al., 2006a). Application of these al-
ternative inducers for large-scale production of PGA certainly warrants
more explorations.

4.3. Purification

With the exception of Gram-positive bacteria or fungi, PGA is often
produced intracellularly in Gram-negative bacteria. As a result, purifica-
tion of PGA entails a conventional multistep cascade (which is not
reviewed here). Downstream processing commences with the prepara-
tion of crude cell lysate by cell harvest, washing, lysis, and clarification.
Subsequently, PGA is partially purified using ammonium sulphate pre-
cipitation followed by desalting. If necessary, this partially purified PGA
can be administered, such as PGA immobilization, for industrial applica-
tions without further chromatographic purification. Virtually all types
of chromatography have been successfully applied for recovery and
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purification of PGA (Aguilar et al., 2006; Fonseca and Cabral, 2002; Liu et
al., 2003; Sudhakaran and Shewale, 1987). Direct immobilization with-
out purification has also been investigated using immobilized metal af-
finity membranes to capture and retain PGA from crude E. coli lysate
(Chen et al., 2011). Conventional purification of PGA has also targeted
the reduction of process complexity by selectively harvesting the peri-
plasmic fraction instead of the whole cell lysate through the preparation
of spheroplasts (De León et al., 2003; Rodriguez et al., 1992). However,
this approach is effective for analytical purposes, but not large-scale pro-
cess. Recently, a single-step downstream setup based on tangential flow
filtration anion-exchange membrane chromatography (TFF-AMEC) was
applied to process unaltered E. coli culture for direct harvest and purifica-
tion of extracellularly produced PGA at a high yield and high purity (Orr
et al., 2012b). This represents amajor bioprocess improvement for effec-
tive production, harvest, and purification of PGA by systematically con-
sidering key aspects of all bioprocess stages, i.e. strain development,
cultivation, and downstream processing.

5. Prospects

High demand for β-lactam semisynthetic antibiotics will continue
to drive biotechnological advances in identification, molecular engi-
neering, and large-scale production of novel bacterial PGAs. Recombi-
nant DNA technology has been extensively applied for biochemical
characterization and large-scale production of a selection of bacterial
PGAs, with E. coli as the dominating host system for their heterolo-
gous expression. The unique maturation process of PGAs in E. coli
has driven the development of novel genetic, biochemical, and
bioprocessing strategies for PGA production. Recent insights into the
molecular structure and catalytic mechanism of PGAs suggest ample
potential to further engineer these enzymes towards the generation
of novel antibiotics and effective catalytic conversion. Physiological
stress associated with the formation of non-recoverable inclusion
bodies upon PGA overproduction remains a major technological hur-
dle. Strategies based on genetic manipulation of stress response pro-
teins; such as chaperone co-expression, appear to be feasible. The
poorly understood interplay between biochemical cultivation condi-
tions, gene expression profiles, and physiological stress responses
will require major investigation. Advances in engineering cell physi-
ology lead to manipulative strategies for stress alleviation and
high-cell-density cultivation to enhance PGA production. Attempts
in extracellular production of PGAs by exploring various secretion
mechanisms in E. coli have been somewhat successful. Recently, this
approach was extensively developed in combination with down-
stream processing. The integrated bioprocess appears to be promising
since it enables simultaneous high-level production, effective harvest,
and one-step purification of PGA. Finally, the atypical expression
mechanisms of PGAs suggests that optimal control of metabolic flux
can be critical for effective PGA synthesis and thus this production
system will both benefit from and contribute to the development of
modern systems biology and metabolic engineering.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.biotechadv.2013.05.006.
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