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Abstract. A strong degree of categoricity is a Turing degree d such that

there is a computable structure A that is d-computably categorical (there is a
d-computable isomorphism between any two computable copies of A), and such

that there exist two computable copies of A between which every isomorphism

computes d. The question of whether every ∆0
2 degree is a strong degree of

categoricity has been of interest since the first paper on this subject. We

answer the question in the affirmative, by constructing an example.

1. Introduction

In Computable Structure Theory, we use Computability Theory to understand
the intrinsic complexity of various mathematical objects. One of the most basic
notions in mathematics is that of isomorphism. Normally, isomorphism is a notion
of sameness. However, there could be two computable copies of the same struc-
ture that are not isomorphic via any computable isomorphism. So one can ask
the question: What are the possible complexities of isomorphisms of computable
structures? That is, which Turing degrees are those that exactly capture the level
of difficulty of computing isomorphisms between computable copies of a structure?
This question was formalized by Fokina, Kalimullin and R. Miller [FKM10], when
they introduced the notion of a degree of categoricity.

Definition 1.1 (Fokina, Kalimullin, and Miller [FKM10]). A Turing degree d
is said to be the degree of categoricity of a computable structure A if d is the
least degree such that for every computable copy B of A, there is a d-computable
isomorphism between A and B.

In that first paper on the subject, Fokina, Kalimullin and Miller showed that
every c.e. degree is a degree of categoricity, and indeed that every 2-c.e. degree
is a degree of categoricity. They showed that the degrees 0(n) and 0(ω) are also
degrees of categoricity. The question of whether or not every ∆0

2 degree is a degree
of categoricity was the first open question stated at the end of that paper, and
answering the question in the affirmative is the main result of this paper. Despite
the long wait for an answer to this first question, there has developed a large and
interseting body of work on notions related to degrees of categoricity. See Franklin’s
survey paper [Fra17] for a nice overview. Indeed, prior to this paper, it was not even
known if every 3-c.e. degree is a degree of categoricity; the strongest negative result
being the existence of a Σ0

2 degree that is not a degree of categoricity as shown by
Anderson and Csima in [AC16]. We refer the reader to [BKY16, BKY18, CFS13,
Gon11, BM, CS19] for a collection of related work on degrees of categoricity.
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Fokina, Kalimullin and Miller also defined a notion of a strong degree of cate-
goricity. A degree of categoricity d is said to be a strong degree of categoricity
if there are particular computable copies A and B of a structure with degree of
categoricity d such that every isomorphism between A and B computes d. Fok-
ina, Kalimulling and Miller noted that all their examples of degrees of categoricity
are actually strong degrees of categoricity, and raised the question of whether all
degrees of categoricity are strong; this question remains open.

We prove the following:

Theorem 1.2. Every ∆0
2 degree is a strong degree of categoricity.

Before we begin, we discuss the difficulty encountered trying to extend the ideas
from known constructions for structures with 2-c.e. degree of categoricity. Given
an approximation of a set D of degree d, the general idea is to build the structure
with components for each n in a way that the behavior of the isomorphism on
the associated component codes whether or not n ∈ D. In the 2-c.e. coding for
a given n, one begins with two distinct nodes that look different. If the first c.e.
event happens, one grows each distinct node to still be different, but change the
unique isomorphism. If the second c.e. event happens, one extends to make them
look the same; a process we call “homogenizing”. Trying to extend beyond 2-c.e.,
if we try to introduce more coding locations in the same way, we end up losing the
D-categoricity of the structure.

To overcome this difficulty, when we code whether a particular n ∈ D, we intro-
duce new coding locations every time there is a change in the approximation. By
consulting an isomorphism on a given coding location between our distinct copies,
we learn either that the approximation to D on n is correct at the stage, or that
there is a further coding location introduced. This is basically like in the original
strategy. In order to make sure our structure is D-categorical, we keep track of all
possible computable copies of our structure and build a D-computable isomorphism
between them. This uses an infinite injury priority argument. The main trick in
the basic module, is that when we “de-homogenize” a coding location, we have
to be able to correctly recover a D-computable isomorphism. So we make infinite
chains of nodes that look distinct stage-by-stage to control recovery, but such that
they are isomorphic in the limit. Herein lies the novelty of our method; previous
strategies for c.e. and 2-c.e. have focussed on making each coding location in the
pair of constructed structures isomorphic at every finite stage. This idea cannot
be extended to 3-c.e. as mentioned above, since once we homogenize the coding
locations upon observing the second c.e. event, even if we later “de-homogenize”
the coding location, we will lose the D-categoricity of the structure. To allow D
to be able to differentiate between being in a homogenized and a de-homogenized
state, we will potentially grow each coding location infinitely so that isomorphism
between the two structures is only achieved in the limit.

2. Requirements

2.1. Overview. Fix a computable approximation {Ds} of a ∆0
2 set D. Also fix Bi

to be ith computable structure of the language. The language will contain infinitely
many unary predicates (used to colour the different modules) and graph edges of
different colours. We shall build computable structures A ∼= A∗ satisfying that for
any isomorphism f : A 7→ A∗, we have f ≥T D, and the requirements:
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Ni : If Bi ∼= A then D computes an isomorphism between Bi and A.
The structure A will contain infinitely many modules. Different modules are

distinguished by the unary predicates. Each module is a collection of distinct
graph components called nodes. Each node (or graph component) in the module is
of a certain type. We will use α, β to refer to nodes in A (and sometimes A∗) and
the letters σ, τ to refer to the (isomorphic images of) nodes in Bi. We use η, ν, ρ, δ
to refer to requirements on the construction tree. Each node will consist of a
distinguished root vertex r with disjoint chains growing from the root vertex. Each
chain is a collection of vertices r v1 v2 · · · and the vertices are connected by edges
of a certain colour k. The k-length of a node is the number of vertices (currently)
in the chain with edge colour k. This is like a tree, where every branching is unary,
except for the root. See Figure 1.

Figure 1. A typical node

Now associated with every number k ≥ 0 we will have a k-chain. At the end
each node will have some infinite k-lengths. In each module there are two special
nodes which we will call µL and µR (main left and main right node).

2.2. Global requirement: Ensuring that any isomorphism f : A → A∗
computes D. A module assigned the coding of D(n) will work in the following
way. At the beginning D(n) = 0. The module begins by placing µL and µR in
structures A and A∗. We make µL have 0-length 2 and µR have 0-length 1 (in both
structures). The component will contain nothing else. Hence if this is the final
situation then any isomorphism f must map µAL to µA

∗

L .
Later on if we ever see n enter D (for the first time) we will switch by growing

µAL and µA
∗

R to have 0-length 2 and µAR and µA
∗

L to have 0-length 3. At the same
time we begin a new module (in some unused part of the structure) and repeat this
entire process, but with D(n) = 0 replaced with D(n) = 1.

If n is later extracted from D we will make µL ∼= µR (in the original module) by
growing their 0-lengths to 3. Note: the homogenization at this step is not necessary
for coding D into f , but will be necessary to ensure meet the Ni requirements. Later
on if n re-enters D we will switch again (in the original module) by making µAL and

µA
∗

R have 0-length 3 and µAR and µA
∗

L to have 0-length 4. And so on.
Now we check that this allows any isomorphism f : A 7→ A∗ to compute D. To

figure out if n ∈ D we begin by considering the initial/original module (in A and
A∗) which codes n. We compute f

(
µAL
)
. If this is equal to µA

∗

L then we conclude
that D(n) = 0, because by the construction, if D(n) = 1 we always switch. However
if we find that f

(
µAL
)

= µA
∗

R then we will know that there is some least stage s
where n enters D at stage s. Find this stage s and locate the new module which
is started at stage s. Inductively, apply f on this new module. The fact that D
is ∆0

2 means that only finitely many new modules are started and this process will
terminate after finitely many steps.
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So now we must describe how to implement this global strategy and still satisfy
all requirements Ni. Now for the rest of this discussion we will fix n and a particular
module assigned to code n. The construction will be uniform with respect to the
modules. In order for the global strategy to work, in this module, we must ensure
that:

• if D(n) = 0 with no changes, then µAL
∼= µA

∗

L and µAR
∼= µA

∗

R but µAL 6∼= µAR.

These are the only nodes in the module. Hence any f must map µAL to µA
∗

L .

• if D(n) = 1 then µAL 6∼= µA
∗

L .

As long as these two are satisfied, the global strategy will work, as we only apply f
on µAL . In particular, once n is enumerated in D for the first time (if ever), we are
allowed to add other nodes into the module, and the global strategy will not care
about what we do to these nodes. We will now describe what are the extra nodes
added, and assume, for notational simplicity that we add these extra nodes in A.
Of course we will mirror these actions in A∗ but we will suppress mention of this.
In other words, once n is enumerated in D we will begin adding and growing new
nodes in A and duplicate these actions in A∗. We will also occasionally grow µAL
and duplicate these actions for µA

∗

R . Similarly when we grow µAR we will duplicate

this for µA
∗

L .
To satisfy Ni we will describe, uniformly, how to map nodes in this module of

A to the corresponding nodes in Bi. Since we can computably distinguish between
different components (using the unary predicates), this uniformity will allow us to
construct a computable (in D) isomorphism between A and Bi.

2.3. Notations used. We shall require the following parameters to organize the
construction:

• For each η ∈ 2i−1, we shall define a partial computable functional gη, so that
if η is an initial segment of the true path, gDη will be an isomorphism from
A to Bi. Each module of A will be working towards coding membership of
some n in D, so it will be sufficient for the map gDη to only consult the oracle
about membership of n in D for any node in that module. To ease notation,
when we are restricting our attention to a module coding membership of n
in D, we let g0

η denote the map that will be correct if the approximation

to n in D does not change after the node α was introduced, and g1
η denote

the map that will be correct otherwise. If α is a node in a module coding
n, we will let fη(α) be the first node in Bi that appears isomorphic to α
at an η-recovery stage, and let g0

η(α) = fη(α). Though fη = g0
η here, the

notion of the “first node” map will be helpful to us. We will define g1
η(α)

more cleverly, so that α and g1
η(α) will be isomorphic if the approximation

to n in D changes and η is on the true path. Note, however, that α and
g1
η(α) will not be isomorphic at any stage of the construction.

• There are two operations which generate new nodes in A: a forward op-
eration Fη and a backward operation Bη. Nodes α ∈ A will require us to
define g1

η(α). For certain reasons we do not wish to define g1
η(α) to be some

node already present in B|η|. The operation Fη will be used to generate a
new node Fη(α) ∈ A which will force B|η| to produce a new node which

can then be used as g1
η(α). That is, we will define g1

η(α) = fη(Fη(α)). The

idea is that by controlling the growth of Fη(α) we can restrain g1
η(α) from

growing unexpectedly and hence ensure α ∼= g1
η(α) in the limit. Of course
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the newly introduced node Fη(α) will now require us to define g1
η(Fη(α));

for this reason we will need to introduce an infinite forward sequence α,
Fη(α), F2

η(α), . . . ,Fkη(α), . . .

In order to ensure that the map g1
η is onto, we will also need an infinite

backward sequence Bη(α), B2
η(α), . . .B1

η(α), . . .Bnη (α), . . ..
We will often refer to such nodes introduced into A for the sake of the

requirement η as η-nodes.

3. One requirement Ni in isolation

3.1. Initial n 6∈ D. We now consider one requirement in isolation, and fix a par-
ticular module coding n. Suppose Ni is assigned to η of the priority tree (right now
we have not yet discussed the priority tree). Let m be a unique number associated
to this module and guess η. At the beginning before n enters D we have no choice
but to only have the main nodes µL and µR with 0-lengths 2 and 1, respectively.
We wait for Bi to respond with nodes that we can use to define g0

η(µL) and g0
η(µR).

Nothing else interesting happens at this point.

3.2. n enters D. Now assume that at some stage n first enters D. We switch the
main nodes in A and A∗ as described in Section 2.2. So now, in A, µL has 0-length
2 and µR has 0-length 3. Wait for Bi to catch up. Note that now we may have
g0
η(µL) ∼= µR and vice-versa. Now we need to grow, step by step, the following

sequences:

· · · → B2
η(µL)→ Bη(µL)→ µL → Fη(µL)→ F2

η(µL)→ · · ·

· · · → B2
η(µR)→ Bη(µR)→ µR → Fη(µR)→ F2

η(µR)→ · · ·
Since this is the basic action in the construction, we now describe how these

sequences are formed and will help us define g1
η correctly. At the start we only have

the nodes µL and µR in A and g0
η(µL) and g0

η(µR) in B|η|.
First we grow a new node in A which we label with Fη(µL). We first grow this

new node to have m-length 2, introduce no other chains, and wait for Bi to respond.
Since the existing nodes in Bi all have non-trivial 0-lengths, the only way to catch
up is for Bi to grow a new node to have m-length 2. Once we see this we then grow
Fη(µL) to have 0-length 2. Again the only way for Bi to catch up is to respond
by growing the same node σ. Once we see this, we define g1

η(µL) = σ and define

g0
η(Fη(µL)) = σ. This completes one round of the basic action.

Now at the next round we grow a new node in A labeled Bη(µL). We would like
Bη(µL) ∼= g0

η(µL) which currently has 0-length 2 or 3. Let’s assume that g0
η(µL)

currently has 0-length 3. So we grow Bη(µL) to have the same 0-length 3. We again
do this in a two step process as above: First, grow Bη(µL) to have m-length 4 and
no other chains. When Bi responds with a new node, say σ′, we grow Bη(µL) to
have 0-length 3. Again Bi must respond by growing the same node. We then define
g1
η(Bη(µL)) = fη(µL) and g0

η(Bη(µL)) = σ′.
For the third and fourth rounds repeat symmetrically by growing Fη(µR) and

Bη(µR) in A, making sure that each node is introduced with an m-length two
greater than the one before. At the end of the fourth round there are six nodes in
each structure, with all the non-main nodes having distinct m-lengths that are off
by at least two from one another. See Figure 2.
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B(µL) µL F(µL)

g0(B(µL)) g0(µL) g0(F(µL)) g0(B(µR)) g0(µR) g0(F(µR))

B(µR) µR F(µR)

g0 g0 g0 g0 g0 g0

g1 g1 g1 g1
A

B|η|

Figure 2. End of the fourth round.

Now observe that we still need to define g1
η on Fη(µL) and Fη(µR), and we need

to define (g1
η)−1 on two nodes in Bi. After completing these four rounds we say

that we have completed a single η-cycle.
At the end of a cycle we grow m-lengths. Increase every m-length in every node

by one. Since all distinct m-lengths are off by two from one another, this will ensure
that fη(σ) ∼= σ for each η-node σ at each η-recovery stage.

Now we begin the next cycle and define F2
η(µL),F2

η(µR),B2
η(µL) and B2

η(µR). We

also extend g0
η and g1

η. At the end of each cycle we always grow the m-lengths.
In the limit the structure will look like in Figure 3.
If D(n) = 1 and Bi ∼= A then we complete infinitely many cycles.
If D(n) = 1 forever with no extraction, then it is easy to see that g1

η is a bijection.
Every node will eventually have m-length∞, and the 0-lengths of all nodes remain
as they were at the stage when n first entered D. Hence µL 6∼= µR (as required by
the global strategy) and α ∼= g1

η(α) for every α ∈ A.

3.3. n leaves D. Let’s consider the case when n leaves D after finitely many cycles.
We need to homogenize the module, because currently µL 6∼= g0

η(µL). Assume that
the 0-lengths are x and x + 1. We will now make µL and µR have the same 0-
length x+ 1. We grow all A-nodes accordingly and stop putting new nodes into A.
Wait for Bi to catch up. It is again easy to check that every Bi-node must catch
up accordingly, i.e. fη(σ) ∼= σ, because of the uniqueness of the m-lengths of the
non-main nodes, and the fact that the main nodes are now isomorphic. Let’s again
call this completing a single η-cycle.

For the next cycle we increase all the m-lengths all by one.
Now if n never re-enters D, the effect of completing infinitely many such η-cycles

is to make every node in A and Bi have 0-length x + 1, and every non-trivial m-
length to be ∞. This means that the module is completely homogeneous and so g0

η

is an isomorphism of the module. In this case we only have finitely many nodes as
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Figure 3. After 4 cycles

we never introduce a new node when n 6∈ D. Also the global requirement does not
care what we do in this module as D(n) = 0 and n enumerated at least once in D.

3.4. n re-enters D. Now assume that at some point after finitely many η-cycles
(while D(n) = 0), we find that n is re-enumerated in D. Assume that at this
point the 0-length of µL and µR is x. Now we are going to perform what we call
η-preparation. This consists of the following steps.

3.4.1. Separating µL, µR. Notice that with the exception of µL and µR which are
identical to each other, all nodes in A are distinct due to their unique m-lengths.
Since n has entered D, we must again distinguish µL and µR. We first grow the
0-types of the main nodes, i.e. keep µL with 0-length x and grow µR to have 0-
length x+ 1. Leave all other nodes for the time being. Wait for Bi to catch up (if
we were in the middle of a cycle, we also complete the cycle). At this point, either
µL ∼= g0

η(µL) and µR ∼= g0
η(µR), or µL ∼= g0

η(µR) and µR ∼= g0
η(µL). In the first

case, increase the 0-length of all the forward and backward nodes of µR by one. In
the second case, increase the 0-length of all forward nodes of µR by one, and all
backward nodes of µL by one (the “wrong” recovery has caused us to “flip” the
backward sequences).

3.4.2. Resuming the construction of the F and B sequences. We now continue the
process of introducing more forward and backward nodes in our sequences for µL
and µR. We always introduce the nodes in our slow way, with longer and distinct
m-lengths that are off by two from one another, and such that the 0-length of F(α)
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agrees with the 0-length of α, and also the 0-length of B(α) agrees with the 0-length
of α.

We note that at the end, if there are infinitely many η-expansionary stages,
then for every k 6= 0, every k-length of every node in A,Bi will be ∞. So the
nodes (in the limit) are only differentiated by their 0-length (if D(n) = 1) and are
indistinguishable (if D(n) = 0).

4. Two requirements, ν = η ∗ fin

We now consider two requirements, η and ν. Here ν is of lower priority, working
on Nj , and believes in the finitary outcome of η, which is working on Ni. The
outcomes of η are the usual ones, guessing whether Bi ∼= A.

Roughly speaking, η and ν pursue their strategies as described in Section 3, with
very little interaction. We now describe how this will work in a given module. The
module will still have the nodes µL and µR, and the 0-lengths of these nodes will be
dictated by the approximation to D on the relevant value for this module, exactly
as in Section 3. But now, η has to define an isomorphism between A and Bi, while
ν has to define an isomorphism between A and Bj . So they will both be putting
nodes into A, and they must correctly map nodes that they did not introduce. Let
mη and mν be unique numbers associated to this module and the guesses η and ν,
respectively. Since ν believes the finitary recovery of η, its strategy will be reset
at each η-recovery stage. When this happens, mν will be reset to a new, unused
value.

The strategy for η proceeds exactly as described in Section 3, building Fη and
Bη sequences for µL and µR, using the number mη for m. At some point, we are
ready to consider ν. Since ν is guessing the finitary recovery for η, it assumes
that there will be no more η-recovery stages, and so η will not be introducing any
further nodes into A. The ν strategy considers the finitely many Fη and Bη nodes
that have already been introduced to be garbage. Note that all these η-nodes have
distinct mη-lengths. At the next ν-recovery, when Bj exhibits the unique nodes,
the ν strategy sets both g0

ν and g1
ν to map the η-nodes to their matching nodes

in Bj . That is, g0
η = g1

η = fη on these nodes. Now ν proceeds as in Section 3,
building Fη and Bη sequences for µL and µR, using the number mν for m. The
only modification is that at the point of the cycle when we extend the 0-length of a
new ν-nodes, we also extend the mη-length to match the mη-lengths in µL and µR.
So if there are indeed no more η-recovery stages, then the strategy for ν will work
out almost exactly as in Section 3, with just a few extra nodes floating about with
distinguished mη-lengths, and the shortest mη length found in µL and µR repeated
in all other nodes. Now if at some point the η-strategy does recover, it will similarly
view all the ν-nodes as garbage, and both g0

η and g1
η will use fη to map them at

the next η-recovery. All mν-lengths will be increased to be equal to one another.
The η strategy will continue building its Fη and Bη sequences, but at the point of
copying the 0-length will also copy the final mν-length. When µ restarts, it will
use a new value for mν , and proceed as before.

5. Two requirements, ν = η ∗∞

We now consider two requirements, η and ν, where ν is of lower priority, working
on Nj , and believes in the infinitary outcome of η, which is working on Ni. So ν
only gets to act at η ∗∞ stages.
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Let us again consider what happens in a given module. As before, let mη and mν

be unique numbers associated to this module and the guesses η and ν, respectively.
Since η has highest priority, it must be allowed to proceed with its own strategy
without waiting for ν, which it does as described in the earlier sections. Since ν
believes in the∞ outcome of η, it must decide where to map the nodes η introduces.
It cannot ask for η to wait, and Bj might be slower to recover than Bi. So even
though the η-nodes have distinct mη-lengths, this does not help ν with defining an
isomorphism between A and Bj . The solution is for ν to make separate Fν and Bν
nodes for each of the η-nodes. All the different ν-nodes will have unique mν-lengths
off by at least two from one another at each stage, so ν can work with the same
number mν in all its nodes. As the mν-length grows in µL and µR, this will be
reflected back to the η-nodes at η-recovery stages (at the point where the 0-lengths
were caught up in the basic strategy.)

6. The formal construction

We now give the formal construction, following the plan outlined in the previous
sections.

Let d ≤ 0′ be arbitrary, and fix D ∈ d with computable approximation
Ds. Adopt the convention that Ds(n) = 0 for all s ≤ n. We will construct a
structure with degree of categoricity d. The structure will be over the language
L = {Un,k, En}n,k∈ω. The Un,k will be unary relations (that will partition the uni-
verse). The En will be binary relations (thought of as edges with colour n). Note
that we have chosen an infinite computable language purely out of convenience. If
we wanted a finite language, we could simply simulate the predicates Un,k and En
by attaching cycles of different lengths.

We will build computable copies A and A∗ of the same structure, such that A
has strong degree of categoricity d as witnessed by A and A∗. We will build A, and
we will specify how what we build in A should be reflected into A∗. The structures
A and A∗ will be isomorphic at each stage of the construction, as well as in the
limit.

The purpose of the Un,k is to separate the modules for coding membership into
D. Each member of A will have exactly one of the Un,k hold of it, and the members
of Un,k will be the module coding whether the approximation to D(n) changes a
k + 1st time. In particular UAn,k 6= ∅ ⇔ |{s | Ds+1(n) 6= Ds(n)}| ≥ k.

We must define functionals gη for η ∈ 2<ω such that if η is on the true path of our
construction and B|η| ∼= A then gDη : A ∼= B|η|. For α ∈ A, first check which module
α belongs to. If α ∈ Un,k, then this means the approximation to n in D changed
at least k times. Let s denote the stage when the first member was introduced into
Un,k, or equivalently the stage when the approximation to n in D changed the kth
time. Then we let gDη (α) = g0

η(α) if D(n) = Ds(n), and gDη (α) = g1
η(α) otherwise,

where g0
η and g1

η will be defined during the construction. We will also define maps
fη : A → B|η| which at η-recovery stages will be injective maps that take nodes in
A to nodes in B|η| in such a way that important m-lengths are preserved.

All nodes in the structures will have a node type of either “basic”, or “ρ” for
some ρ ∈ 2<ω. As such, nodes will be referred to as “basic nodes” or “ρ nodes”. A
node’s type may change during the construction.
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Definition 6.1. We say a map h : A[t] → B|η|[s] from nodes of A[t] to nodes of
B|η|[s] is length preserving for η if for each α ∈ A[t], h(α) is a node in B|η|[s] with
the same m-lengths as α except for m = 0 or m = mρ[s] with ρ̂ 0 � η or ρ ≥ η̂ 1.

We now define what it means for s to be an η-stage.
Stage 0: 0 is an η-stage for all η ∈ 2<ω.
Stage s > 0: s is a λ-stage. Suppose s is an η-stage for some η ∈ 2<ω with

|η| < s. Let t < s be the greatest such that t is a τ -stage for some τ ≤ η̂ 0 with
|τ | = |η̂ 0|. We say s is an η̂ 0-stage, and also say s is an η-recovery stage if η is
active, and there is an injective map h : A[t]→ B|η|[s] from nodes of A[t] to nodes
of B|η|[s] that is length preserving for η such that h ⊇ fη[t], if dom(fη[t]) 6= A[t]
and rng(fη[t]) 6= B[s] then the least node β ∈ B|η|[t] with β 6∈ rng(fη[t]) belongs to
the range of h, and for basic nodes α ∈ A[t] the 0-length of h(α) agrees with the
0-length of α[s− 1]. If s is an η-recovery stage, we also define sη = t. If s is not an
η-recovery stage, we say s is an η̂ 1-stage. Let ηs ∈ 2s be such that s is an ηs-stage.
(Note that ηs exists and is unique.)

Construction. Stage 0: Introduce basic nodes µL with 0-length 2 and µR with
0-length 1 into U0,0. Declare all strategies to be active.

Stage s > 0:
We first make sure all nodes of the form µL and µR are correctly coding mem-

bership in D.
For n = s and each n such that Ds(n) 6= Ds−1(n), do as follows. Let k be least

such that Un,k = ∅. Introduce basic nodes µAL and µA
∗

L (with 0-length 2), and µAR
and µA

∗

R (with 0-length 1) into Un,k.

If k ≥ 1, then in Un,k−1, grow µA
∗

R to have 0-length 2, and µAR and µA
∗

L to have

0-length 3. Make the commitment that henceforth µA
∗

L
∼= µAR and µA

∗

R
∼= µAL . That

is, if ever we say to grow µL in a certain way, we really mean both µAL and µA
∗

R ,
and symmetrically with L and R switched.

If k ≥ 2, then for all l ≤ k − 2 do as follows. In Un,l, if the 0-length of µL and
the 0-length of µR are the same, increase the 0-length of µR by one. If the 0-length
of µR is one greater than the 0-length of µL, extend the 0-lengths of all nodes in
Un,l to have 0-length equal to that of µR.

Now we act for various strategies η based on our current approximation ηs.
For all ν > ηs, undefine fν , g0

ν and g1
ν on any values they have been defined

on, and reset the ν strategy as follows. Increase all mν-lengths to the maximum
current mν length. As will be immediate from their forthcoming definitions, each
ν-node β is of the form Flν(α) or Blν(α) for some l ≥ 1 and some node α that is
either a basic node or ρ-node for some ρ with ρ � ν. Now that the mν-lengths of
α and β are equal, we have that α is isomorphic to β. Make the commitment that
henceforth the node β copies α, and that the label and node type of β is the same
as the label and node type of α. We cancel all ν-cycles, re-set mν to a new value,
and declare ν to be active.

If there is an η with η � ηs such that B|η|[s] contains extra copies or proper
extensions of nodes with non-minimal mρ-length for any ρ such that ρ ≤ η and
ρ̂ 0 6≺ η, or ρ such that ρ � η̂ 0 as compared to A[s − 1], we choose the highest
priority such η and act to meet N|η| by ensuring B|η| 6∼= A. Declare η to be inactive.
Proceed to the next stage of the construction.

Otherwise, proceed as follows.
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For all η with η̂ 0 � ηs (initial segments of ηs for which we have recovery), do
as follows.

For each node α that was present at stage sη and on which it is not already
defined, we define fη(α) = h(α), where h is the map witnessing that s is an η-
recovery stage. We will have g0

η = fη on all nodes where fη is defined.

For all ρ-nodes α with ρ̂ 0 6� η̂ 0, if fη(α) is defined but g1
η is not already defined,

we define g1
η(α) = fη(α).

For each n, k such that Un,k+1 6= ∅, do as follows in Un,k. If η is active and there
is an active η-cycle, perform the next step as prescribed by that cycle. If there is
not an active η-cycle, we activate one. At each η-stage, one step is taken in the
η-cycle. As we are now activating the η-cycle, we describe the steps that will need
to be taken to complete it.

Step 1: For each node α that is either basic, or a ρ-node with ρ̂ 0 � η, and on
which fη(α) has been defined, for the least l for which Flη(α) and Blη(α) have not

been defined, we build Flη(α) and Blη(α) in A during this step. List the finitely
many nodes to be built during this step, and assign them distinct mη-lengths, all
greater than the mη-length of µL, and such that all the lengths have a difference of
at least 2 between each other (so that later we can simultaneously grow them all by
one and have them distinct from each other and the lengths at the previous stage).
For each of the nodes being created in this step, introduce a new labeled η-node
with an mη-chain of the assigned length, and an m-chain of minimal m-length for
all m 6= mη that have a non-trivial m-length in another node of the module.

Step 2: Define the map g1
η on the newly introduced nodes. For α a basic node

or a ρ-node with ρ̂ 0 � η, g1
η(Fl−1

η (α)) = fη(Flη(α)), and g1
η(Blη(α)) = fη(Bl−1

η (α)).

(Here F0
η(α) = B0

η(α) = α.)
The next two steps deal with all η-nodes, not just the new ones.
Step 3: For any η-nodes of the form Flη(α), increase all 0-lengths to that of α.

For any η-nodes of the form Blη(α), increase all 0-lengths to that of fη(Bl−1
η (α)).

Step 4: Increase the mη-length of each η-node by one.
Step 5: Let m be the minimum of the mη-lengths of η-nodes at the end of step 4.

For any node α which is not an η-node, increase the mη-length of α to m−1. (The
idea is that these are nodes α for which η may have started forward and backward
sequences. The mη-length is not being used to distinguish between these nodes,
but must tend to infinity if the relevant map is to be correct in the limit. We want
the mη-length of non η-nodes to be equal.)

This completes the instructions for what must happen in a single η-cycle. That
is, once step 5 is complete, we say that the η-cycle is complete, and there is no
active η-cycle until one is activated during the next η-recovery stage.

This completes the construction.

Verification. We begin with some observations about the construction.
At a given stage, if α is an η-node, then for m 6= mη, 0, the m-length of η is

minimal. The mη-length of α agrees only with the mη-lengths of nodes with the
same label as α, and differs by at least two from the mη-length of all other nodes.

After it is introduced, a node α can only have its label changed finitely often. So
there is some ρ ≤ TP and some stage s such that it is a ρ-node at all stages beyond
s. In this case we will say the node is a ρ-node at the end of the construction, and
that its label at the end of the construction is the label it had at stage s.
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We note that the nodes in A at the end of the construction will look as follows.
Firstly, each node will have infinite m-lengths for exactly those m that are the final
value of mρ for some ρ with ρ̂ 0 ≺ TP . So it remains to describe the m-lengths for
all other m, which will all be finite. The 0-lengths will all be finite, and will either
all be the same or will be one of two values that differ by one. If m is not mρ for
any ρ at the end of the construction, then all m-lengths will be equal and minimal.
If α is a ρ-node with ρ ≤ TP it may have non-minimal m-lengths only for m = mρ.

Lemma 6.2. Suppose η is on the true path and A ∼= B|η|, and that s0 is such that
ηs ≥ η for all s ≥ s0. Then η is active at all stages s ≥ s0.

Proof. Assume for a contradiction that η is declared inactive at some stage s ≥ s0.
Then B|η|[s] contains an extra copy or proper extension of a node with non-minimal
mρ-length as compared to A[s − 1] for some ρ such that ρ ≤ η and ρ 6≺ η, or ρ
such that ρ � η. We have no η-recovery stages after s since we have declared η
inactive at stage s and it cannot be reactivated since s ≥ s0. Thus there can be
no extension to or additions of nodes with non-trivial mρ-length to A after stage
s − 1, so B|η| 6∼= A, a contradiction. Hence η is active at all stages greater than or
equal to s0. �

Lemma 6.3. Suppose η is on the true path and A ∼= B|η|, and that s0 is such that
ηs ≥ η for all s ≥ s0. Then for any node α and any s > s0 such that there exists
an injective map of nodes A[sη]→ B|η|[s] that is length preserving for η, if fη(α)[s]
is defined then it has the same m-lengths as α except for mρ[s] with ρ̂ 0 � η or
ρ ≥ η 1̂, or 0. Moreover, if α is not a basic node or a ρ-node with ρ̂ 0 ≺ η then the
0-length is also the same.

Proof. We restrict our attention to a fixed module. Suppose fη(α) was defined with
the desired properties at stage sη. We verify that fη(α) has the desired properties
at stage s.

If we care about the m-length, and m 6= mη, then m = mρ with ρ̂ 1 � η, ρ < ηs,
or η̂ 0 � ρ. In all these cases the m-length does not change between the end of
stage sη and the beginning of stage s.

We consider different cases depending on the node type of α.
If α is an η-node, then the mη-length of α at stage sη agrees only with the mη-

lengths of nodes with the same label as α, and differs by two from the mη-length of
all other nodes. Depending on which step we are in at stage sη, the mη-lengths of
all η-nodes present at stage sη either remain unchanged or increase by one. There
is no change to mη-lengths between the stages sη and s. Nodes with the same label
agree on all m-lengths at all times. Since η is active at stage s, B|η|[s] does not
have extra copies of nodes with non-minimal mη-length as compared to A[s − 1].
So since we have an injection that is length preserving for η from A[sη] to B|η|[s],
the node fη(α)[s] must have grown into (or remained) a node with the required
properties.

If α is a ρ-node with ρ < η̂ 0, ρ 6� η, then the mρ-length of α at stage sη agrees
only with the mρ-lengths of nodes with the same label as α, and differs by two from
the mρ-length of all other nodes. As ρ is to the left of the true path, there is no
change to mρ-lengths at any further point in the construction beyond s0, and there
are only the finitely many ρ-nodes in A that were present in A[s0]. Since B|η| ∼= A,
there cannot be new nodes with non-minimal mρ-length in B|η|[s] as compared to
B|η|[sη]. Nodes with the same label agree on all m-lengths at all times. So since
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we have an injection that is length preserving for η from A[sη] to B|η|[s], the node
fη(α)[s] must have grown into (or remained) a node with the required properties.

If α is a ρ-node with ρ̂ 1 � η, then the mρ-length of α at stage sη agrees only
with the mρ-lengths of nodes with the same label as α, and differs by two from the
mρ-length of all other nodes. As ρ̂ 1 is an initial segment of η, the approximation
ηs does not go to the left of ρ̂ 1 after stage s0, so there is no change to mρ-lengths
at any further point in the construction beyond s0, and there are only the finitely
many ρ-nodes in A that were present in A[s0]. Since B|η| ∼= A, there cannot be new
nodes with non-minimal mρ-length in B|η|[s] as compared to B|η|[sη]. Nodes with
the same label agree on all m-lengths at all times. So since we have an injection
that is length preserving for η from A[sη] to B|η|[s], the node fη(α)[s] must have
grown into (or remained) a node with the required properties.

If α is a ρ-node with ρ � η̂ 0, we will not have had any ρ-stage in between sη
and s, so similar to first case.

If α is basic node or a ρ-node with ρ̂ 0 � η, then all non-zero m-lengths that
should be preserved by the lemma were minimal. Any new nodes introduced into A
between stages sη and s would be ν-nodes with ν 0̂ � η or ν > η. Such nodes have
the correct m-lengths as far as α is concerned. The node fη(α) cannot grow into
an mν node for ν 1̂ � η since A ∼= B|η| and the nodes have already been matched
up. Similarly it cannot grow into an mν node for ν < ηs, since the approximation
will not visit left of η again and the others have been matched up. �

Lemma 6.4. If η is on the true path and A ∼= B|η|, then η 0̂ is on the true path.

Proof. Let s0 be least such that ηs ≥ η for all s ≥ s0. Let t > s0 be an η̂ 0-stage
or t = s0. We show that there is an η̂ 0-stage after t. Let s > t be least such that
s is an η-stage, A[t] ⊆ B|η|[s] and B|η|[s] agrees with A[s − 1] on the 0-lengths of
the basic nodes. Such a stage exists since A ∼= B|η| and since 0-lengths are finite.
Consider the induced injective map h from nodes of A[t] to nodes of B[s]. This
map is length preserving for η, since if m is a length that must be respected then
m = mρ for some ρ with ρ < TP (ρ 6≺ TP ) or ρ̂ 1 ≺ η. That is, there will be no
more ρ-nodes after stage s0. So if the map is not length preserving for η, then A[t]
cannot catch up to B|η|[s], contradicting A ∼= B|η|. By Lemma 6.3, we may assume
h extends fη[t]. Suppose finally that dom(fη[t]) 6= A[t] and rng(fη[t]) 6= B[s], and
let β be the least node B|η|[s] \ rng(fη[t]). Note that A[t] \ dom(fη[t]) consists of
the nodes that were introduced into A at stage t. In particular, they have minimal
m-length for all m that must be respected for h to be length preserving for η. Now
consider β. We may assume, increasing s if necessary, that all m-lengths that were
present in A[t] are at least minimal in β[s]. Assume for a contradiction that h
cannot be modified to still be length preserving for η and include β in its range.
Then β must have a non-trivial mρ-length for some ρ with ρ < TP (ρ 6≺ TP ) or
ρ̂ 1 ≺ η. But then we would have declared η inactive at stage s, contrary to Lemma
6.2. �

Lemma 6.5. If η is on the true path and A ∼= B|η|, then fη is onto.

Proof. By Lemma 6.4, η̂ 0 is on the true path. At every η̂ 0 stage where there is a
chance to extend fη, the construction includes the next node of B in the range of
fη. Thus fη is onto. �

Lemma 6.6. The structure A is D-computably categorical.
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Proof. Suppose A ∼= Bi. Let η ≺ TP be such that i = |η|. Let s0 be a stage such
that the approximation does not go to the left of η after stage s0. Then the η
strategy is not reset after stage s0, so we refer to gDη as the version defined starting

at s0. We show that gDη : A ∼= B|η|.
For each α ∈ A, to compute gDη (α), first compute the module Un,k to which α

belongs. If α ∈ Un,k, then this means the approximation to n in D changed at least
k times. Let s denote the stage when the first member was introduced into Un,k,
or equivalently the stage when the approximation to n in D changed the kth time.
Then gDη (α) = g0

η(α) if D(n) = Ds(n), and gDη (α) = g1
η(α) otherwise.

Since the modules are disjoint, to check that gDη is an isomorphism, it suffices to
check that it is an isomorphism on each module. Fix a module Un,k. We have three
cases to consider. No changes to the approximation of n in D after the module was
started, a positive even number of changes after the module was started, or an odd
number of changes since the module was started.

If there were no changes to the approximation of n in D after the module was
started, then the module contains only the basic nodes µL and µR. In this case
for α = µL or α = µR, gDη (α) = g0

η(α) = fη(α). Since the 0-length does not get
extended after the first stage it is introduced, and since α and fη(α) have the same
0-length when fη(α) is defined, we have α ∼= fη(α) for both α, and so we have an
isomorphism on the module.

If there were a positive even number of changes to the approximation of n in
D after the module was started, then all 0-lengths are equal at the end of the
construction. In this case gDη (α) = g0

η(α) = fη(α) for all α in the module. By
Lemma 6.3, at recovery stages, α has the same m-lengths as fη(α) except for mρ

with ρ̂ 0 � η or ρ ≥ η̂ 1, or 0. Now for ρ with ρ̂ 0 � η we have that the mρ lengths
are all infinite at the end of the construction. For ρ with ρ̂ 0 � η, the ρ strategies
always get canceled with discarded mρ-lengths equalized. All 0-lengths are equal.
Thus each α ∼= fη(α). The map fη is easily seen to be injective by its construction,
and is surjective by Lemma 6.5.

Finally, consider the case when there were an odd number of changes to the
approximation of n in D after the module was started. In this case gDη (α) =

g1
η(α) for all α in the module. For ρ-nodes α with ρ̂ 0 6� η̂ 0 we have g1

η(α) =
fη(α). For these nodes, Lemma 6.3 also guarantees equality of 0-lengths between
α and fη(α) at recovery stages. So by an argument as in the previous paragraph,
α ∼= fη(α) for these α. For α a basic node or a ρ-node with ρ̂ 0 � η and l ≥
1, we have g1

η(Fl−1
η (α)) = fη(Flη(α)), and g1

η(Blη(α)) = fη(Bl−1
η (α)). Recall that

all η nodes belong to the forward and backward sequences for such α, so these
definitions complete the definition of g1

η on all nodes. Now Flη(α) is an η-node, so

by Lemma 6.3 and our usual argument, Flη(α) ∼= fη(Flη(α)). According to step 3
of the construction, each node in the forward sequence for α has the same 0-length
as α, and indeed at any stage the members of the forward sequence for α differ
from α and each other only in their mη-length. Since η̂ 0 is on the true path, the
mη-lengths are all infinite. Thus Fl−1

η (α)) ∼= Flη(α) ∼= fη(Flη(α)) = g1
η(Fl−1

η (α)).
For nodes of the backward sequence for α, the 0-length of each is equal to that of
fη(α), and they differ from each other only on their mη-length. For l ≥ 2, Lemma
6.3 and our usual argument gives Bl−1

η (α) ∼= fη(Bl−1
η (α)), so that at the end of the

construction Blη(α)) ∼= Bl−1
η (α) ∼= fη(Bl−1

η (α)) = g1
η(Blη(α)). Also by Lemma 6.3, α

agrees with fη(α) on all important lengths except possibly on the 0-length. Since
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the 0-length of Blη(α)) is equal to that of fη(α), it follows that at the end of the

construction B1
η(α)) ∼= fη(α) = g1

η(Blη(α)). The map g1
η is a bijection since fη is.

Indeed, it exactly copies fη on nodes with ρ̂ 0 6� η̂ 0. The rest of the nodes all
belong to disjoint forward/backward sequences, on which the fη map is shifted by
one along the sequence by g1

η. �

Lemma 6.7. A and A∗ are computable copies of the same structure.

Proof. They are the same stage-by-stage. There is only one stage in each disjoint
module where the action taken is not exactly the same, so they are isomorphic in
the limit. �

Lemma 6.8. If f : A ∼= A∗, then f ≥T D.

Proof. The procedure for computing whether n ∈ D is as follows. Find the least k
such that f(µL) = µL for µL in the module Un,k. Then n ∈ D ⇐⇒ n ∈ Dk. �

7. Questions

Many open questions about degrees of categoricity remain; here are our two
favourites.

Bazhenov, Kalimullin and Yamaleev [BKY16], and Csima and Stephenson [CS19]
gave examples of structures whose degree of categoricity is not a strong degree for
that structure. However, we do not know if every degree of categoricity is a strong
degree of categoricity for some structure:

Question 7.1. Are all degrees of categoricity strong?

The result of this paper shows that one will need to look outside the ∆0
2 degrees

for a counterexample.

Question 7.2. If d is such that 0(α) ≤ d ≤ 0(α+1) for some computable ordinal
α, must d be a degree of categoricity?

It seems likely that the techniques of this paper, combined with the techniques
in [CDHTM20] could be used to give a positive answer to this question. Thus, we
conjecture that this holds in the positive.
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