Mutually Orthogonal Latin Squares with Large Holes Christopher M. van Bommel & Peter Dukes

5	3	4	6	7	8	9	1	
6	7	2	1	9	5	3	4	
1	9	8	3	4	2	5	6	
8	5	9	7	6	1	4	2	
4	2	6	8	5	3	7	9	
7	1	3	9	2	4	8	5	
9	6	1	5	3	7	2	8	
2	8	7	4	1	9	6	3	
3	4	5	2	8	6	1	7	

A Completed Sudoku

Latin Square

- $v \times v$ array.
- Entries from a set of v symbols, often [v].
- Each row and each column contains every symbol.

Playing Card Problem

Mutually Orthogonal Latin Squares (MOLS)

- Multiple $v \times v$ Latin squares.
- For any two squares, every ordered pair formed by superimposing the two squares is distinct.

University of Victoria

Euler's 36 Officer Problem

Is it possible to arrange six regiments, each with six officers of different ranks, in a 6×6 array so that each row and each column contains one officer from each regiment and one officer of each rank?

Theorem (Tarry)

Orthogonal Latin Squares of order 6 do not exist.

Theorem (Bose, Shrikhande, Parker)

Orthogonal Latin Squares exist for all $v \neq 2, 6$.

2-IMOLS(6; 2)

Incomplete MOLS (IMOLS)

- $v \times v$ arrays each with empty $n \times n$ subarray.
- Each row or column contains each symbol at most once.
- For any two squares, every ordered pair formed by superimposing the two squares is distinct.
- Can be completed with MOLS of order n (if they exist).

2

8

3

6

5

9

If n is sufficiently large, there exist at least $n^{\frac{1}{14.8}}$ MOLS of order n.

Theorem (Horton) If t-IMOLS(v; n) exist, then $v \ge (t+1)n$.

There exist t-IMOLS(v; n) for all sufficiently large v, nsatisfying $v \ge 8(t+1)^2 n$.

Suppose there exists an IPBD((v; n), K) and, for each $k \in K$, there exist t idempotent MOLS of order k. Then there exist t-IMOLS(v; n).

Incomplete Pairwise Balanced Designs

Let $K_0 \subseteq K$ with $\alpha(K_0) = \alpha(K)$. There exists an IPBD((v; w), K) for all sufficiently large admissible v, w satisfying $v \ge (\prod_{k \in K_0} k) w$.

Proof Sketch of Main Theorem

- more carefully chosen prime powers.

Acknowledgments

Theorem (Beth)

Main Theorem

Construction

• Take $K = \{2^f, 2^{f+1}, 3^{2f+1}\}$, where $t + 1 < 2^f \le 2(t + 1)$. • Apply Construction with IPBDs $(K_0 = \{2^f, 2^{f+1}\})$ and idempotent MOLS (existence known for prime powers). • Can improve inequality for **specific** values of t with

http://qrs.ly/hp4phhp