γ-Graphs of Trees

Christopher M. van Bommel ${ }^{1,2,3}$

Joint Work with Stephen Finbow ${ }^{2}$
${ }^{1}$ University of Victoria
${ }^{2}$ St. Francis Xavier University
${ }^{3}$ University of Waterloo

July 27, 2015
(1) Introduction
(2) Algorithm
(3) γ-Trees of Trees

Introduction

Dominating Sets

Definition

A dominating set is a subset of vertices such that each vertex not in the set is adjacent to a vertex in the set. A γ-set is a dominating set of minimum cardinality.

Private Neighbours

Definition

A vertex v is a private neighbour (pn) of a vertex $x \in D$ if $v \in N[x]$ and $\forall y \in D, y \neq x \Longrightarrow v \notin N[y]$. If $v=x$ it is a self private neighbour (spn), otherwise it is an external private neighbour (epn).

γ-Graph

Definition

If G is a graph, let $G(\gamma)$ be the graph whose vertices are γ-sets of G, and two γ-sets D and F are adjacent if $F=D-\{v\} \cup\{w\}$ for some $v w \in E(G)$.

Questions (Fricke et al., 2011)

1. Is $\Delta(T(\gamma))=O(n)$ for every tree T of order n ?
2. Is $\operatorname{diam}(T(\gamma))=O(n)$ for every tree T of order n ?
3. Is $|V(T(\gamma))| \leq 2^{\gamma(T)}$ for every tree T ?
4. Which graphs are γ-graphs of trees?
5. Which graphs are γ-graphs? Can you construct a graph H that is not a γ-graph of any graph G ?
6. For which graphs G is $G(\gamma) \cong G$?
7. Under what conditions is $G(\gamma)$ a disconnected graph?

Questions (Fricke et al., 2011)

1. \checkmark Is $\Delta(T(\gamma))=O(n)$ for every tree T of order n ?
2. \checkmark Is $\operatorname{diam}(T(\gamma))=O(n)$ for every tree T of order n ?
3. \checkmark Is $|V(T(\gamma))| \leq 2^{\gamma(T)}$ for every tree T ?
4. ? Which graphs are γ-graphs of trees?
5. \checkmark Which graphs are γ-graphs? Can you construct a graph H that is not a γ-graph of any graph G ?
6. ? For which graphs G is $G(\gamma) \cong G$?
7. ? Under what conditions is $G(\gamma)$ a disconnected graph?

Answers

Theorem (Edwards, 2015)

1. If $|V(T)|=n$, then $\Delta(T(\gamma)) \leq n-\gamma(T)$.

Theorem (Edwards, 2015)

2. For any tree T, $\operatorname{diam}(T(\gamma)) \leq 2(2 \gamma(T)-s)$, where s is the number of support vertices in T.

Theorem (Edwards, 2015)

3. For any tree $T,|V(T(\gamma))| \leq((1+\sqrt{13}) / 2)^{\gamma(T)}$. Moreover, there are infinitely many trees T for which $|V(T(\gamma))|>2^{\gamma(T)}$.

Theorem (Connelly et al., 2011)

5. For any graph H, there exists a graph G such that $G(\gamma) \cong H$.

Examples

- $K_{1, n}(\gamma) \cong K_{1}$.
- $K_{2, n}(\gamma) \cong K_{1,2 n}$ for $n \geq 3$.
- $P_{3 k}(\gamma) \cong K_{1}$.
- $P_{3 k+2}(\gamma) \cong P_{k+2}$.
- $P_{3 k+1}(\gamma) \cong S G(k+1)$.
- $K_{n}(\gamma) \cong K_{n}$.
- $C_{3 k+2}(\gamma) \cong C_{3 k+2}$.

- $\left(P_{2} \square P_{2 k+1}\right)(\gamma) \cong \overline{K_{2}}$ for $k \geq 2$.
$P_{2} \square P_{5}$

Algorithm

Highest γ-Set

$$
h t=6
$$

Definition

If T is a tree rooted at c and D is a γ-set, then the height of D is $h t_{T}(D):=\sum_{x \in D} d(x, c)$.

Proposition (Edwards, 2015)

The highest γ-set S is unique and every $x \in S, x \neq c$, has a child as a private neighbour.

Highest γ-Set

Definition

If T is a tree rooted at c and D is a γ-set, then the height of D is $h t_{T}(D):=\sum_{x \in D} d(x, c)$.

Proposition (Edwards, 2015)

The highest γ-set S is unique and every $x \in S, x \neq c$, has a child as a private neighbour.

Highest γ-Set

Definition

If T is a tree rooted at c and D is a γ-set, then the height of D is $h t_{T}(D):=\sum_{x \in D} d(x, c)$.

Proposition (Edwards, 2015)

The highest γ-set S is unique and every $x \in S, x \neq c$, has a child as a private neighbour.

Breadth-First Search Order

Definition

- Label the root 0 . Add it to a queue.
- For each vertex in the queue, label its neighbours with the next available integers and add them to the queue. Remove the current vertex from the queue.

Algorithm Example

025

Algorithm Example

$$
\begin{aligned}
& p n(0,025)=\{1\} \\
& p n(2,025)=\{4\} \\
& p n(5,025)=\{3,5,6\}
\end{aligned}
$$

Algorithm Example

$$
\begin{aligned}
& p n(1,125)=\{1\} \\
& p n(2,125)=\{2,4\} \\
& p n(5,125)=\{5,6\}
\end{aligned}
$$

Algorithm Example

$$
\begin{aligned}
p n(0,045) & =\{0,1\} \\
p n(4,045) & =\{4\} \\
p n(5,045) & =\{3,5,6\}
\end{aligned}
$$

Algorithm Example

Algorithm Example

Algorithm Result

Algorithm to Determine $T(\gamma)$

- Root T at an arbitrary vertex c.
- Find the highest γ-set S of (T, c). Let new $(S)=-1$.
- Assign a breadth-first search ordering rank to (T, c).
- For every γ-set D found:
- For every vertex $x \in D$:
- Find the private neighbours of x in D.
- If x has exactly one external private neighbour y and $\operatorname{rank}(y)>\operatorname{new}(D)$, form $D^{\prime}=D-\{x\} \cup\{y\}$.
- If x has only a self private neighbour, then for each $y \in N(x)$ with $\operatorname{rank}(y)>\operatorname{new}(D)$, form $D^{\prime}=D-\{x\} \cup\{y\}$.
- For every D^{\prime} found:
- Add edge $D D^{\prime}$. Let new $\left(D^{\prime}\right)=\operatorname{rank}(y)$ and $w\left(D D^{\prime}\right)=y$.
- If $\exists P \in N(D)$ and $\exists C \in N(P)$ such that $w(P C)=y$, add edge $C D^{\prime}$ and let $w\left(C D^{\prime}\right)=w(P D)$.

γ-Trees of Trees

Leaves of γ-Trees

Lemma

If D is a leaf in $T(\gamma)$, then exactly one vertex in D has fewer than two epns.

Proof.

- If $z \in D$ has no epns, then for every $w \in N(z)$, $D-\{z\} \cup\{w\}$ is an adjacent γ-set of T.
- If $z \in D$ has exactly one epn y, then $D-\{z\} \cup\{y\}$ is an adjacent γ-set of T.
- If $z \in D$ has at least two epns v, w, then z is their only common neighbour, so every adjacent γ-set of T contains z.

Subtrees of γ-Trees

Theorem

$$
\text { If } G \cong T(\gamma) \text { and } L \text { is a leaf of } G, \text { then } G-L \cong T^{\prime}(\gamma)
$$

Proof.

- Suppose x is the only vertex in L with fewer than two epns.
- \exists ! y such that $L-\{x\} \cup\{y\}$ is a γ-set of T.
- If every other γ-set of T contains y, T^{\prime} is formed by adding a leaf to y.
- Otherwise, delete x, and T^{\prime} is the component containing y.

Corollary

$$
G \cong T(\gamma) \Longrightarrow \forall G^{\prime} \subseteq G, \quad G^{\prime} \cong T^{\prime}(\gamma)
$$

Private Neighbours

Lemma

Let D and F be adjacent γ-sets of a tree T and let $x \in D \cap F$. Then $||p n(x, D)|-|p n(x, F)|| \leq 1$.

Proof.

- Let $F=D-\{y\} \cup\{z\}$.
- Suppose instead $|p n(x, D)|-|p n(x, F)| \geq 2$.
- Then $\exists v, w \in p n(x, D)$ such that $v, w \notin p n(x, F)$.
- Hence $v, w \in N[x]$ and $v, w \in N[z]$.
- Therefore, x, z, v, w form a cycle in T, which is a contradiction.

γ-Graph H?

Lemma: If $T(\gamma)$ is a tree, $H \nsubseteq T(\gamma)$.

- L_{i} is the only γ-set containing x_{i}, and x_{i} swaps with y_{i}.
- If $y_{1} \neq y_{2}, x_{1}$ and x_{2} are epns in S_{1}. Then y_{1} and y_{2} have a common neighbour z, and no other swaps are possible.
- Hence $y_{1}=y_{2}$ has only an spn in S_{1} and $y_{3}=y_{4}$ has only an spn in S_{2}.
- If $y_{1} \in S_{2}$, then y_{1} has at most one epn in S_{2}, so it has a swap.
- Hence $y_{1} \notin S_{2}$ and $y_{3} \notin S_{1}$. But then y_{3} is an epn of y_{1} in S_{1}.

Characterization

Theorem

If G is a tree, $G \cong T(\gamma)$ iff $H \nsubseteq G$.

Proof.

- True if G is a star.
- Assume true for all subgraphs of G.
- Choose a degree 2 vertex x.
- Let G_{1}, G_{2} be the components of $G-x$.
- $G_{1} \cup\{x\} \cong T_{1}(\gamma)$ and $G_{2} \cup\{x\} \cong T_{2}(\gamma)$.
- Each γ-set corresponding to x contains a vertex in no other γ-set of $T_{1}(\gamma)$ and $T_{2}(\gamma)$.
- Join these two vertices with a new vertex.

What Other Graphs are γ-Graphs of Trees?

- Every Cartesian product graph whose factors are γ-graphs of trees is a γ-graph of a tree.
- $K_{2,3} \nsubseteq T(\gamma)$.
- Every edge which is not a bridge of $T(\gamma)$ is contained in a 4-cycle.
- . . . ?

Thank You!

Mount
 Allison
 U N IVERSITY

