$\gamma\text{-}\mathsf{Graphs}$ of Trees

Christopher M. van Bommel^{1,2,3}

Joint Work with Stephen Finbow²

¹University of Victoria ²St. Francis Xavier University ³University of Waterloo

July 27, 2015

Introduction

Dominating Sets

Definition

A dominating set is a subset of vertices such that each vertex not in the set is adjacent to a vertex in the set. A γ -set is a dominating set of minimum cardinality.

Private Neighbours

Definition

A vertex v is a private neighbour (pn) of a vertex $x \in D$ if $v \in N[x]$ and $\forall y \in D, y \neq x \implies v \notin N[y]$. If v = x it is a self private neighbour (spn), otherwise it is an external private neighbour (epn).

γ -Graph

Definition

If G is a graph, let $G(\gamma)$ be the graph whose vertices are γ -sets of G, and two γ -sets D and F are adjacent if $F = D - \{v\} \cup \{w\}$ for some $vw \in E(G)$.

Questions (Fricke et al., 2011)

- 1. Is $\Delta(T(\gamma)) = O(n)$ for every tree T of order n?
- 2. Is $\operatorname{diam}(T(\gamma)) = O(n)$ for every tree T of order n?

3. Is
$$|V(T(\gamma))| \le 2^{\gamma(T)}$$
 for every tree T?

- 4. Which graphs are γ -graphs of trees?
- 5. Which graphs are γ -graphs? Can you construct a graph H that is not a γ -graph of any graph G?
- 6. For which graphs G is $G(\gamma) \cong G$?
- 7. Under what conditions is $G(\gamma)$ a disconnected graph?

Questions (Fricke et al., 2011)

- 1. \checkmark Is $\Delta(T(\gamma)) = O(n)$ for every tree T of order n?
- 2. \checkmark Is diam $(T(\gamma)) = O(n)$ for every tree T of order n?
- 3. \checkmark Is $|V(T(\gamma))| \le 2^{\gamma(T)}$ for every tree T?
- 4. ? Which graphs are γ -graphs of trees?
- 5. \checkmark Which graphs are γ -graphs? Can you construct a graph H that is not a γ -graph of any graph G?
- 6. ? For which graphs G is $G(\gamma) \cong G$?
- 7. ? Under what conditions is $G(\gamma)$ a disconnected graph?

Answers

Theorem (Edwards, 2015)

1. If
$$|V(T)| = n$$
, then $\Delta(T(\gamma)) \leq n - \gamma(T)$.

Theorem (Edwards, 2015)

2. For any tree T, diam $(T(\gamma)) \le 2(2\gamma(T) - s)$, where s is the number of support vertices in T.

Theorem (Edwards, 2015)

3. For any tree T, $|V(T(\gamma))| \leq ((1 + \sqrt{13})/2)^{\gamma(T)}$. Moreover, there are infinitely many trees T for which $|V(T(\gamma))| > 2^{\gamma(T)}$.

Theorem (Connelly et al., 2011)

5. For any graph H, there exists a graph G such that $G(\gamma) \cong H$.

Introduction

Algorithm

Examples

- $K_{1,n}(\gamma) \cong K_1$.
- $K_{2,n}(\gamma) \cong K_{1,2n}$ for $n \ge 3$.
- $P_{3k}(\gamma) \cong K_1$.
- $P_{3k+2}(\gamma) \cong P_{k+2}$.
- $P_{3k+1}(\gamma) \cong SG(k+1).$
- $K_n(\gamma) \cong K_n$.
- $C_{3k+2}(\gamma) \cong C_{3k+2}$.

- $K_{m,n}(\gamma) \cong \overline{K_{mn}}$ for $m, n \ge 3$.
- $C_{3k}(\gamma) \cong \overline{K_3}$ for $k \ge 2$.
- $(P_2 \Box P_{2k+1})(\gamma) \cong \overline{K_2}$ for $k \ge 2$.

Highest γ -Set

Definition

If T is a tree rooted at c and D is a γ -set, then the height of D is $ht_T(D) := \sum_{x \in D} d(x, c)$.

Proposition (Edwards, 2015)

The highest γ -set S is unique and every $x \in S$, $x \neq c$, has a child as a private neighbour.

Highest γ -Set

Definition

If T is a tree rooted at c and D is a γ -set, then the height of D is $ht_T(D) := \sum_{x \in D} d(x, c)$.

Proposition (Edwards, 2015)

The highest γ -set S is unique and every $x \in S$, $x \neq c$, has a child as a private neighbour.

Highest γ -Set

Definition

If T is a tree rooted at c and D is a γ -set, then the height of D is $ht_T(D) := \sum_{x \in D} d(x, c)$.

Proposition (Edwards, 2015)

The highest γ -set S is unique and every $x \in S$, $x \neq c$, has a child as a private neighbour.

Breadth-First Search Order

Definition

- Label the root 0. Add it to a queue.
- For each vertex in the queue, label its neighbours with the next available integers and add them to the queue. Remove the current vertex from the queue.

 $pn(0,025) = \{1\}$ $pn(2,025) = \{4\}$ $pn(5,025) = \{3,5,6\}$

$$pn(1, 125) = \{1\}$$

$$pn(2, 125) = \{2, 4\}$$

$$pn(5, 125) = \{5, 6\}$$

 $pn(0,045) = \{0,1\}$ $pn(4,045) = \{4\}$ $pn(5,045) = \{3,5,6\}$

4

045

Algorithm Example

 $pn(2,235) = \{0,2,4\}$ $pn(3,235) = \{1\}$ $pn(5,235) = \{6\}$

 $pn(1, 145) = \{0, 1\}$ $pn(4, 145) = \{2, 4\}$ $pn(5, 145) = \{5, 6\}$

Algorithm Result

Algorithm to Determine $T(\gamma)$

- Root T at an arbitrary vertex c.
- Find the highest γ -set S of (T, c). Let new(S) = -1.
- Assign a breadth-first search ordering rank to (T, c).
- For every γ -set D found:
 - For every vertex $x \in D$:
 - Find the private neighbours of x in D.
 - If x has exactly one external private neighbour y and $\operatorname{rank}(y) > \operatorname{new}(D)$, form $D' = D \{x\} \cup \{y\}$.
 - If x has only a self private neighbour, then for each $y \in N(x)$ with rank(y) > new(D), form $D' = D \{x\} \cup \{y\}$.
 - For every D' found:
 - Add edge DD'. Let new(D') = rank(y) and w(DD') = y.
 - If $\exists P \in N(D)$ and $\exists C \in N(P)$ such that w(PC) = y, add edge CD' and let w(CD') = w(PD).

$\gamma\text{-}\mathsf{Trees}$ of Trees

Leaves of γ -Trees

Lemma

If D is a leaf in $T(\gamma)$, then exactly one vertex in D has fewer than two epns.

Proof.

- If z ∈ D has no epns, then for every w ∈ N(z), D − {z} ∪ {w} is an adjacent γ-set of T.
- If $z \in D$ has exactly one epn y, then $D \{z\} \cup \{y\}$ is an adjacent γ -set of T.
- If z ∈ D has at least two epns v, w, then z is their only common neighbour, so every adjacent γ-set of T contains
 - Ζ.

Subtrees of γ -Trees

Theorem

If
$$G \cong T(\gamma)$$
 and L is a leaf of G, then $G - L \cong T'(\gamma)$.

Proof.

- Suppose x is the only vertex in L with fewer than two epns.
- $\exists ! y \text{ such that } L \{x\} \cup \{y\} \text{ is a } \gamma \text{-set of } T.$
- If every other γ -set of T contains y, T' is formed by adding a leaf to y.
- Otherwise, delete x, and T' is the component containing y.

Corollary

$$G \cong T(\gamma) \implies \forall G' \subseteq G, \quad G' \cong T'(\gamma).$$

Private Neighbours

Lemma

Let D and F be adjacent γ -sets of a tree T and let $x \in D \cap F$. Then $||pn(x, D)| - |pn(x, F)|| \le 1$.

Proof.

- Let $F = D \{y\} \cup \{z\}$.
- Suppose instead $|pn(x, D)| |pn(x, F)| \ge 2$.
- Then $\exists v, w \in pn(x, D)$ such that $v, w \notin pn(x, F)$.
- Hence $v, w \in N[x]$ and $v, w \in N[z]$.
- Therefore, *x*, *z*, *v*, *w* form a cycle in *T*, which is a contradiction.

Lemma: If $T(\gamma)$ is a tree, $H \nsubseteq T(\gamma)$.

- L_i is the only γ -set containing x_i , and x_i swaps with y_i .
- If $y_1 \neq y_2$, x_1 and x_2 are epns in S_1 . Then y_1 and y_2 have a common neighbour z, and no other swaps are possible.
- Hence $y_1 = y_2$ has only an spn in S_1 and $y_3 = y_4$ has only an spn in S_2 .
- If $y_1 \in S_2$, then y_1 has at most one epn in S_2 , so it has a swap.
- Hence $y_1 \notin S_2$ and $y_3 \notin S_1$. But then y_3 is an epn of y_1 in S_1 .

Characterization

Theorem

If G is a tree,
$$G \cong T(\gamma)$$
 iff $H \nsubseteq G$.

Proof.

- True if G is a star.
- Assume true for all subgraphs of G.
- Choose a degree 2 vertex x.
- Let G_1, G_2 be the components of G x.
- $G_1 \cup \{x\} \cong T_1(\gamma)$ and $G_2 \cup \{x\} \cong T_2(\gamma)$.
- Each γ -set corresponding to x contains a vertex in no other γ -set of $T_1(\gamma)$ and $T_2(\gamma)$.
- Join these two vertices with a new vertex.

What Other Graphs are γ -Graphs of Trees?

- Every Cartesian product graph whose factors are γ -graphs of trees is a γ -graph of a tree.
- $K_{2,3} \nsubseteq T(\gamma)$.
- Every edge which is not a bridge of T(γ) is contained in a 4-cycle.
- . . . ?

Thank You!

