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Latin Squares

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Definition

v × v array.

Entries from a set of v symbols, often [v ].

Each row and each column contains every symbol.
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Orthgonal Latin Squares

Definition

Two v × v Latin squares.

Every ordered pair formed by superimposing the two squares
are distinct.

A♠ K♥ Q♦ J♣
K♦ A♣ J♠ Q♥
Q♣ J♦ A♥ K♠
J♥ Q♠ K♣ A♦
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Euler’s 36 Officers Problem

Problem

Is it possible to arrange six regiments, each with six officers of
different ranks, in a 6× 6 array so that each row and each column
contains one officer from each regiment and one officer of each
rank?

Theorem (Bose, Shirkhande, & Parker, 1960)

Orthogonal Latin Squares exist for all v 6= 2, 6.
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So Close!

N p R B K Q

Q K p N R B

p N K Q B R

B R N p Q K

K B Q R

R Q B K
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Incomplete Latin Squares

4 5 6 1 2 3

6 4 5 2 3 1

5 6 4 3 1 2

1 2 3

3 1 2

2 3 1

Definition

v × v array with empty n × n subarray.

Each row and each column contains each symbol at most
once.

Rows and columns containing empty cells do not contain the
symbols that index them.
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Mutually Orthogonal Incomplete Latin Squares

5 6 3 4 1 2

2 1 6 5 3 4

6 5 1 2 4 3

4 3 5 6 2 1

1 4 2 3

3 2 4 1

1 2 5 6 3 4

6 5 1 2 4 3

4 3 6 5 1 2

5 6 4 3 2 1

2 4 3 1

3 1 2 4

Definition (Orthogonal)

Two incomplete Latin squares of order v with common hole
size n.

Every ordered pair formed by superimposing the two squares
are distinct.

No such ordered pair indexes an empty cell.
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Necessary and Sufficient Conditions

Theorem (Horton, 1974)

If t−IMOLS(v , n) exist, then v ≥ (t + 1)n.

Theorem

There exist t−IMOLS(v , n) for

t v n Reference

1 ≥ 2n
2 ≥ 3n 6= (6, 1) Heinrich & Zhu, 1986
3 ≥ 4n 6= (6, 1), (10, 1)? Abel et al., 1997
4 ≥ 7n ≥ 98 Colbourn & Zhu, 1995
5 ≥ 7n + 7 ≥ 571 Drake & Lenz, 1980
6 ≥ 7n ≥ 781 Colbourn & Zhu, 1995
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Sufficient Asymptotic Condition

Main Theorem (Dukes & van Bommel, 2014+)

There exist t−IMOLS(v , n) for all sufficiently large v , n satisfying
v ≥ 8(t + 1)2n.

Construction

Suppose there exists an IPBD((v ; n),K ) and, for each k ∈ K ,
there exist t idempotent MOLS of order k. Then there exist
t−IMOLS(v , n).

van Bommel & Dukes Mutually Orthogonal Latin Squares with Large Holes



Introduction Incomplete Mutually Orthogonal Latin Squares Pairwise Balanced Designs Main Theorem

Idempotent Mutually Orthogonal Latin Squares

Definition (Idempotent)

Each cell (i , i) in each square contains the symbol i .

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4

Proposition

For prime powers q, there exist q− 2 idempotent MOLS of order q.
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Pairwise Balanced Designs, PBD(v ,K )

Example

PBD(7, {3}):

{1, 2, 4}, {2, 3, 5}, {3, 4, 6},
{4, 5, 7}, {5, 6, 1}, {6, 7, 2},

{7, 1, 3}.

Definition

v points, collection of blocks.

Size of each block is in K .

Each pair of distinct points appear together in exactly one
block.
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PBDs: Necessary and Sufficient Conditions

Proposition

The existence of an PBD(v ,K ) implies

v(v − 1) ≡ 0 (mod β(K )) (global)

v − 1 ≡ 0 (mod α(K )) (local)

Definition

β(K ) := gcd{k(k − 1) : k ∈ K}
α(K ) := gcd{k − 1 : k ∈ K}

Theorem (Wilson’s Theorem)

Given any K ⊆ Z≥2, there exist PBD(v ,K ) for all sufficiently large
v satisfying (global) and (local).
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Incomplete Pairwise Balanced Designs, IPBD((v ;w),K )

Example

IPBD((11; 2), {3, 4}):

{1, 2, 3, 10}, {4, 5, 6, 10}, {7, 8, 9, 10}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},
{1, 5, 9, 11}, {2, 6, 7, 11}, {3, 4, 8, 11}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}.

Definition

v points, w in the hole, collection of blocks.

Size of each block is in K .

No two points in the hole are in a common block.

Each pair of distinct points not both in the hole appear
together in exactly one block.
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IPBDs: Necessary Conditions

Proposition

The existence of an IPBD((v ; w),K ) implies

v(v − 1)− w(w − 1) ≡ 0 (mod β(K )) (global)

v − 1 ≡ w − 1 ≡ 0 (mod α(K )) (local)

v ≥ (min K − 1)w + 1 (inequality)

Definition

β(K ) := gcd{k(k − 1) : k ∈ K}
α(K ) := gcd{k − 1 : k ∈ K}
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Resolvable Designs

Example

Resolvable PBD(9, {3}):

{1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{1, 4, 7}, {2, 5, 8}, {3, 6, 9},
{1, 5, 9}, {2, 6, 7}, {3, 4, 8},
{1, 6, 8}, {2, 4, 9}, {3, 5, 7}.

Definition

Partition the blocks into parallel classes.

Each point occurs in exactly one block in each parallel class.
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Resolvable Designs ⇐⇒ IPBDs

Example

IPBD((13, 4), {4}):

{1, 2, 3, 10}, {4, 5, 6, 10}, {7, 8, 9, 10},
{1, 4, 7, 11}, {2, 5, 8, 11}, {3, 6, 9, 11},
{1, 5, 9, 12}, {2, 6, 7, 12}, {3, 4, 8, 12},
{1, 6, 8, 13}, {2, 4, 9, 13}, {3, 5, 7, 13}.

Proposition

If v = (k − 1)w + 1, then there exists an IPBD((v ; w), {k}) if and
only if there exists a resolvable PBD(v − w , {k − 1}).
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IPBDs: Sufficient Conditions

Theorem (Dukes, Lamken, & Ling, 2014+)

For every real number ε > 0, there exists an IPBD((v ; w), {k}) for
all sufficiently large v ,w satisfying (global), (local), and
v ≥ (k − 1 + ε)w.

Theorem (Dukes & van Bommel, 2014+)

Let K0 ⊆ K with α(K0) = α(K ). There exists an IPBD((v ; w),K )
for all sufficiently large v ,w satisfying (global), (local), and
v ≥ (

∏
k∈K0

k)w.
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IMOLS Construction

Example

IPBD((7; 3), {3}):

{1, 2, 5}, {1, 3, 6},
{1, 4, 7}, {2, 3, 7},
{2, 4, 5}, {3, 4, 5}.

+
1 3 2

3 2 1

2 1 3

→

1 5 6 7 2 3 4

5 2 7 6 1 4 3

6 7 3 5 4 1 2

7 6 5 4 3 2 1

2 1 4 3
3 4 1 2

4 3 2 1
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Proof Sketch

Main Theorem (Dukes & van Bommel, 2014+)

There exist t−IMOLS(v , n) for all sufficiently large v , n satisfying
v ≥ 8(t + 1)2n.

Proof.

Remains to find a suitable block set K .

To ensure idempotent MOLS exist, use prime powers.

To ensure α(K ) = 1, need an even value.

Hence, choose t + 1 < 2f ≤ 2(t + 1).

Also take 2f+1 and 32f+1.

Then K0 = {2f , 2f+1}.
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Product Construction

1 2 3 7 8 9 4 5 6

2 3 1 8 9 7 5 6 4

3 1 2 9 7 8 6 4 5

7 8 9 4 5 6 1 2 3

8 9 7 5 6 4 2 3 1

9 7 8 6 4 5 3 1 2

4 5 6 1 2 3

5 6 4 2 3 1

6 4 5 3 1 2

9 8 7 6 5 4 3 2 1

7 9 8 4 6 5 1 3 2

8 7 9 5 4 6 2 1 3

3 2 1 9 8 7 6 5 4

1 3 2 7 9 8 4 6 5

2 1 3 8 7 9 5 4 6

6 5 4 3 2 1

4 6 5 1 3 2

5 4 6 2 1 3
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Conjectures

Conjecture

Let K ⊆ Z≥2. For any real ε > 0, there exist IPBD((v ; w),K ) for
all sufficiently large v ,w satisfying (global), (local), and
v ≥ (min K − 1 + ε)w.

Conjecture

There exist t−IMOLS(v , n) for all sufficiently large v , n satisfying
v ≥ 2(t + 1)n.
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