Mutually Orthogonal Latin Squares with Large Holes

Christopher M. van Bommel & Peter Dukes

University of Victoria

October 22, 2014

Latin Squares

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

- $v \times v$ array.
- Entries from a set of v symbols, often [v].
- Each row and each column contains every symbol.

Orthgonal Latin Squares

- Two $v \times v$ Latin squares.
- Every ordered pair formed by superimposing the two squares are distinct.

Euler's 36 Officers Problem

Problem

Is it possible to arrange six regiments, each with six officers of different ranks, in a 6×6 array so that each row and each column contains one officer from each regiment and one officer of each rank?

Theorem (Bose, Shirkhande, & Parker, 1960)

Orthogonal Latin Squares exist for all $v \neq 2, 6$.

Main Theorem

So Close!

Main Theorem

Incomplete Latin Squares

4	5	6	1	2	3
6	4	5	2	3	1
5	6	4	3	1	2
1	2	3			
3	1	2			
2	3	1			

- $v \times v$ array with empty $n \times n$ subarray.
- Each row and each column contains each symbol at most once.
- Rows and columns containing empty cells do not contain the symbols that index them.

Mutually Orthogonal Incomplete Latin Squares

5	6	3	4	1	2
2	1	6	5	3	4
6	5	1	2	4	3
4	3	5	6	2	1
1	4	2	3		
3	2	4	1		

1	2	5	6	3	4
6	5	1	2	4	3
4	3	6	5	1	2
5	6	4	3	2	1
2	4	3	1		
3	1	2	4		

Definition (Orthogonal)

- Two incomplete Latin squares of order v with common hole size n.
- Every ordered pair formed by superimposing the two squares are distinct.
- No such ordered pair indexes an empty cell.

Necessary and Sufficient Conditions

Theorem (Horton, 1974)

If t-IMOLS(v, n) exist, then $v \ge (t+1)n$.

Theorem

There exist t-I	IMOLS(v	′, n`) for
-----------------	---------	-------	-------

t	V	n	Reference
1	$\geq 2n$		
2	$\geq 3n$	eq (6, 1)	Heinrich & Zhu, 1986
3	$\geq 4n$	eq (6, 1), (10, 1)?	Abel et al., 1997
4	$\geq 7n$	\geq 98	Colbourn & Zhu, 1995
5	$\geq 7n+7$	\geq 571	Drake & Lenz, 1980
6	$\geq 7n$	\geq 781	Colbourn & Zhu, 1995

Sufficient Asymptotic Condition

Main Theorem (Dukes & van Bommel, 2014+)

There exist t-IMOLS(v, n) for all sufficiently large v, n satisfying $v \ge 8(t+1)^2 n$.

Construction

Suppose there exists an IPBD((v; n), K) and, for each $k \in K$, there exist t idempotent MOLS of order k. Then there exist t-IMOLS(v, n).

Idempotent Mutually Orthogonal Latin Squares

Definition (Idempotent)

Each cell (i, i) in each square contains the symbol i.

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

Proposition

For prime powers q, there exist q - 2 idempotent MOLS of order q.

Introduction

Pairwise Balanced Designs, PBD(v, K)

Example

```
PBD(7, {3}):
```

```
 \begin{split} &\{1,2,4\},\{2,3,5\},\{3,4,6\},\\ &\{4,5,7\},\{5,6,1\},\{6,7,2\},\\ &\{7,1,3\}. \end{split}
```

- v points, collection of blocks.
- Size of each block is in K.
- Each pair of distinct points appear together in exactly one block.

PBDs: Necessary and Sufficient Conditions

Proposition

The existence of an PBD(v, K) implies

$$\begin{aligned} v(v-1) &\equiv 0 \pmod{\beta(K)} & (\text{global}) \\ v-1 &\equiv 0 \pmod{\alpha(K)} & (\text{local}) \end{aligned}$$

Definition

$$eta(K) := \gcd\{k(k-1) : k \in K\}$$

 $lpha(K) := \gcd\{k-1 : k \in K\}$

Theorem (Wilson's Theorem)

Given any $K \subseteq \mathbb{Z}_{\geq 2}$, there exist PBD(v, K) for all sufficiently large v satisfying (global) and (local).

Incomplete Pairwise Balanced Designs, IPBD((v; w), K)

Example

IPBD((11; 2), {3, 4}):

 $\{1,2,3,10\}, \{4,5,6,10\}, \{7,8,9,10\}, \{1,4,7\}, \{2,5,8\}, \{3,6,9\}, \\ \{1,5,9,11\}, \{2,6,7,11\}, \{3,4,8,11\}, \{1,6,8\}, \{2,4,9\}, \{3,5,7\}.$

- v points, w in the hole, collection of blocks.
- Size of each block is in K.
- No two points in the hole are in a common block.
- Each pair of distinct points not both in the hole appear together in exactly one block.

IPBDs: Necessary Conditions

Proposition

The existence of an IPBD((v; w), K) implies

$$v(v-1) - w(w-1) \equiv 0 \pmod{\beta(K)}$$
(global)

$$v-1 \equiv w-1 \equiv 0 \pmod{\alpha(K)}$$
 (local)

$$v \geq (\min K - 1)w + 1$$
 (inequality)

$$eta(K) := \gcd\{k(k-1) : k \in K\}$$

 $lpha(K) := \gcd\{k-1 : k \in K\}$

Main Theorem

Resolvable Designs

Example

```
Resolvable PBD(9, \{3\}):
```

$$\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}, \\ \{1, 4, 7\}, \{2, 5, 8\}, \{3, 6, 9\}, \\ \{1, 5, 9\}, \{2, 6, 7\}, \{3, 4, 8\}, \\ \{1, 6, 8\}, \{2, 4, 9\}, \{3, 5, 7\}.$$

- Partition the blocks into *parallel classes*.
- Each point occurs in exactly one block in each parallel class.

Resolvable Designs \iff IPBDs

Example

```
IPBD((13, 4), {4}):
```

$$\{1, 2, 3, 10\}, \{4, 5, 6, 10\}, \{7, 8, 9, 10\}, \\ \{1, 4, 7, 11\}, \{2, 5, 8, 11\}, \{3, 6, 9, 11\}, \\ \{1, 5, 9, 12\}, \{2, 6, 7, 12\}, \{3, 4, 8, 12\}, \\ \{1, 6, 8, 13\}, \{2, 4, 9, 13\}, \{3, 5, 7, 13\}.$$

Proposition

If v = (k - 1)w + 1, then there exists an IPBD((v; w), {k}) if and only if there exists a resolvable PBD($v - w, {k - 1}$).

IPBDs: Sufficient Conditions

Theorem (Dukes, Lamken, & Ling, 2014+)

For every real number $\epsilon > 0$, there exists an IPBD((v; w), {k}) for all sufficiently large v, w satisfying (global), (local), and $v \ge (k - 1 + \epsilon)w$.

Theorem (Dukes & van Bommel, 2014+)

Let $K_0 \subseteq K$ with $\alpha(K_0) = \alpha(K)$. There exists an IPBD((v; w), K) for all sufficiently large v, w satisfying (global), (local), and $v \ge (\prod_{k \in K_0} k)w$.

Main Theorem

IMOLS Construction

Example

IPBD((7; 3), {3}):

$$\{1, 2, 5\}, \{1, 3, 6\},\$$

 $\{1, 4, 7\}, \{2, 3, 7\},\$
 $\{2, 4, 5\}, \{3, 4, 5\}.$

1	5	6	7	2	3	4
5	2	7	6	1	4	3
6	7	3	5	4	1	2
7	6	5	4	3	2	1
2	1	4	3			
3	4	1	2			
4	3	2	1			

1	3	2
3	2	1
2	1	3

Proof Sketch

Main Theorem (Dukes & van Bommel, 2014+)

There exist t-IMOLS(v, n) for all sufficiently large v, n satisfying $v \ge 8(t+1)^2 n$.

Proof.

- Remains to find a suitable block set K.
- To ensure idempotent MOLS exist, use prime powers.
- To ensure $\alpha(K) = 1$, need an even value.
- Hence, choose $t + 1 < 2^{f} \le 2(t + 1)$.
- Also take 2^{f+1} and 3^{2f+1} .
- Then $K_0 = \{2^f, 2^{f+1}\}.$

Product Construction

1	2	3	7	8	9	4	5	6	9	8	7	6	5	4
2	3	1	8	9	7	5	6	4	7	9	8	4	6	5
3	1	2	9	7	8	6	4	5	8	7	9	5	4	6
7	8	9	4	5	6	1	2	3	3	2	1	9	8	7
8	9	7	5	6	4	2	3	1	1	3	2	7	9	8
9	7	8	6	4	5	3	1	2	2	1	3	8	7	9
4	5	6	1	2	3				6	5	4	3	2	1
5	6	4	2	3	1				4	6	5	1	3	2
6	4	5	3	1	2				5	4	6	2	1	3

Conjectures

Conjecture

Let $K \subseteq \mathbb{Z}_{\geq 2}$. For any real $\epsilon > 0$, there exist IPBD((v; w), K) for all sufficiently large v, w satisfying (global), (local), and $v \ge (\min K - 1 + \epsilon)w$.

Conjecture

There exist t-IMOLS(v, n) for all sufficiently large v, n satisfying $v \ge 2(t+1)n$.

Thank You!

