Mutually Orthogonal Latin Squares with Large Holes

Christopher M. van Bommel \& Peter Dukes

University of Victoria

October 22, 2014

Latin Squares

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

Definition

- $v \times v$ array.
- Entries from a set of v symbols, often [v].
- Each row and each column contains every symbol.

Orthgonal Latin Squares

Definition

- Two $v \times v$ Latin squares.
- Every ordered pair formed by superimposing the two squares are distinct.

A	KC	Q \downarrow	Jd
K \diamond	A¢	Jap	Q
Q\%	J®	AS	K
	Q		

Euler's 36 Officers Problem

Problem

Is it possible to arrange six regiments, each with six officers of different ranks, in a 6×6 array so that each row and each column contains one officer from each regiment and one officer of each rank?

Theorem (Bose, Shirkhande, \& Parker, 1960)
 Orthogonal Latin Squares exist for all $v \neq 2,6$.

So Close！

0	ζ	器	置	क ${ }^{\text {a }}$	雀is
	\％${ }_{8}^{8}$	ξ	0	吡	客
ε	0	\％		寄	骂
冎	皆	0	ε	舜近	古
古	寞	鷘	管		
吡	舜年	寄	\％${ }_{8}^{8}$		

Incomplete Latin Squares

4	5	6	1	2	3
6	4	5	2	3	1
5	6	4	3	1	2
1	2	3			
3	1	2			
2	3	1			

Definition

- $v \times v$ array with empty $n \times n$ subarray.
- Each row and each column contains each symbol at most once.
- Rows and columns containing empty cells do not contain the symbols that index them.

Mutually Orthogonal Incomplete Latin Squares

5	6	3	4	1	2
2	1	6	5	3	4
6	5	1	2	4	3
4	3	5	6	2	1
1	4	2	3		
3	2	4	1		

1	2	5	6	3	4
6	5	1	2	4	3
4	3	6	5	1	2
5	6	4	3	2	1
2	4	3	1		
3	1	2	4		

Definition (Orthogonal)

- Two incomplete Latin squares of order v with common hole size n.
- Every ordered pair formed by superimposing the two squares are distinct.
- No such ordered pair indexes an empty cell.

Necessary and Sufficient Conditions

```
Theorem (Horton, 1974)
If t-IMOLS (v,n) exist, then v\geq(t+1)n.
```


Theorem

There exist $t-\operatorname{IMOLS}(v, n)$ for

t	v	n	Reference
1	$\geq 2 n$		
2	$\geq 3 n$	$\neq(6,1)$	Heinrich \& Zhu, 1986
3	$\geq 4 n$	$\neq(6,1),(10,1) ?$	Abel et al., 1997
4	$\geq 7 n$	≥ 98	Colbourn \& Zhu, 1995
5	$\geq 7 n+7$	≥ 571	Drake \& Lenz, 1980
6	$\geq 7 n$	≥ 781	Colbourn \& Zhu, 1995

Sufficient Asymptotic Condition

Main Theorem (Dukes \& van Bommel, 2014+)

There exist $t-\operatorname{IMOLS}(v, n)$ for all sufficiently large v, n satisfying $v \geq 8(t+1)^{2} n$.

Construction

Suppose there exists an $\operatorname{IPBD}((v ; n), K)$ and, for each $k \in K$, there exist t idempotent MOLS of order k. Then there exist $t-\operatorname{IMOLS}(v, n)$.

Idempotent Mutually Orthogonal Latin Squares

Definition (Idempotent)

Each cell (i, i) in each square contains the symbol i.

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

1	4	2	3
3	2	4	1
4	1	3	2
2	3	1	4

Proposition

For prime powers q, there exist $q-2$ idempotent MOLS of order q.

Pairwise Balanced Designs, PBD(v,K)

Example
$\operatorname{PBD}(7,\{3\})$:

$$
\begin{aligned}
&\{1,2,4\},\{2,3,5\},\{3,4,6\}, \\
&\{4,5,7\},\{5,6,1\},\{6,7,2\}, \\
&\{7,1,3\} .
\end{aligned}
$$

Definition

- v points, collection of blocks.
- Size of each block is in K.
- Each pair of distinct points appear together in exactly one block.

PBDs: Necessary and Sufficient Conditions

Proposition

The existence of an $\operatorname{PBD}(v, K)$ implies

$$
\begin{aligned}
v(v-1) & \equiv 0(\bmod \beta(K)) \\
v-1 & \equiv 0(\bmod \alpha(K))
\end{aligned}
$$

Definition

$$
\begin{aligned}
& \beta(K):=\operatorname{gcd}\{k(k-1): k \in K\} \\
& \alpha(K):=\operatorname{gcd}\{k-1: k \in K\}
\end{aligned}
$$

Theorem (Wilson's Theorem)

Given any $K \subseteq \mathbb{Z}_{\geq 2}$, there exist $P B D(v, K)$ for all sufficiently large v satisfying (global) and (local).

Incomplete Pairwise Balanced Designs, IPBD ((v; w), K)

Example

$\operatorname{IPBD}((11 ; 2),\{3,4\})$:
$\{1,2,3,10\},\{4,5,6,10\},\{7,8,9,10\},\{1,4,7\},\{2,5,8\},\{3,6,9\}$, $\{1,5,9,11\},\{2,6,7,11\},\{3,4,8,11\},\{1,6,8\},\{2,4,9\},\{3,5,7\}$.

Definition

- v points, w in the hole, collection of blocks.
- Size of each block is in K.
- No two points in the hole are in a common block.
- Each pair of distinct points not both in the hole appear together in exactly one block.

IPBDs: Necessary Conditions

Proposition

The existence of an $\operatorname{IPBD}((v ; w), K)$ implies

$$
\begin{gather*}
v(v-1)-w(w-1) \equiv 0(\bmod \beta(K)) \\
v-1 \equiv w-1 \equiv 0(\bmod \alpha(K)) \tag{local}\\
v \geq(\min K-1) w+1
\end{gather*}
$$

(global)
(inequality)

Definition

$$
\begin{aligned}
& \beta(K):=\operatorname{gcd}\{k(k-1): k \in K\} \\
& \alpha(K):=\operatorname{gcd}\{k-1: k \in K\}
\end{aligned}
$$

Resolvable Designs

Example

Resolvable $\operatorname{PBD}(9,\{3\})$:

$$
\begin{aligned}
& \{1,2,3\},\{4,5,6\},\{7,8,9\}, \\
& \{1,4,7\},\{2,5,8\},\{3,6,9\}, \\
& \{1,5,9\},\{2,6,7\},\{3,4,8\}, \\
& \{1,6,8\},\{2,4,9\},\{3,5,7\} .
\end{aligned}
$$

Definition

- Partition the blocks into parallel classes.
- Each point occurs in exactly one block in each parallel class.

Resolvable Designs \Longleftrightarrow IPBDs

Example

$\operatorname{IPBD}((13,4),\{4\})$:

$$
\begin{aligned}
& \{1,2,3,10\},\{4,5,6,10\},\{7,8,9,10\}, \\
& \{1,4,7,11\},\{2,5,8,11\},\{3,6,9,11\}, \\
& \{1,5,9,12\},\{2,6,7,12\},\{3,4,8,12\}, \\
& \{1,6,8,13\},\{2,4,9,13\},\{3,5,7,13\} .
\end{aligned}
$$

Proposition

If $v=(k-1) w+1$, then there exists an $\operatorname{IPBD}((v ; w),\{k\})$ if and only if there exists a resolvable $P B D(v-w,\{k-1\})$.

IPBDs: Sufficient Conditions

Theorem (Dukes, Lamken, \& Ling, 2014+)

For every real number $\epsilon>0$, there exists an $\operatorname{IPBD}((v ; w),\{k\})$ for all sufficiently large v, w satisfying (global), (local), and $v \geq(k-1+\epsilon) w$.

Theorem (Dukes \& van Bommel, 2014+)

Let $K_{0} \subseteq K$ with $\alpha\left(K_{0}\right)=\alpha(K)$. There exists an IPBD $((v ; w), K)$ for all sufficiently large v, w satisfying (global), (local), and $v \geq\left(\prod_{k \in K_{0}} k\right) w$.

IMOLS Construction

Example

$\operatorname{IPBD}((7 ; 3),\{3\})$:

$$
\begin{aligned}
& \{1,2,5\},\{1,3,6\}, \\
& \{1,4,7\},\{2,3,7\}, \\
& \{2,4,5\},\{\mathbf{3}, \mathbf{4}, \mathbf{5}\}
\end{aligned}
$$

$\longrightarrow \quad$| 1 | 5 | 6 | 7 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 2 | 7 | 6 | 1 | 4 | 3 |
| 6 | 7 | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{4}$ | 1 | 2 |
| 7 | 6 | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | 2 | 1 |
| 2 | 1 | $\mathbf{4}$ | $\mathbf{3}$ | | | |
| 3 | 4 | 1 | 2 | | | |
| 4 | 3 | 2 | 1 | | | |

1	3	2
3	2	1
2	1	3

Proof Sketch

Main Theorem (Dukes \& van Bommel, 2014+)

There exist $t-\operatorname{IMOLS}(v, n)$ for all sufficiently large v, n satisfying $v \geq 8(t+1)^{2} n$.

Proof.

- Remains to find a suitable block set K.
- To ensure idempotent MOLS exist, use prime powers.
- To ensure $\alpha(K)=1$, need an even value.
- Hence, choose $t+1<2^{f} \leq 2(t+1)$.
- Also take 2^{f+1} and $3^{2 f+1}$.
- Then $K_{0}=\left\{2^{f}, 2^{f+1}\right\}$.

Product Construction

1	2	3	7	8	9	4	5	6
2	3	1	8	9	7	5	6	4
3	1	2	9	7	8	6	4	5
7	8	9	4	5	6	1	2	3
8	9	7	5	6	4	2	3	1
9	7	8	6	4	5	3	1	2
4	5	6	1	2	3			
5	6	4	2	3	1			
6	4	5	3	1	2			

9	8	7	6	5	4	3	2	1
7	9	8	4	6	5	1	3	2
8	7	9	5	4	6	2	1	3
3	2	1	9	8	7	6	5	4
1	3	2	7	9	8	4	6	5
2	1	3	8	7	9	5	4	6
6	5	4	3	2	1			
4	6	5	1	3	2			
5	4	6	2	1	3			

Conjectures

Conjecture

Let $K \subseteq \mathbb{Z}_{\geq 2}$. For any real $\epsilon>0$, there exist $\operatorname{IPBD}((v ; w), K)$ for all sufficiently large v, w satisfying (global), (local), and $v \geq(\min K-1+\epsilon) w$.

Conjecture

There exist $t-\operatorname{IMOLS}(v, n)$ for all sufficiently large v, n satisfying $v \geq 2(t+1) n$.

Thank You!

