Quantum Walks, State Transfer, and Modified Paths

Christopher M. van Bommel

University of Toronto Mississauga \& University of Waterloo

December 7, 2019

Decision Trees

Level 0
Level 1
Level 2

Level n -1
Level n
E. Farhi and S. Gutmann, Quantum computation and decision trees, Physical Review A 58 (1998), no. 2, 915.

Continuous Random Walk

Definition

Let X be a graph. The matrix

$$
M(t):=\exp (-t L)=\sum_{n \geq 0} \frac{t^{n}}{n!}(-L)^{n}
$$

is such that the (a, b) entry is the probability that a "walker" starting on vertex a is at vertex b after time t.

Definition

A continuous random walk is modelled such that in a short time interval δt, the walker leaves the current vertex and moves to one of the adjacent vertices with equal probability.

Continuous Quantum Walk

Definition

Let S be a real symmetric matrix. The transition operator given by S is

$$
U(t):=\exp (i t S)=\sum_{n \geq 0} \frac{(i t)^{n}}{n!} S^{n}
$$

and defines a continuous quantum walk.
For a graph X, the choices for S we will consider are the adjacency matrix A and the Laplacian L.

Using Spin Chains for Quantum Communication

S. Bose, Quantum communication through an unmodulated spin chain, Physical Review Letters 91 (2003), no. 20, 207901.

Perfect State Transfer

Definition

A graph X has perfect state transfer between vertices a and b if there exists $\tau \in \mathbb{R}$ and a complex scalar γ such that $U(\tau) \mathbf{e}_{a}=\gamma \mathbf{e}_{b}$.

Paths

$$
\begin{aligned}
& P_{2}: U_{A}(\pi / 2) \mathbf{e}_{1}=i \mathbf{e}_{2}, \quad U_{L}(\pi / 2) \mathbf{e}_{1}=\mathbf{e}_{2} ; \\
& P_{3}: U_{A}(\pi / \sqrt{2}) \mathbf{e}_{1}=-\mathbf{e}_{3} .
\end{aligned}
$$

Perfect State Transfer on Paths

Theorem (Christandl et al. 2005)

With respect to the adjacency matrix, P_{n} has perfect state transfer between the end vertices if and only if $n=2,3$.

Theorem (Stevanović 2011; Godsil 2012)

With respect to the adjacency matrix, P_{n} has perfect state transfer if and only if $n=2,3$.

Theorem (Coutinho \& Liu, 2015)
With respect to the Laplacian, if T is a tree, then T has perfect state transfer if and only if $T=P_{2}$.

Pretty Good State Transfer (PGST)

Definition

A graph X has pretty good state transfer between vertices a and b if, for every $\epsilon>0$, there exists $\tau \in \mathbb{R}$ and a complex scalar γ such that

$$
\left\|U(\tau) \mathbf{e}_{a}-\gamma \mathbf{e}_{b}\right\|<\epsilon .
$$

Example $\left(P_{4}\right)$

Pretty Good State Transfer on Paths (End Vertices)

Theorem (Godsil, Kirkland, Severini, Smith; 2012)
With respect to the adjacency matrix, there is pretty good state transfer between the end vertices of P_{n} if and only if:
(1) $n=2^{t}-1, t \in \mathbb{Z}_{+}$;
(2) $n=p-1, p$ a prime; or,
(3) $n=2 p-1, p$ a prime.

Moreover, when pretty good state transfer occurs between the end vertices of P_{n}, then it occurs between vertices a and $n+1$ - a for all $a \neq(n+1) / 2$.

Theorem (Banchi, Coutinho, Godsil, Severini; 2017)
With respect to the Laplacian, there is pretty good state transfer between the end vertices of P_{n} if and only if n is a power of 2. Moreover, when pretty good state transfer occurs between the end vertices of P_{n}, then it occurs between vertices a and $n+1-a$ for all $a \neq(n+1) / 2$.

Spectral Decomposition and Eigenvalue Support

Fact

If A is symmetric with distinct eigenvalues $\theta_{1}, \ldots, \theta_{m}$, and if E_{r} is the orthogonal projection onto the eigenspace belonging to θ_{r}, then A and has spectral decomposition

$$
A=\sum_{r} \theta_{r} E_{r},
$$

and moreover

$$
U(t)=\exp (i t A)=\sum_{r} e^{i \theta_{r} t} E_{r} .
$$

Definition

If $a \in V(X)$, then the eigenvalue support of a, denoted Θ_{a}, is the set

$$
\left\{\theta_{r}: E_{r} \mathbf{e}_{a} \neq 0\right\}
$$

Kronecker's Theorem

Let $\theta_{1}, \ldots, \theta_{n}$ and $\sigma_{1}, \ldots, \sigma_{n}$ be arbitrary real numbers. For an arbitrarily small ϵ, the system of inequalities

$$
\left|\theta_{r} \tau-\sigma_{r}\right|<\epsilon \quad(\bmod 2 \pi), \quad(r=1, \ldots, n),
$$

admits a solution for τ if and only if, for integers $\ell_{1}, \ldots, \ell_{n}$, if

$$
\sum_{r=1}^{n} \ell_{r} \theta_{r}=0
$$

then

$$
\sum_{r=1}^{n} \ell_{r} \sigma_{r} \equiv 0 \quad(\bmod 2 \pi)
$$

Eigenvalue Support Determines Pretty Good State Transfer

Lemma (Kempton, Lippner, Yau; 2017)

Let u, v be vertices of G, and H the Hamiltonian. Then pretty good state transfer from u to v occurs at some time if and only if:
(1) Every eigenvector x of H satifies either $x(u)=x(v)$ or $x(u)=-x(v)$. [i.e. u and v are strongly cospectral]
(2) Let $\left\{\lambda_{i}\right\}$ be the eigenvalues of H corresponding to eigenvectors with $x(u)=x(v) \neq 0$ and $\left\{\mu_{j}\right\}$ the eigenvalues for eigenvectors with $x(u)=-x(v) \neq 0$. Then if there exists integers ℓ_{i}, m_{j} such that if

$$
\left.\begin{array}{r}
\sum_{i} \ell_{i} \lambda_{i}+\sum_{j} m_{j} \mu_{j}=0 \\
\sum_{i} \ell_{i}+\sum_{j} m_{j}=0
\end{array}\right\} \quad \text { then } \sum_{j} m_{j} \text { is even. }
$$

Pretty Good State Transfer with Internal Vertices of Paths

Theorem (Coutinho, Guo, van Bommel; 2017)
Given any odd prime p and positive integer t, there is pretty good state transfer in $P_{2^{t} p-1}$ between vertices a and $2^{t} p-a$, whenever $2^{t-1} \mid a$.

Theorem

There is pretty good state transfer on P_{n} between vertices a and b if and only if $a+b=n+1$ and:

- $n=2^{t}-1, t \in \mathbb{Z}_{+}$;
- $n=p-1, p$ a prime; or,
- $n=2^{t} p-1, t \in \mathbb{Z}_{+}, p$ an odd prime, and $2^{t-1} \mid a$.

Theorem

With respect to the Laplacian, there is pretty good state transfer on P_{n} between vertices a and b if and only if $a+b=n+1$ and n is a power of 2 .

Extending Pretty Good State Transfer to Multiple Qubits

Definition

A graph X has pretty good state transfer of the state \mathbf{v}, given by

$$
\sum_{j=1}^{m} \beta_{j} \mathbf{e}_{j}, \quad \sum_{j=1}^{m}\left|\beta_{j}\right|^{2}=1,
$$

to the state \mathbf{w} if for every $\epsilon>0$, there exist $\tau \in \mathbb{R}$ and a complex number γ with $|\gamma|=1$, such that

$$
\|U(\tau) \mathbf{v}-\gamma \mathbf{w}\|<\epsilon .
$$

Proposition

For all \mathbf{v} and τ, if $\mathbf{w}=U(\tau) \mathbf{v}$, then there is pretty good state transfer between \mathbf{v} and \mathbf{w}.

Aiming for Symmetry

Problem

We are interested in pretty good state transfer in X between states \mathbf{v} and \mathbf{v}^{σ}, where σ is an automorphism of X and \mathbf{v}^{σ} is given by

$$
\mathbf{v}^{\sigma}=\sum_{x \in V(X)} \beta_{x} \mathbf{e}_{\sigma(x)}
$$

On P_{n}, we assume $\sigma(x)=n+1-x$.

Proposition

Let \mathbf{v} be a state of P_{n} and suppose for each $a \in V\left(P_{n}\right)$ such that $\beta_{a} \neq 0$, there is pretty good state transfer between a and $n+1-a$. Then there is pretty good state transfer between \mathbf{v} and \mathbf{v}^{σ}.

Parity States \& Eigenvalue Support

Definition

Let \mathbf{v} be a state. If \mathbf{v} is such that $\beta_{a}=0$ for all even a, we say that \mathbf{v} is an odd state. If \mathbf{v} is such that $\beta_{a}=0$ for all odd a, we say that \mathbf{v} is an even state. We say \mathbf{v} is a parity state if it is an odd state or an even state.

Definition

The eigenvalue support of \mathbf{v}, denoted $\Theta_{\mathbf{v}}$, is the set

$$
\left\{\theta_{r}: E_{r} \mathbf{v} \neq 0\right\} .
$$

Lemma

Let \mathbf{v} be a parity state of P_{n}. If $\theta_{j} \notin \Theta_{\mathbf{v}}$, then $\theta_{n+1-j} \notin \Theta_{\mathbf{v}}$.

PGST of Parity States on Odd Paths

Theorem

Let $m=2^{t} p^{s}$, where p is an odd prime and $s, t>0$, and let \mathbf{v} be a parity state of P_{m-1}. Define

$$
\begin{aligned}
& S_{c}:=\left\{\theta_{j}: 1 \leq j<m, j \equiv c \quad(\bmod m / p)\right\}, 1 \leq c<m / p \\
& S_{0}:=\left\{\theta_{m / 2}\right\}=\{0\} .
\end{aligned}
$$

With respect to the adjacency matrix, there is pretty good state transfer in P_{m-1} between \mathbf{v} and \mathbf{v}^{σ} if and only if there does not exist S_{c} with c odd and $S_{c^{\prime}}$ with c^{\prime} even such that $S_{c} \cup S_{c^{\prime}} \subseteq \Theta_{\mathrm{v}}$.

PGST of Two Qubit Parity States on Odd Paths

Corollary

Given any odd prime p and positive integer $t \geq 2$, there is pretty good state transfer in $P_{2^{t} p-1}$ between states

$$
\mathbf{v}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{a}+\alpha \mathbf{e}_{b}\right) \quad \text { and } \quad \mathbf{v}^{\sigma}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{2^{t} p-a}+\alpha \mathbf{e}_{2^{t} p-b}\right)
$$

whenever $a \neq b, \alpha= \pm 1$, and $a+\alpha b \equiv 0\left(\bmod 2^{t}\right)$.

PGST of Parity States on Even Paths

Theorem

Let $m=p^{s}$, where p is an odd prime and $s>0$, and let \mathbf{v} be a parity state of P_{m-1}. Define
$R_{c}:=\left\{\theta_{j}: 1 \leq j<m, j \equiv c, m / p-c \quad(\bmod m / p)\right\}, 1 \leq c \leq m /(2 p)$.
With respect to the adjacency matrix, there is pretty good state transfer in P_{m-1} between \mathbf{v} and \mathbf{v}^{σ} if and only if there does not exist R_{c} such that $R_{c} \subseteq \Theta_{\mathrm{v}}$.

Example

For P_{8}, there is pretty good state transfer of $\alpha \mathbf{e}_{1}+\beta \mathbf{e}_{3}$ to $\alpha \mathbf{e}_{8}+\beta \mathbf{e}_{6}$, where

$$
\alpha=\frac{\sin \left(\frac{\pi}{3}\right)}{\sqrt{\sin ^{2}\left(\frac{\pi}{3}\right)+\sin ^{2}\left(\frac{\pi}{9}\right)}}, \quad \beta=-\frac{\sin \left(\frac{\pi}{9}\right)}{\sqrt{\sin ^{2}\left(\frac{\pi}{3}\right)+\sin ^{2}\left(\frac{\pi}{9}\right)}}
$$

Modified Paths

Claim (Chen, Mereau, Feder; 2015)

Let $P_{N}^{(3, w)}$ denote the path of length N, vertices labeled 1 to N, with additional vertices joined to vertices 3 and $N-2$ by edges of weight w. There exists a $w \sim \sqrt{N}$ such that the fidelity approaches unity as N approaches infinity, with error $1-F \propto N^{-1}$. The time scales efficiently with $N, t \propto N^{3 / 2}$.

Theorem (Kempton, Lippner, Yau; 2017)
Given a path P_{N} of any length, there is some choice of Q such that by placing the value Q as a potential on each endpoint of P_{N} there is pretty good state transfer between the endpoints.

Characteristic Polynomials

Let $P_{N}^{(M, w)}$ denote the path of length N, vertices labeled 1 to N, with additional vertices joined to vertices M and $N+1-M$ by edges of weight w. Then the characteristic polynomial $\phi\left(P_{N}^{(M, w)}, t\right)$ can be factored into $P_{+} P_{-}$, where the eigenvectors corresponding to eigenvalues of P_{+}are symmetric and those of P_{-}are antisymmetric. Let $p_{n}=\phi\left(P_{n}, t\right)$. If $N=2 n$, we have

$$
\begin{aligned}
& P_{+}(t)=t\left(p_{n}(t)-p_{n-1}(t)\right)-w^{2} p_{M-1}(t)\left(p_{n-M}(t)-p_{n-M-1}(t)\right) \\
& P_{-}(t)=t\left(p_{n}(t)+p_{n-1}(t)\right)-w^{2} p_{M-1}(t)\left(p_{n-M}(t)+p_{n-M-1}(t)\right)
\end{aligned}
$$

and if $N=2 n+1$, we have

$$
\begin{aligned}
& P_{+}(t)=t\left(p_{n+1}(t)-p_{n-1}(t)\right)-w^{2} p_{M-1}(t)\left(p_{n-M+1}(t)-p_{n-M-1}(t)\right), \\
& P_{-}(t)=t p_{n}(t)-w^{2} p_{M-1}(t) p_{n-M}(t)
\end{aligned}
$$

Pretty Good State Transfer with Additional Vertices

Theorem
$P_{N}^{(M, w)}$ has pretty good state transfer between vertices 1 and N if $P_{ \pm}(t)$ are irreducible.

Lemma

Let $P_{ \pm}(t)=A(t)+w^{2} B(t)$. If $\operatorname{gcd}(A, B)=1$ and w is transcendenta* ${ }^{*}$, then $P_{ \pm}(t)$ is irreducible over $\mathbb{Q}\left(w^{2}\right)$.

Lemma

If $N=2 n$ and $\operatorname{gcd}(2 n+1, M)=1$, then $P_{ \pm}(t)$ are irreducible. If $N=2 n+1$, then $t \mid P_{+}(t)$ or $t \mid P_{-}(t)$.

Examples of No PGST

If $M=3$ and $N \equiv 2(\bmod 6)$, then for every $w, 1$ is a root of $P_{+}(t)$ and -1 is a root of $P_{-}(t)$. Moreover, $\sum \lambda_{i}=1$ and $\sum \mu_{j}=-1$. Consider the assignments

$$
\begin{gathered}
N=12 k+2: \quad \ell_{i}=\left\{\begin{array}{ll}
6 k+1, & \lambda_{i}=1 ; \\
-2, & \lambda_{i} \neq 1 ;
\end{array} \quad m_{j}= \begin{cases}6 k+1, & \mu_{j}=-1 ; \\
0, & \mu_{j} \neq-1\end{cases} \right. \\
N=24 k+20: \quad \ell_{i}=\left\{\begin{array}{ll}
6 k+5, & \lambda_{i}=1 ; \\
-1, & \lambda_{i} \neq 1 ;
\end{array} \quad m_{j}= \begin{cases}6 k+5, & \mu_{j}=-1 ; \\
0, & \mu_{j} \neq-1\end{cases} \right.
\end{gathered}
$$

Then we have $\sum \ell_{i} \lambda_{i}+\sum m_{j} \mu_{j}=0$ and $\sum \ell_{i}+\sum m_{j}=0$ but $\sum m_{j}$ is odd, and hence we cannot have pretty good state transfer.

Future Directions

- What is the characterization of modified paths that permit pretty good state transfer?
- What time interval is required to ensure state transfer with a particular probability? How does modifying the path affect this time interval?
- What is the characterization of eigenvalue supports that permit pretty good state transfer of multiple qubit states on paths?
- Are there other interesting forms of multiple qubit state transfer that could be considered?
- When does perfect state transfer or pretty good state transfer occur on trees?

Thank you!

