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Abstract

A vertex colouring ϕ of a graph is an assignment of a colour to each of the vertices. A

vertex colouring is proper if no two adjacent vertices are assigned the same colour. The

study of proper `-residue colourings is established with upper bounds on the proper `-

residue chromatic number for all plane graphs and all toroidal graphs. Proper `-residue

colourings are colourings of graphs embedded in a surface that are proper and satisfy the

condition that for each face and each colour, the number of times the colour is incident

with the face is zero or is congruent to 1 (mod `). The development of vertex colouring

problems is first examined, from the foundation with the Four Colour Theorem, to the

restriction to cyclic colourings, and to the more relaxed constraints of parity vertex

colourings.

This work is an updated version of my honours thesis completed at St. Francis

Xavier University in 2013. I am deeply indebted to my supervisor, Stephen Finbow,

for his continued contributions, discussions, advice, and support since completing my

undergraduate studies.
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Chapter 1

Introduction

Since the middle of the nineteeth century, the problem of colouring a graph has been

examined. The first and simplest problem of this form was that of determining how

many colours are required to colour a map such that adjacent regions are assigned

distinct colours; this problem is known as the Map-Colouring Problem. Throughout

this work, the problems studied are variations of vertex colourings of plane graphs that

are in some way restricted by the faces of the graph. A vertex colouring ϕ of a graph

G is an assignment of colours to the vertices of G. Other definitions standard to graph

theory will be outlined in the next section.

The main goal for each of these problems is to determine an upper bound on the

number of colours required to colour every plane graph. In Chapter 2, the problem of

proper colourings is considered, which is unrestricted by the faces of the graph. Es-

tablishing the validity of the Four Colour Conjecture, that every plane graph can be

properly coloured with at most four colours, is the major focus of the problem. The

history of the problem is outlined and the Discharging Method is introduced, which was

the method used to prove the Four Colour Theorem.
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In Chapter 3, the problem of cyclic colourings is considered, in which two vertices

cannot be assigned the same colour if they are incident with a common face. The

progression of results on the upper bound for both connected and 3-conencted graphs

are outlined, the conjectures of the best possible results are stated, and graphs meeting

the bounds of these conjectures are given. In the final section, other perspectives used

in considering this problem are described.

A recently introduced variation is examined in Chapter 4. Problems of parity vertex

colourings restrict the number of times a colour can be used on each face, and may

also require that the colourings be proper. Results are outlined for both weak parity

vertex colourings, in which at least one colour must be used an odd number of times

on each face, and strong parity vertex colourings, in which every colour used on a face

must occur an odd number of times. For proper strong parity vertex colourings, which

have the additional requirement that such a colouring be proper, a graph is presented

which improves the largest known proper strong parity chromatic number from 10 to

12. Upper bounds on the proper strong parity chromatic number for certain classes of

graphs are outlined in the final section.

In Chapter 5, a vertex colouring is introduced which extends the concept of parity

vertex colouring by using an arbitrary arithmetic sequence whose first term is 1 as the

set of values a colour is allowed to occur on a face. This vertex colouring is referred

to a proper `-residue colouring, where ` is the difference of the arithmetic progression.

An upper bound is determined for the planar case by extending the proof of the upper

bound of the proper strong parity chromatic number, and then adapted further to apply

to toroidal graphs. A lower bound is given by considering a particular graph.
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1.1 Preliminaries

A graph G consists of a vertex set V (G), an edge set E(G), and a rule that assigns

each edge to two (not necessarily distinct) vertices which are called the endpoints of the

edge. A graph can be represented as a diagram by drawing each vertex as a point and

each edge as a line between its two endpoints. For the graph G, a vertex is said to be

incident with an edge if the vertex is an endpoint of the edge. Two vertices are said

to be adjacent if they are incident with a common edge. The open neighbourhood of a

vertex v, denoted NG(v), is the set of vertices adjacent to v.

An edge is called a loop if its endpoints are the same vertex. All graphs considered

will be loopless. A loopless graph is called simple if there is at most one edge between

each pair of vertices, otherwise it is called a multigraph. If two edges e1 and e2 share

endpoints, they are said to be parallel.

The degree of a vertex v, denoted deg(v) or d(v), is the number of edges incident

with v. A vertex of degree d is called a d-vertex. The minimum degree of a graph G is

the minimum degree of the vertices of G and is denoted δ(G). The maximum degree of

a graph G is the maximum degree of the vertices of G and is denoted ∆(G).

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G) where each edge

in E(H) has both endpoints in V (H). If V ′ is a subset of V (G), the induced subgraph

G[V ′] is the graph whose vertex set is V ′ and whose edge set contains all the edges that

have both their endpoints in V ′.

A graph G is connected if there is a sequence of adjacent vertices between every pair

of vertices, otherwise it is disconnected. A vertex cut S is a subset of the vertices such

that the graph G[V (G)−S] is disconnected. The connectivity of a graph, denoted κ(G),

is the minimum cardinality of a vertex cut. A graph is k-connected if k ≤ κ(G).
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A graph G is planar if it can be drawn in the plane without edges crossing; a plane

graph is a graph together with such an embedding. Similarly, a graph G is toroidal if it

can be embedded on the torus without edges crossing. The faces of an embedded graph

are the regions bounded by the edges of G. The set of faces is denoted F (G). A face is

incident with an edge if it is bounded by that edge and is incident with a vertex if the

face and vertex are incident with a common edge. Two faces are adjacent if they are

incident with a common edge. The set of faces incident with a vertex v is denoted FG(v).

For a face f , the set EG(f) is the set of edges incident with f , the set VG(f) is the set of

vertices incident with f , and deg(f) is the number of vertices incident with f . A facial

walk of f is a shortest walk containing each edge of E(f). A face of degree d is called a

d-face. If f is a 2-face, it is called a digon. The maximum facial degree of a graph G is

the maximum degree of the faces of G and is denoted ∆∗(G). If each face is a 3-face, the

graph is called a triangulation. The dual of G, denoted G∗, is constructed by a set of

vertices V (G∗) corresponding to the faces of G and a set of edges E(G∗) corresponding

to the edges of G with an edge between vertices of G∗ if their corresponding faces in G

are adjacent. If it is clear which graph is being discussed, the subscript G is removed

from the above notation.

For all graphs, there is a relation between the number of edges and both the sum of

the degrees of the vertices and the sum of the degrees of the faces. Since each edge is

incident with two vertices (or the same vertex twice) and with two faces (or the same

face twice), it follows that
∑

deg(v) =
∑

deg(f) = 2|E|. In addition, if G is embedded

in a surface, then Euler’s Formula provides a relation between the number of vertices,

the number of edges, the number of faces, and the genus, g, of the surface (0 for the

plane and 1 for the torus).
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Theorem 1.1.1. (Euler’s Formula).

|V | − |E|+ |F | = 2− 2g

These relations are essential and will be used throughout.
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Chapter 2

The Four Color Theorem

2.1 Map-Colouring Problem

The first graph colouring problem was developed from the consideration of geographical

maps. To better indicate the boundaries between distinct regions, adjacent regions were

coloured with different colours. Regions were considered adjacent if they were incident

with a common edge, but not if they were only incident at a common point or points.

The problem of determining the maximum number of colours required for all planar

maps was first stated by Francis Guthrie in 1852. The problem was posed to Augustus

De Morgan, who wrote the following discussion in a letter to William Rowan Hamiltion:

“A student of mine asked me today to give him a reason for a fact which I
did not know was a fact – and do not yet. He says if a figure be anyhow
divided and the compartments differently coloured so that figures with any
portion of common boundary are differently coloured – four colours may be
wanted, but not more.” [15]

Kempe [37] stated that De Morgan also noted that it was long known to map-makers

from experience that four colours will always suffice, but that this experience was likely
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confined to relatively simple cases. Arthur Cayley brought the problem to the attention

of the London Mathematical Society in 1878. The following year, Cayley [18] published

a short description of the problem, providing an example requiring four colours, shown

in Figure 2.1.1, and noting the difficulty in proving the conjecture is that colouring a

new region added to a map may require the complete recolouring of the entire map.

Figure 2.1.1: A planar map which requires four colours

Kempe [37] was thought to have proved the Four Colour Theorem in 1879, but his

proof was later shown to be incorrect by Heawood [29]. However, many of the ideas

behind Kempe’s attempt of a proof were correct and the following ideas were applied

in other attempts to prove the theorem. A derivation from Euler’s formula showed that

every planar map contains regions with at most five neighbours. If a map contains a

region with two or three neighbours, it is a simple matter to remove this region, colour

the remainder of the map, and assign the region removed a colour not used in an adjacent

region. For regions with four or five neighbours, Kempe chains were introduced. Given

a colouring of a graph c using at least two colours c1 and c2, and a vertex v coloured c1,

the (c1, c2)-Kempe chain containing v is the maximal connected subset of regions that
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are coloured either c1 or c2 and include v. If, for a specific (c1, c2)-Kempe chain, the

colours c1 and c2 are interchanged, then c is still a proper colouring, as by definition this

cannot cause two regions with the same colour to be adjacent. To deal with a region

with four neighbours, the following claim was applied.

Claim 2.1.1. If a map contains a region with four neighbours, and this region is re-

moved, then there exists a colouring of the resulting map such that the four neighbours

of the removed region are coloured with at most three distinct colours.

Proof. Suppose c is a colouring of the map and each of the neighbours of the removed

region is assigned a different colour. Label the regions clockwise R1, R2, R3, and R4,

and their assigned colours c1, c2, c3, and c4 respectively. If R1 and R3 do not belong

to the same (c1, c3)-Kempe chain, then the colours on the chain containing R3 can be

interchanged, resulting in a colouring using three colours for the four regions. If R1 and

R3 do belong to the same chain, then R2 and R4 cannot belong to the same (c2, c4)-

Kempe chain, as R2 and R4 are on opposite sides of the (c1, c3)-Kempe chain. Thus, the

colours on the chain containing R4 can be interchanged, resulting in a colouring using

three colours for the four regions.

A similar method was proposed for a region with five neighbours, but multiple colour

interchanges were required and the effects of these multiple interchanges were not fully

considered and the result was flawed. Kempe chains did, however, prove two useful

facts, as shown by Heawood [29]. The first is that five colours are sufficient to colour

any planar map, and the second is that any counterexample that cannot be coloured

with four colours cannot contain regions with two, three, or four neighbours, and hence

must contain regions with five neighbours. Further results that led to the development of
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the Discharging Method as an approach to prove the Four Colour Theorem are examined

in the next section.

2.2 The Discharging Method

First, the problem of determining a proper colouring of a graph is formally introduced

in modern terminology and in the typical form of colouring the vertices of the graph

instead of the faces or regions, that is, colouring the planar dual of the graph.

Problem 2.2.1. A vertex colouring ϕ is a proper colouring of a plane graph G if no

two adjacent vertices are assigned the same colour. The chromatic number, χ(G), is the

minimum number of colours used in a colouring of G.

Then the Four Colour Conjecture can be formally presented as follows.

Conjecture 2.2.2. If G is a plane graph, χ(G) ≤ 4.

One method considered to prove this conjecture was to show that there exists no

minimum counterexample to the conjecture that would require more than four colours

for a proper colouring. The first tool used in this approach is reducibility. That is,

showing that each graph with a certain configuration can be reduced to a graph with

fewer vertices whose proper colouring can be extended to the original graph. This shows

that the graph cannot be a minimum counterexample. Birkhoff [6] noted the following

four reductions in terms of colouring the regions of a map.

Observation 2.2.3. [6]

• If more than three boundary lines meet at any vertex of a map, the coloring of the

map may be reduced to the coloring of a map of fewer regions.
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• If any region of a map is multiply-connected (that is, the region divides the map

into multiple components), the coloring of the map may be reduced to the coloring

of maps of fewer regions.

• If two or three regions of a map form a multiply-connected region, the coloring of

the map may be reduced to the coloring of maps of fewer regions.

• If the map contains any 1-, 2-, 3- or 4-sided regions, the coloring of the map may

be reduced to the coloring of a map with fewer regions.

The above reductions then reduce the map to either a single region, or a map in which:

exactly three boundary lines meet at every vertex, no set of at most three regions form a

multiply-connected region, and every region has at least five sides [6]. These conditions

are equivalent to that of the dual graph being a triangulation, 4-connected, and having

minimum degree of 5. Birkhoff [6] also introduced the concept of a ring of regions, that

is, a cycle of regions µ1, µ2, . . . , µn such that each region is adjacent to the one before

it and after it in the cycle, but to no others in the cycle. It was shown that rings of 4

regions are reducible, and rings of 5 regions are reducible if there are at least two regions

inside the ring and at least two regions outside the ring.

The second tool used in this approach is unavoidability. If there exists a configuration

that must appear in every planar graph, such a configuration is said to be unavoidable,

and more generally, if there exists a set of configurations such that at least one of

them must appear in every planar graph, then such a set of configurations is said to

be unavoidable. As described previously, every planar map without regions of size two,

three, or four must contain a region of size five, thus a region of size five is unavoidable.

Stronger results were proven by Wernicke [46], who showed that such a map must contain
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a region of size five adjacent to a region of size five or six, and Franklin [26], who showed

that such a map must contain either two adjacent regions of size five or a region of size

five adjacent to two regions of size six. Lebesgue [39] described a large collection of

configurations, at least one of which must be contained in such a map.

Unavoidability is typically proven through the use of the Discharging Method. To

apply the Discharging Method, each vertex and each face are assigned an initial charge

dependent on its degree and in such a way that the sum of charges can be easily com-

puted using Euler’s formula. Then, through a set of discharging rules, the charges on the

vertices and faces are redistributed by transferring charges to adjacent vertices or faces

so that the sum of the charges does not change. Depending on the initial charges, if the

sum of the charges is positive (respectively negative), then by assuming no configuration

in a set occurs, it is shown that each vertex and each face has a nonpositive (respec-

tively nonnegative) charge. This contradiction proves that the set of configurations is

unavoidable.

Alternatively, the Discharging Method can be used to find an unavoidable set by

letting the sum of the charges be positive (respectively negative) and determining which

configurations are required because of their positive (respectively negative) charges. Two

examples are shown below; the first does not use the discharging step.

Claim 2.2.4. Every planar triangulation G without 2-vertices, 3-vertices, or 4-vertices

contains a 5-vertex.

Proof. Each vertex is given 6−deg(v) units of charge and each face is given 6−2 deg(f) =

0 units of charge. The total charge is:

∑
v∈V

(6−deg(v))+
∑
f∈F

(6−2 deg(f)) = 6|V |−2|E|+6|F |−4|E| = 6(|V |−|E|+ |F |) = 12.
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The only vertices with positive charge are 5-vertices and all faces have charge 0. Thus

G contains at least one 5-vertex.

Claim 2.2.5. [46] If a planar triangulation G has minimum degree 5, then it contains

a 5-vertex adjacent to a 5-vertex or a 6-vertex.

Proof. Each vertex is given 6−deg(v) units of charge and each face is given 6−2 deg(f) =

0 units of charge. As above, the sum of the charges is 12. Apply the discharging rule

that each 5-vertex gives a charge of 1
5

to each neighbour. After discharging, the total

charge has not changed, so there exists a vertex v with positive charge. Then deg(v) ≤ 7,

since if deg(v) ≥ 8, the charge on v after applying the discharging rule would be at most

6 − deg(v) + 1
5

deg(v) = 6 − 4
5

deg(v) ≤ 6 − 32
5

= −2
5
. If v is a 5-vertex, then since v

discharged all of its initial charge to its neighbours, it must have received charge from

an adjacent 5-vertex. If v is a 6-vertex, then since the initial charge of v was 0, v must

have received charge from an adjacent 5-vertex. If v is a 7-vertex, then since the initial

charge of v was −1, v must have received charge from at least 6 adjacent 5-vertices.

Since the graph is a triangulation, two of these 5-vertices must be adjacent. In all cases

the claim is established.

The Discharging Method is also used to show a minimum counterexample to a the-

orem does not exist. After applying a set of well designed discharging rules, computing

the charge for each vertex and each face based on the assumption that the graph contains

no reducible configuration leads to a contradiction of the sum of the charges. Hence, the

reducible set is also unavoidable, which proves the theorem. (This technique is used in

Chapter 5.)

Heesch [31] was the first to combine the ideas of reducibility and unavoidability. He

examined several special cases of triangulations and proved each contained a reducible
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configuration. Extending this approach, and with the aid of a computer, Appel and

Haken [2, 3, 4] proved the Four Colour Theorem in 1976. Their method required about

2000 configurations in the unavoidable reducible set and around 300 discharging rules.

Initially, the approach of Appel and Haken was not fully accepted because a portion

of the proof involved a computer, the first major theorem to do so, and could not be

verified by hand. In addition, the remaining portion of the proof was tedious and had

not been independently verified. Robertson et al. [43] developed an independent proof of

the Four Colour Theorem in 1996, leading to a simpler approach than that of Appel and

Haken. The authors constructed a set of 633 configurations that was both reducible and

unavoidable, through the use of only 32 discharging rules. This independent verification

confirmed the Four Colour Theorem. This proof also led to a quadratic time algorithm

to find a 4-colouring of a planar graph.

The Discharging Method is also used to prove results regarding other vertex colouring

problems, which are considered in the following chapters.
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Chapter 3

Cyclic Colourings

3.1 Introduction

The focus of this chapter is the problem of cyclic colourings. Cyclic colourings were

introduced by Ore and Plummer [41] in 1969, and, like the problem of proper vertex

colourings, the problem was originally formulated in terms of the colouring of the faces,

that is, in its planar dual form. Cyclic colouring is defined in terms of colouring the

vertices by Definition 3.1.1.

Definition 3.1.1. A vertex colouring φ is a cyclic colouring of a connected plane graph

G if no two vertices incident with the same face are assigned the same colour. The cyclic

chromatic number, χc(G), is the minimum number of colours used in a cyclic colouring

of G.

In terms of the dual definition, this is a very natural extension of the original problem

of colouring maps. No two regions which share a point on their boundaries are assigned

the same colour.
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Two main problems regarding the cyclic chromatic number are considered: the upper

bound of the cyclic chromatic number of 2-connected (or connected) plane graphs and

the upper bound of the cyclic chromatic number of 3-connected plane graphs. As the

progress of the results of these problems are at times intertwined, they will be examined

together in the next section.

3.2 Upper Bounds

It is clear that the cyclic chromatic number is well-defined by assigning a distinct colour

to each vertex of the graph. It is also clear that any cyclic colouring of G requires at

least ∆∗(G) colours, where ∆∗(G) is the size of the largest face. Ore and Plummer [41]

showed that if G is 2-connected, then χc(G) ≤ 2∆∗(G). Borodin [7, 8] announced the

improvement χc(G) ≤ 2∆∗(G)− 1, and implicitly stated the following conjecture, which

is given as a formal problem by Jensen and Toft [35].

Conjecture 3.2.1. If G is a 2-connected plane graph, χc(G) ≤ 3
2
∆∗(G).

Such an upper bound would be the best possible, as shown by the following example

of Plummer and Toft [42]. The triangular prism D3, depicted in Figure 3.2.1, with each

of the three edges between the two triangles replaced by the same length path gives an

infinite family of graphs with χc(G) ≤ 3
2
∆∗(G).

Plummer and Toft [42] introduced the variant considering 3-connected plane graphs,

and determined the following general upper bound, as well as improvements on the upper

bound if ∆∗(G) is sufficiently small or sufficiently large.

Theorem 3.2.2. [42] Let G be a 3-connected plane graph with maximum face size

∆∗(G). Then χc(G) ≤ ∆∗(G) + 9.
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Figure 3.2.1: Graph D3

Theorem 3.2.3. [42] Let G be a 3-connected plane graph. Then

(i) ∆∗(G) ≤ 10→ χc(G) ≤ ∆∗(G) + 8 ≤ 18

(ii) ∆∗(G) ≤ 9→ χc(G) ≤ ∆∗(G) + 7 ≤ 16

(iii) ∆∗(G) ≤ 8→ χc(G) ≤ ∆∗(G) + 6 ≤ 14

(iv) ∆∗(G) ≤ 7→ χc(G) ≤ ∆∗(G) + 6 ≤ 13

Theorem 3.2.4. [42] Let G be a 3-connected plane graph. Then

(i) ∆∗(G) ≥ 14→ χc(G) ≤ ∆∗(G) + 8

(ii) ∆∗(G) ≥ 15→ χc(G) ≤ ∆∗(G) + 7

(iii) ∆∗(G) ≥ 18→ χc(G) ≤ ∆∗(G) + 6

(iv) ∆∗(G) ≥ 24→ χc(G) ≤ ∆∗(G) + 5

(v) ∆∗(G) ≥ 42→ χc(G) ≤ ∆∗(G) + 4

It was also noted by Plummer and Toft [42] that if ∆∗(G) = 3, then χc(G) ≤

4 = ∆∗(G) + 1 by the Four Colour Theorem. Borodin [7] showed that if ∆∗(G) = 4,
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χc(G) ≤ 6 = ∆∗(G) + 2. Based on the triangular prism graph, Plummer and Toft [42]

illustrated an infinite family of 3-connected planar graphs for which χc(G) = ∆∗(G) + 2,

shown in Figure 3.2.2. However, every graph in this family has ∆∗(G) = 4. This

observation led to the following conjecture.

Figure 3.2.2: Family of 3-connected planar graphs such that χc(G) = ∆∗(G) + 2

Conjecture 3.2.5. If G is a 3-connected plane graph, χc(G) ≤ ∆∗(G) + 2.

Borodin [9] improved the bounds of Theorem 3.2.4, by showing that χc(G) ≤ ∆∗(G)+

3 for ∆∗(G) ≥ 24. Borodin also proved the following upper bounds for connected plane

graphs.

Theorem 3.2.6. [9] If G is a connected plane graph, then

χc(G) =



9, ∆∗(G) = 5

11, ∆∗(G) = 6

12, ∆∗(G) = 7

2∆∗(G)− 3, ∆∗(G) ≥ 8.

This result was further improved by Borodin, Sanders, and Zhao [12]. This general

bound improves the previous results for ∆∗(G) = 5, ∆∗(G) = 6, and ∆∗(G) ≥ 16.

Corollary 3.2.7. [12] If G is a connected plane graph, then χc(G) ≤
⌊
9
5
∆∗(G)

⌋
, and if

∆∗(G) ∈ {3, 4, 5, 8, 9, 10}, then χc(G) ≤
⌊
9
5
∆∗(G)

⌋
− 1.
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Improvements to the upper bound of 3-connected plane graphs continued at a rapid

pace. Borodin and Woodall [14] proved that χc(G) ≤ ∆∗(G) + 2 for ∆∗(G) ≥ 61 and

χc(G) ≤ ∆∗(G)+1 for ∆∗(G) ≥ 122. These results were improved by Enomoto, Horňák,

and Jendrol’ [25] to χc(G) ≤ ∆∗(G) + 1 for ∆∗(G) ≥ 60. The wheel graphs Wn, formed

by joining a vertex to each vertex of a cycle of length n−1, demonstrate that ∆∗(G) + 1

is the best bound possible. Horňák and Jendrol’ [32, 33] showed χc(G) ≤ ∆∗(G) + 2

for ∆∗(G) ≥ 40, and subsequently for ∆∗(G) ≥ 24. Morita [40] improved this bound

to ∆∗(G) ≥ 22, and also showed that χc(G) ≤ ∆∗(G) + 3 for ∆∗(G) ≥ 20. Finally,

Borodin and Woodall [13] suggested a result based on the minimum cyclic degree of

a 3-connected plane graph. The cyclic degree of a vertex v is the number of vertices

incident with a face also incident with v. The result was left to the reader as a corollary

based on the argument of Plummer and Toft [42] in their proof of Theorem 3.2.2.

Corollary 3.2.8. [13] If G is a 3-connected plane graph with maximum facial degree

∆∗(G), then χc(G) ≤ M(∆∗(G)) + 1, where M(∆∗(G)) is an upper bound on the mini-

mum cyclic degree and is given in the following table.

∆∗(G) 3 4 5 6 7 8 9 10 11 12− 16 17− 20 ≥ 21

M(∆∗(G)) 5 7 9 11 12 13 15 17 18 19 k + 3 k + 2

Table 3.1: Upper bound on the minimum cyclic degree in terms of the maximum face

degree

Currently, the best general upper bound for connected plane graphs is given by the

following result shown by Sanders and Zhao [44].

Theorem 3.2.9. [44] Every plane graph G has a cyclic
⌈
5
3
∆∗(G)

⌉
-coloring.
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The previous results verified the above theorem for ∆∗(G) ≤ 11, and Sanders and

Zhao completed the verification for ∆∗(G) ≥ 12. Recently, Hebdige and Král’ [30] proved

the following result, resolving another case of the conjecture.

Theorem 3.2.10. [30] Every plane graph with maximum face size at most six has a

cyclic coloring using at most nine colours.

The complete results on connected plane graphs can therefore be summarized as

follows.

Corollary 3.2.11. If G is a connected plane graph, then χc(G) ≤
⌈
5
3
∆∗(G)

⌉
, and if

∆∗(G) ∈ {3, 4, 5, 6, 8}, then χc(G) ≤
⌈
5
3
∆∗(G)

⌉
− 1. Moreover, if ∆∗(G) ∈ {3, 4, 6}, the

upper bound is sharp.

The best general upper bound for 3-connected plane graphs is the following result

shown by Enomoto and Horňák [24].

Theorem 3.2.12. [24] If G is a 3-connected plane graph, then χc(G) ≤ ∆∗(G) + 5.

Based on the previous results, it only remained to verify the upper bound for 9 ≤

∆∗(G) ≤ 14.

Finally, additional progress was made in the verification of Conjecture 3.2.5 when

Horňák and Zlámalová [34] verified the conjecture for ∆∗(G) ≥ 18. Moreover, as the

only known examples of graphs such that χc(G) = ∆∗(G)+2 satisfy ∆∗(G) = 4, Horňák

and Zlámalová proposed strengthening the conjecture as follows.

Conjecture 3.2.13. If G is a 3-connected plane graph G with ∆∗(G) 6= 4, then χc(G) ≤

∆∗(G) + 1.
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As previously shown, this conjecture has been verified for ∆∗(G) ≥ 60, however, all

three conjectures in this section remain open in general.

This section concludes with the following table summarizing the current best upper

bounds on the cyclic chromatic number for 3-connected plane graphs.

∆∗(G) 3 4 5 6 7− 15 16− 17 18− 59 ≥ 60

χc(G) ≤ ∆∗(G)+ 1 2 3 4 5 4 2 1

Table 3.2: Upper bounds of cyclic chromatic number for 3-connected plane graphs

3.3 Other Perspectives

Alternative perspectives or approaches have been introduced in considering the proposed

conjectures of the previous section. The following graph parameter was introduced by

Borodin et al. [11].

Definition 3.3.1. Let G be a plane graph, f be a face of G, and VG(f) be the set of

vertices incident with f . Then k∗(G) (or simply k∗) is the maximum number of vertices

that two faces of G can have in common, ie. k∗(G) = max{|VG(f1) ∩ VG(f2)| : f1, f2 ∈

FG, f1 6= f2}.

The use of this parameter led to the following result.

Theorem 3.3.2. [11] Every connected plane graph G has χc(G) ≤ max{∆∗(G) +

3k∗(G) + 2,∆∗(G) + 14, 3k∗(G) + 6, 18}.

The above theorem can be simplified in most cases as follows.
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Corollary 3.3.3. [11] If G is a plane graph, and ∆∗(G) ≥ 4 and k∗(G) ≥ 4, then

χc(G) ≤ ∆∗(G) + 3k∗(G) + 2.

The above theorem improves the best upper bound when k∗(G) is small, and would

verify Conjecture 3.2.1 in the case where k∗(G) ≤ 1
6
∆∗(G). The following conjecture was

suggested, and would be the best result possible, as shown by the same set of graphs as

for Conjecture 3.2.1.

Conjecture 3.3.4. [11] Every plane graph G with ∆∗(G) and k∗(G) large enough has

a cyclic coloring with ∆∗(G) + k∗(G) colors.

If ∆∗(G) is large enough, the above conjecture implies χc(G) ≤
⌊
3
2
∆∗(G)

⌋
.

In another approach, Amini, Esperet, and van den Heuvel [1] generalized the concept

of coloring the square of a graph. The square G2 of a graph G is the graph formed with

the vertex set V (G) with an edge between vertices if they have at most distance two

in G. Thus, the proper colouring of G2 is equivalent to colouring G such that vertices

receive distinct colours if they are adjacent or they share a common neighbour. In the

more general case, a subset Σ(v) ⊆ N(v) of the neighbourhood of each vertex is given,

and a Σ-colouring of G requires that vertices receive distinct colours if they are adjacent

or both appear in some set Σ(v). So, if Σ(v) = N(v) for all v ∈ V (G), this is precisely

the colouring of G2. A cyclic colouring can be determined as follows. Construct the

graph GF from G by adding a vertex xf for each face f of G, and add an edge between

xf and each vertex incident with f . Define Σ(v) as ∅ if v ∈ V (G), and N(v) otherwise.

Then applying a Σ-colouring of GF to the vertices of G gives a cyclic colouring of G, as

no two vertices of G incident with the same face f receive the same colour since they all

appear in Σ(vf ). The following result was determined.
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Corollary 3.3.5. [1] Let S be a fixed surface. Every embedding GS of a graph G of

maximum face order ∆∗ has cyclic list chromatic number at most 3
2
∆∗ + o(∆∗).

The above result demonstrates that Conjecture 3.2.1 is asymptotically true.

The next approach considers an extension of cyclic colourings called facial colourings,

introduced by Král’, Madaras, and Škrekovski [38]. Two vertices are said to be l-facially

adjacent if there exists a path of at most l edges each incident with the same face

between the two vertices. A colouring is said to be an l-facial colouring if any pair of

vertices that are l-facially adjacent are assigned distinct colours. If ∆∗(G) ≤ 2l+1, then

every cyclic colouring of G is an l-facial colouring. If G is 2-connected, the converse is

also true. Facial colourings remove the complication of restricting the results of cyclic

colourings by the size of the maximum face. Let fc(∆
∗) denote the minimum number of

colours needed in a cyclic colouring of every plane graph with maximum face size at most

∆∗(G). Let ff (l) denote the minimum number of colours needed in an l-facial colouring

of every plane graph. Clearly fc(2l + 1) ≤ ff (l). Thus, the upper bounds determined

for facial colourings imply upper bounds for cyclic colourings. Král’, Madaras, and

Škrekovski [38] matched the bound fc(∆
∗(G)) ≤

⌊
9
5
∆∗(G)

⌋
of Theorem 3.2.7 by proving

ff (l) ≤
⌊
18l
5

⌋
+2. The bound fc(∆

∗(G)) ≤
⌈
5
3
∆∗(G)

⌉
of Theorem 3.2.9 raises the question

of the existance of the bound ff (l) ≤
⌈
10l+5

3

⌉
. The following conjecture, analogous to

Conjecture 3.2.1, has also been proposed.

Conjecture 3.3.6. [38] Every plane graph has an l-facial coloring with at most 3l + 1

colors for each l ≥ 0, ie. ff (l) = 3l + 1 for all l ≥ 0.

The following improved result for l = 3 was shown by Havet, Sereni, and Škrekovski

[28].
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Theorem 3.3.7. [28] Every plane graph is 3-facially 11-colourable.

The above result implies fc(7) ≤ 11 which improves the upper bound of the previous

section for ∆∗(G) = 7 to χc(G) ≤ ∆∗(G) + 4. The following improvement to the general

bound was shown by Havet et al. [27]

Theorem 3.3.8. [27] Every plane graph has an l-facial coloring with at most
⌊
7l
2

⌋
+ 6

colors.

Finally, Azarija et al. [5] considered the upper bound on the cyclic chromatic number

for graphs whose faces of size at least four are vertex disjoint, and proved the following

result.

Theorem 3.3.9. [5] Let G be a plane graph with maximum face size ∆∗. If each face of

degree at least four is vertex-disjoint, then G has a cyclic coloring with at most ∆∗ + 1

colors.

The approaches discussed in this section have offered new tools and insight to de-

termining the best upper bounds for the cyclic chromatic number of connected plane

graphs and the cyclic chromatic number of 3-connected plane graphs, and in one case

have improved the previous upper bound. A new strategy may be necessary, however,

to confirm the conjectures which have been posed.
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Chapter 4

Parity Vertex Colourings

4.1 Introduction

In this chapter, I expand the discussion of vertex colourings which are restricted by the

faces of the graph. Compared to cyclic colourings, which were examined in the previous

chapter and require that two vertices incident with the same face have different colours,

the requirements of parity vertex colourings are relaxed. Problems 4.1.2 and 4.1.3 were

proposed by Czap and Jendrol’ [20], and require Definition 4.1.1.

Definition 4.1.1. Let ϕ be a vertex colouring, not necessarily proper, of a connected

plane graph G. We say that a colour c is used k times on a face α of G under the

colouring ϕ if this colour appears k times along the facial walk of α. (The first and the

last vertex of the facial walk is counted as one appearance only.)

Problem 4.1.2. A vertex colouring ϕ is a weak parity vertex colouring of a connected

plane graph G if each face of G uses at least one colour an odd number of times. The

problem is to determine the minimum number χw(G) of colours used in a weak parity
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vertex colouring of G. The number χw(G) is called the weak parity chromatic number.

Problem 4.1.3. A vertex colouring ϕ is a strong parity vertex colouring of a 2-

connected plane graph G if for each face α and each colour c the face α uses the colour

c an odd number of times or does not use it at all. The problem is to find the minimum

number χs(G) of colours used in a strong parity vertex colouring of G. The number

χs(G) is called the strong parity chromatic number.

The parity vertex colouring problems were motivated by the study of parity edge

colourings and strong parity edge colourings of graphs by Bunde et al. [16, 17]. In a

parity edge colouring, each path uses some colour an odd number of times. In a strong

parity edge colouring, each open walk uses some colour an odd number of times. In

addition, facial parity edge colourings were studied by Czap et al. [22]. In a facial parity

edge colouring, no two adjacent edges are assigned the same colour. For each face α and

each colour c, the face α uses the colour c an odd number of times or not at all.

A brief overview of weak parity vertex colouring will be given in the next section,

but the main focus of this chapter is strong parity vertex colourings. Also considered

are proper weak parity vertex colouring and proper strong parity vertex colouring (which

is also abbreviated to proper spv-colouring or called parity vertex colouring). These

colourings require that no two adjacent vertices are assigned the same colour, ie. the

vertex colouring is proper. The proper weak parity chromatic number, χpw(G), and

proper strong parity chromatic number, χp(G) are defined analogously.
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4.2 Weak Parity Vertex Colouring

The main goal of the weak parity vertex colouring problem is to determine the best

constant upper bound on the weak parity vertex chromatic number of all planar graphs,

or determine that no such bound exists. It has been shown by Czap and Jendrol’ [20]

that the weaker restrictions of weak parity vertex colourings permit a constant upper

bound, whereas the bound for cyclic colourings was known to be dependent on the size

of the largest face. To show that χw(G) is well defined for every connected plane graph

G, the following structural claim is required.

Claim 4.2.1. If G is a loopless plane graph then every face f is incident with a vertex

that occurs only once in the facial walk of f .

Proof. Suppose that f is a face such that every vertex in the facial walk of f occurs at

least twice. Let H be the graph induced by the edges of f . Let e be the total number

of occurrences of each vertex in f . Let n be the number of vertices incident with f .

If x counts the number of edges that occur twice in the facial walk of f , then e − x

is the number of edges in H. Since H is planar, then by Euler’s formula, |F (H)| =

|E(H)| − |V (H)|+ 2 = e−x−n+ 2. The e− 2x edges used only once in the facial walk

of f must bound the e−x−n+1 remaining faces of H. Then the average number of edges

used by each of the remaining faces is e−2x
e−x−n+1

= 2e−2x−2n+2−(e−2n+2)
e−x−n+1

= 2− e−2n+2
e−x−n+1

< 2.

Thus, there exists a face of H bounded by at most 1 edge. It follows there is a face of

G bounded by at most 1 edge, contradicting that G is loopless.

As a result of Claim 4.2.1, χw(G) is well defined for every connected (loopless) plane

graph G. Each plane graph G has the weak parity vertex colouring that assigns a distinct

colour to each vertex, since some vertex occurs once in the facial walk for each face. On
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the other extreme, trivially χw(G) = 1 if and only if all faces of G are of odd degree.

The following theorem, due to Czap and Jendrol’ [20], gives the weak parity vertex

chromatic number of the graphs of r-sided prisms, and will be used later in this section.

An r-sided prism, Dr, is a plane graph consisting of two r-faces and r 4-faces. The faces

are: an internal r-face α = (u1, u2, . . . , ur), an external r-face β = (v1, v2, . . . , vr), and

for 1 ≤ i ≤ r, αi = (ui, ui+1, vi+1, vi), where indices are taken modulo r.

Theorem 4.2.2. [20] Let Dr be an r-sided prism, r ≥ 3. Then

χw(Dr) =

 2 if r ≡ 0 (mod 4),

3 if r 6≡ 0 (mod 4).

It follows from the definitions of the weak parity vertex chromatic number and the

proper weak parity vertex chromatic number that χw(G) ≤ χpw(G). Czap and Jendrol’

[20] proved the following result for 2-connected plane graphs.

Theorem 4.2.3. [20] Let G be a 2-connected plane graph. Then there is a proper weak

parity vertex 4-colouring of G, such that each face of G uses some colour exactly once.

This theorem can be extended as follows to all plane graphs.

Theorem 4.2.4. Let G be a connected plane graph. Then there is a proper weak parity

vertex 4-colouring of G, such that each face of G uses some colour exactly once.

Proof. Let α be a face of degree at least 4, and let vi be a vertex of the facial walk

of α that appears exactly once in the facial walk, the existence of which is given by

Claim 4.2.1. For each vertex vj in the facial walk of α, add edge vivj if vi � vj.

Adding edges in this manner to each such face, form the planar graph H (which inherits

the obvious embedding). Applying the Four Colour Theorem to H, there is a proper

colouring ϕ of H that uses at most four colours.

27



If ϕ is then assigned to G, for each face α of degree at least 4, no vertex is assigned

the same colour as the vertex vi (chosen above) since vi is adjacent in H to each vertex

of the facial walk of α in G. Thus, for each face α, the colour of vi is used only once on α.

Thus, ϕ is a proper weak parity vertex 4-colouring of G having the desired property.

The previous theorem implies the following upper bound.

Corollary 4.2.5. Let G be a connected plane graph. Then χpw(G) ≤ 4 and χw(G) ≤ 4.

Proof. By the previous theorem, every connected plane graph G has a proper weak

parity vertex 4-colouring. The result follows.

The upper bound of 4 is the best bound possible for proper weak parity vertex colour-

ings, as the graph K4 requires 4 colours for such a colouring. Also, when considering

the problem for plane multigraphs in general, the upper bound of 4 is the best bound

possible for weak parity vertex colourings. As an example, consider the graph H formed

by doubling each edge of the graph K4. However, it is unknown if the upper bound of

4 is the best bound possible for weak parity vertex colourings of simple graphs. There

is no known example of a graph that requires 4 colours for such a colouring. In a proof

by Czap and Jendrol’ [20], in which they showed an upper bound of 4, there were only

two cases in which the upper bound could not be improved to three. Thus, they made

the following conjecture.

Conjecture 4.2.6. [20] Let G be a connected plane graph of minimum face degree at

least 3. Then χw(G) ≤ 3.

The following theorem of Czap and Jendrol’ [20] gives a class of graphs for which

this upper bound holds.
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Theorem 4.2.7. [20] Let G be a 2-connected cubic plane graph. Then χw(G) ≤ 3.

Moreover, the bound 3 is best possible.

It is clear that the bound 3 is best possible by Theorem 4.2.2, which states that

certain r-prisms have a weak parity vertex chromatic number of 3. In general, however,

the problem remains open.

4.3 Strong Parity Vertex Colouring

The main goal of the strong parity vertex colouring problem is to determine the best

constant upper bound on the strong parity vertex chromatic number of all 2-connected

plane graphs, or determine that no such bound exists. Czap and Jendrol’ [20] state that

χs(G) is well defined for every 2-connected plane graph G, as each 2-connected plane

graph G has the strong parity vertex colouring that assigns a distinct colour to each

vertex.

By Definition 4.1.1, however, χs(G) is not well defined in general for plane graphs

that are not 2-connected. Consider the graph H shown in Figure 4.3.1. If H has a strong

parity vertex colouring ϕ, let ϕ(u1) = c. As c appears twice on the 6-face, it must appear

at least three times on the 6-face, thus without loss of generality, ϕ(u2) = c. But then c

appears twice on the face u1u2u3, so ϕ(u3) = c. Then c appears four times on the 6-face,

so by the parity condition it must appear exactly five times on the 6-face. Without loss

of generality, ϕ(u4) = c and ϕ(u5) 6= c. But then c appears twice on the face u1u4u5,

which is a contradiction. Thus H does not have a strong parity vertex colouring.

Kaiser et al. [36] proposed that Definition 4.1.1 could be modified to say a colour c

is used k times on a face α of G under the colouring ϕ if k vertices are coloured with
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Figure 4.3.1: Graph H

c in the boundary of α. This definition conincides with Definition 4.1.1 in the case of

2-connected plane graphs, and χs(G) is now well defined for every plane graph G, as

each plane graph G has the strong parity vertex colouring that assigns a distinct colour

to each vertex. However, this extension to all plane graphs was not pursued in their

paper and remains an open problem. This section focuses only on 2-connected plane

graphs, and hence, will use Definition 4.1.1 exclusively.

The following theorems of Czap and Jendrol’ [20] provide examples of two connected

plane graphs G for which the exact value of χs(G) is known. As in the case of weak

parity vertex colouring, trivially χs(G) = 1 if and only if all faces of G are of odd degree.

A set of vertices S ⊆ V (G) of a 2-connected plane graph is said to be face-independent

if no two vertices of S are incident with a common face, and is said to be face-dominating

if every face of G is incident with a vertex in S.

Theorem 4.3.1. [20] Let G be a 2-connected plane graph all faces of which have even

degree. If G contains a set S of vertices which is face-independent and face-dominating,

then χs(G) = 2.

The wheel graph on n vertices, n ≥ 4, denoted Wn, is the graph formed by joining a
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vertex to each vertex of a cycle of length n− 1.

Theorem 4.3.2. [20] Let Wn, n ≥ 4, be an n-vertex wheel. Then

χs(Wn) =


1 if n ≡ 0 (mod 2),

3 if n ≡ 3 (mod 4),

5 if n ≡ 1 (mod 4).

Figure 4.3.2: Configuration K

Lemma 4.3.3. [20] If a 2-connected plane graph G has an induced subgraph K and the

three 4-faces of K are faces of G, as depicted in Figure 4.3.2, then χs(G) ≥ 6.

Theorem 4.3.4. [20] Let Dr be an r-sided prism, r ≥ 3. Then

χs(Dr) =



2 if r ≡ 0 (mod 4),

4 if r 6≡ 0 (mod 4) and r /∈ {3, 7},

5 if r = 7,

6 if r = 3.

While upper bounds for the strong parity vertex chromatic number follow from the

upper bounds for the cyclic chromatic number since every cyclic colouring is a strong

parity vertex colouring, the following conjecture was made by Czap and Jendrol’ [20].
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Conjecture 4.3.5. [20] There is a constant K such that for every 2-connected plane

graph G, χs(G) ≤ K.

The proper strong parity chromatic number analog for this conjecture has been ver-

ified independently by Czap, Jendrol’, and Voigt [23] and Kaiser et al. [36]. Since every

proper strong parity vertex colouring is a strong parity vertex colouring, the conjecture

has therefore been verified for the strong parity chromatic number. Specifically, the

following upper bounds were obtained.

Theorem 4.3.6. [23] Let G be a 2-connected plane graph. Then χp(G) ≤ 118.

Theorem 4.3.7. [36] Every 2-connected plane multigraph has a proper spv-colouring

with at most 97 colours.

The bounds for graphs that do not contain large faces can be improved based on the

results of cyclic colourings of Corollary 3.2.11 and Theorem 3.3.7 as follows.

Corollary 4.3.8. Let G be a 2-connected plane graph. Then

χp(G) =



⌈
5
3
∆∗(G)

⌉
− 1, if ∆∗(G) ∈ {3, 4, 5, 7, 8},⌈

5
3
∆∗(G)

⌉
, if ∆∗(G) ≤ 57 and ∆∗(G) /∈ {3, 4, 5, 7, 8},

97, if ∆∗(G) ≥ 58.

The next section considers the sharp upper bound on the strong parity chromatic

number.

4.4 Sharp Upper Bound

Let X∗p be the sharp upper bound for the proper strong parity chromatic number. That

is, X∗p is the smallest integer such that χp(G) ≤ X∗p for every 2-connected plane graph.
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Theorem 4.3.7 states X∗p ≤ 97. We now consider lower bounds on X∗p . A progression

of graphs with the largest determined proper strong parity chromatic number is given.

If multigraphs are allowed, form G′ from G by replacing every edge with a digon, a

face bounded by two edges. Kaiser et al. [36] demonstrated that every strong parity

vertex colouring of G′ is a proper strong parity vertex colouring of G. Thus, for the class

of 2-connected plane multigraphs, all bounds on χs(G) are also bounds on χp(G) and

vice-versa. In the case of simple graphs, this does not appear to be the case. A large

proper strong parity chromatic number does not necessarily imply a large strong parity

chromatic number. For instance, for C5, a cycle on 5 vertices, the proper strong parity

chromatic number is 5, but the strong parity chromatic number is 1. The results in

both cases will be examined, starting with examples for proper strong parity chromatic

numbers. In their introductory paper, Czap and Jendrol’ used the r-sided prism to give

a lower bound on X∗p . The specific result is given in Theorem 4.4.1.

Theorem 4.4.1. [20] Let Dr be an r-sided prism, r ≥ 3. Then

χp(Dr) =


4 if r ≡ 0 (mod 2),

5 if r ≡ 1 (mod 2) and r 6= 3,

6 if r = 3.

The lower bound of X∗p was improved from 6 to 10 by Kaiser et al. [36]. The authors

constructed the graph G55 on 10 vertices by joining two disjoint 5-cycles by two edges

such that the outerface was bounded by 10 vertices, as shown in Figure 4.4.1. For each

of the 5-faces, its incident vertices must be assigned distinct colours. (The face cannot

contain three nonadjacent vertices of the same colour.) Thus, considering the 10-face,

a colour can appear at most twice in its facial walk, and therefore must appear exactly

once. It follows that each vertex is assigned a different colour, so a proper strong parity
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Figure 4.4.1: Graph G55

vertex colouring must use 10 colours.

Presented now is a graph whose proper strong parity chromatic number is 12, and

thus demonstrates that X∗p ≥ 12.

Figure 4.4.2: Graph Z

Theorem 4.4.2. The graph Z, depicted in Figure 4.4.2, has a proper strong parity

chromatic number of 12.

Proof. Let ϕ be a proper strong parity vertex colouring of Z. Consider the vertices

z1, z2, z3, z4. No colour can occur three times on these four vertices, as two adjacent ver-

tices would have the same colour. By symmetry, no colour can occur three times on the
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vertices z5, z6, z7, z8, and no colour can occur three times on the vertices z9, z10, z11, z12.

Now, consider the face z1z2z3z4z8z7z6z5. No colour can occur five times on this cycle, as

two adjacent vertices would have the same colour. Suppose the colour c occurs 3 times

on this cycle. Then without loss of generality, it occurs twice on the vertices z1, z2, z3, z4,

and once on the vertices z5, z6, z7, z8. Considering the face z1z2z3z4z12z11z10z9, c must

occur exactly once on the vertices z9, z10, z11, z12 so that c occurs an odd number of times

on this face. But then c appears twice on the face z5z6z7z8z12z11z10z9, which contradicts

that ϕ is a proper strong parity vertex colouring. By symmetry, no colour can occur

three times on any 8-face, thus each vertex must be assigned a different colour.

(a) Graph D3 (b) Graph G4

(c) Graph G44 (d) Graph G′
44

Figure 4.4.3: Graphs D3, G4 G44, and G′44

To conclude this section, the case where G is a simple graph is discussed. The graph
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with the largest known strong parity chromatic number was constructed by Kaiser et al.

[36]. The construction was described as follows. First, take a 3-sided prism D3, shown

in Figure 4.4.3(a), which has a strong parity chromatic number of 6 by Theorem 4.3.4,

and note that this result was shown without considering the outer face. Now the graph

G4 is constructed from C4, a cycle on four vertices, by replacing two opposite edges with

D3, as depicted in Figure 4.4.3(b).1 As each vertex in a copy of D3 must be assigned a

different colour, then each colour can occur at most twice on the 6-cycle, thus it must

occur exactly once. Hence, the colours on the 4-face are distinct. Finally, two disjoint

copies of G4 are joined by two edges such that the outer face is bounded by 8 vertices,

forming the graph G44, pictured in Figure 4.4.3(c). Then each colour appears at most

once on each 4-cycle, and hence must appear exactly once on the 8-face. Thus, G44

requires 8 colours in any strong parity vertex colouring. Thus the upper bound on the

strong parity chromatic number of simple graphs is therefore at least 8. Note that it

was stated in [36] that the graph G′44, in Figure 4.4.3(d), constructed by replacing a

copy of G4 in G44 with a copy of C4 also has a strong parity chromatic number of 8.

This assertion is incorrect. Figure 4.4.4 demonstrates G′44 has a strong parity vertex

colouring with 6 colours.

There is still a large gap between the best known upper bound and the best known

lower bound on X∗p and its analog for strong parity vertex colourings simple graphs. For

strong parity vertex colouring of simple graphs, the best known upper bound is 97 and

the best known lower bound is 8. We have shown 12 ≤ X∗p ≤ 97. Thus, the problem

of determining the sharp upper bound for the strong parity chromatic number and the

1The figure depicting the graph G4 given as Figure 3.1 (b) by Kaiser et al. [36], does not match
their description of G4. We verified that the graph described does have the property that each strong
parity vertex colouring colours the vertices of the outer face with distinct colours, but the graph in the
figure does not. Therefore, we assume the graph described was the graph intended by the authors.
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Figure 4.4.4: A strong parity vertex colouring of G′44 using 6 colours.

proper strong parity chromatic number remains open.

4.5 Additional Upper Bounds

In this section, upper bounds on the proper strong parity chromatic number for specific

classes of graphs are outlined. The first class considered are outerplane graphs. A graph

is outerplane if it is embedded in the plane such that every vertex is on the outer face.

Outerplane graphs were studied by Czap [19], who showed that χp(G) ≤ 12 for every

2-connected plane graph G. This result was improved by Wang, Finbow, and Wang [45].

Figure 4.5.1: Graphs H0 and H1

37



Theorem 4.5.1. [45] If G is a 2-connected outerplane graph, different from H0 and H1,

then χp(G) ≤ 9.

The graph H0 is precisely the graph G55 constructed by Kaiser et al. [36], and has

a proper strong parity chromatic number of 10. It is clear that H1 also has a proper

strong parity chromatic number of 10.

In the case of bipartite outerplane graphs, Wang, Finbow, and Wang [45] proved

that each has a proper strong parity colouring with at most 8 colours. The authors

characterized the class of bipartite outerplane graphs with proper strong parity chromatic

number 8 as follows. If G is an outerplane graph, each face that is not the outer face

is called an inner face, and an inner face f of G is called an end face if the boundary

of f contains exactly two vertices of degree greater than 2. Let F denotes the set of

2-connected outerplane graphs that have exactly three inner faces, and the degree of

each end face of G is divisible by four and the degree of the face which is not an end

face is four. Then F is precisely the class of graphs with proper strong parity chromatic

number 8. The authors also proved that a 2-connected outerplane graph has a proper

strong parity vertex colouring using two colours if and only if the degree of each face is

divisible by two but not four.

Additionally, Czap, Jendrol’, and Kardoš [21] outlined several upper bounds on the

proper strong parity vertex chromatic number for graphs with certain facial properties.

They depend on the following fundamental lemma, Lemma 4.5.2. This lemma can be

used to recolour a face with a proper colouring so that the colouring restricted to this

face is a proper strong parity vertex colouring.

Lemma 4.5.2. [21] Let C = v1, . . . , vk be a cycle on k vertices. Then there is a proper

strong parity vertex colouring ϕ of C using the colours a, b, c, d, e, where the colours a, b, c
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are used at most once.

The first set of upper bounds require that faces exceeding a certain size do not in-

fluence each other. Two faces f and g are said to influence each other if they share a

vertex, or if there is a face h that shares a vertex with f and shares a vertex with g. The-

orem 4.5.3 is based on the application of the Four Colour Theorem, and Theorem 4.5.4

and Theorem 4.5.5 are based on the application of upper bounds on cyclic colourings,

which are given by Corollary 3.2.11.

Theorem 4.5.3. [21] Let G be a 3-connected plane graph in which no two non-triangle

faces influence each other. Then there is a proper strong parity vertex colouring of G

which uses at most six colours 1, . . . , 6 such that each vertex which is not incident with

any non-triangle face has a colour from the set {1, 2, 3, 4}. Moreover, this bound is sharp.

Theorem 4.5.4. [21] Let G be a 3-connected plane graph in which the faces of size at

least 5 do not influence each other. Then there is a proper strong parity vertex colouring

of G which uses at most 8 colours.

Theorem 4.5.5. [21] Let G be a 3-connected plane graph such that the faces of size at

least 6 do not influence each other. There there is a proper strong parity vertex colouring

of G which uses at most 10 colours.

The second set of upper bounds require that faces exceeding a certain size are isolated.

Two faces f and g are said to be isolated if they do not share a vertex. These bounds

are based on the application of results regarding k-planar graphs. A graph is k-planar

if it can be drawn in the plane such that each edge is crossed by at most k other edges.

The following lemma constructs a k-planar graph from a graph whose faces exceeding a

certain size are isolated.
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Lemma 4.5.6. [21] Let j be a fixed integer from the set {3, 4, 5}. Let G be a 2-connected

plane graph such that any face of size at least j+1 is isolated. Let H be a graph obtained

from G in the following way: for each face in G of size at least j + 1 insert a vertex to

H, join two vertices of H by an edge if the corresponding faces influence each other in

G. Then

1. If j = 3 then H is a planar graph.

2. If j = 4 then H is a 1-planar graph.

3. If j = 5 then H is a 2-planar graph.

The following results on the proper colouring of k-planar graphs are used to derive

the next set of upper bounds for proper strong parity vertex colourings.

Theorem 4.5.7. [10] If a graph is 1-planar, then it is vertex 6-colourable.

Theorem 4.5.8. [21] If a graph is 2-planar, then it is vertex 10-colourable.

Then, the following results were derived.

Theorem 4.5.9. [21] Let G be a 3-connected plane graph such that any face of size at

least 4 is isolated. Then there is a proper strong parity vertex colouring of G which uses

at most 12 colours.

Theorem 4.5.10. [21] Let G be a 3-connected plane graph such that any face of size at

least 5 is isolated. Then there is a proper strong parity vertex colouring of G which uses

at most 18 colours.

Theorem 4.5.11. [21] Let G be a 3-connected plane graph such that any face of size at

least 6 is isolated. Then there is a proper strong parity vertex colouring of G which uses

at most 28 colours.
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The results outlined in this section can be applied to the problem of determining a

sharp upper bound for the proper strong parity chromatic number. For the lower bound,

an example whose proper strong parity chromatic number is 12 is given in Theorem 4.4.2.

The problem is solved for: outerplane graphs (Theorem 4.5.1), 3-connected plane graphs

whose faces of size at least 6 do not influence each other (Theorem 4.5.5), and 3-connected

plane graphs whose faces of size at least 4 are isolated (Theorem 4.5.9). For the upper

bound, the results in this section may be used to eliminate certain cases.
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Chapter 5

Proper `-Residue Vertex Colourings

5.1 Introduction

In this chapter, the concept of parity vertex colourings is extended to vertex colourings

with an arbitrary sequence of values S` = {i|i ≡ 1 (mod `)} that a colour may occur on

a face. These colourings are defined in the following problem.

Problem 5.1.1. A vertex colouring ϕ is a proper `-residue colouring of a 2-connected

plane graph G if for each face α and each colour c the number of times the colour c

is used by the face α is an element of S` or is not used at all. The problem is to find

the minimum number of colours used in a proper `-residue colouring, called the proper

`-residue chromatic number.

Notice that a proper 2-residue vertex colouring is equivalent to a proper strong parity

vertex colouring. Hence, it similarly follows that every closed 2-cell embedded graph G

has a proper l-residue colouring, and the condition that G be closed 2-cell embedded

cannot be dropped. Our main results are the following upper bounds for plane and
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toroidal graphs. Note that for plane graphs, our bound matches that of Kaiser et al. [36]

in the case l = 2, but we include it for completeness.

Theorem 5.1.2. Every 2-connected plane graph has a proper l-residue colouring with

at most 20l2 + A(l)l + 1 colours, where

A(l) =



8 if 2 ≤ l ≤ 6,

6 if l = 7,

4 if l = 8,

2 if l = 9, 10,

0 if l ≥ 11.

Theorem 5.1.3. Every closed 2-cell embedding of a toroidal graph has a proper l-residue

colouring with at most 20l2 +B(l)l + 1 colours, where

B(l) =


10 if l = 2,

A(l) if l ≥ 3.

The proofs of the previous theorems are given in Sections 5.3 and 5.4, after establish-

ing the necessary preliminaries in Section 5.2. In Section 5.5, we give an example graph

showing the upper bound for both plane and toroidal graphs must be at least 2l2 + l.

5.2 Preliminaries

Let G be a closed 2-cell embedded graph and let f be a face of G. The number of vertices

of degree at least 3 on the boundary of f is called the weight of f , written as w(f). The

face f is a pseudodigon if w(f) = 2 and f is not a digon. The modified weight of f ,

43



w′(f), is defined as 3 if w(f) = 2, and w(f) otherwise. Suppose that v is a vertex of G.

The configuration of v is the tuple obtained by ordering the elements from the multiset

{w(g) : g ∈ F (v)} in a nondecreasing manner. The f -reduced configuration of v is the

tuple obtained by ordering the elements from the multiset {w(g) : g ∈ F (v), g 6= f}

in a nondecreasing manner. The modified configuration of v and modified f -reduced

configuration of v are defined analogously, with w(g) replaced by w′(g). The (open)

face-vertex neighbourhood of v, denoted by NF
G (v), is defined as

⋃
g∈F (v) V (g)−{v}, and

the f -reduced (open) face-vertex neighbourhood of v, denoted by NF
G (v, f) is defined as⋃

g∈F (v),g 6=f V (g)− {v}. The sizes of these sets are called the face degree and f -reduced

face degree respectively, and are denoted dFG(v) and dFG(v, f). As before, if it is clear

which graph is being discussed, the subscript G is removed from the above notation.

The annihilation of a vertex v of a plane graph G was defined by Kaiser et al. [36] to

establish structural conditions on a minimal counterexample; we extend the definition

to closed 2-cell embedded graphs for use in the proof of Lemma 5.3.1. Let G be a

closed 2-cell embedded graph and v a vertex of G with degree d ≥ 2. Suppose the edges

incident with v are enumerated in a clockwise order as ei := vvi, i ∈ Zd. Suppose that

the vertices vi are distinct; that is, v is incident with no pair of parallel edges. The

annihilation of v is the construction of a 2-cell embedded graph G′ from G defined as

follows:

(1) add edges e′i := vivi+1, i ∈ Zd, embedded in the plane so that for each i, the edges

ei, ei+1, and e′i, in this order, constitute a facial walk;

(2) delete v together with all the edges ei.

The following observations are straightforward extensions of the case of 2-connected

plane graphs given by Kaiser et al. [36].
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Observation 5.2.1.

(1) Every face of G not in FG(v) is also a face of G′;

(2) each face g ∈ FG(v) has its counterpart g′ in G′ such that a facial walk of g′ may be

obtained from a facial walk W of g by replacing each subsequence of W of the form

eivei+1 with e′i, and hence V (g′) = V (g)− {v};

(3) there is precisely one more face in G′, having the sequence v0e
′
d−1vd−1e

′
d−2 . . . v1e

′
0v0

as its facial walk.

Lemma 5.2.2. Let v be a vertex of a (loopless) closed 2-cell embedded graph G, |V (G)| ≥

4, such that v is incident with no pair of parallel edges. Then the graph G′ obtained from

G by annihilating v is closed 2-cell embedded (and loopless).

The following technical lemma was used by Kaiser et al. [36] and significantly short-

ens the case analysis of the proof of Claim 5.3.6.

Lemma 5.2.3. [36] Let (li), (l′i), i = 0, . . . , k, be tuples of positive integers such that

lj ≤ l′j for every j 6= k, and l′k ≥ l′j for every j 6= k with lj < l′j. Then
∑k

i=0 l
′
i ≤

∑k
i=0 li

or
∑k

i=0 1/l′i ≤
∑k

i=0 1/li.

5.3 Plane Graphs

This section gives the proof of Theorem 5.1.2, following the approach of Kaiser et al. [36].

We proceed by contradiction; take a minimal counterexample G with respect to the

number of vertices first and to the number of edges next. In Section 5.3.1, we give the

structural conditions that G must satisfy as a minimal counterexample. In Section 5.3.2,

these structural conditions are used in an application of the discharging method.
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5.3.1 Reducibility

In the following subsection, we introduce the following constraints on a minimal coun-

terexample G.

Lemma 5.3.1. Any minimal counterexample G has the following properties:

(1) |G| > 20l2 + A(l)l + 1;

(2) G does not contain parallel edges; in particular, G is without digons;

(3) no facial walk of a face of G contains 2l consecutive 2-vertices;

(4) for every vertex v of G, it holds that dF (v) > 20l2 + A(l)l;

(5) for every l vertices u1, u2, . . . , ul of G such that F (ui) ∩ F (uj) = {f} for all i 6= j,

it holds that
∑l

i=1 d
F (ui, f) > 20l2 + (A(l)− 1)l + 1.

Proof. By assumption, G is a 2-connected graph. We prove each of the assertions by

contradiction.

Property (1) is trivial; assign a different colour to each vertex of G.

To show property (2), let e1 and e2 be parallel edges of G. If e1 and e2 are the two

edges of a digon f , let G′ be the graph G − e1. Then G′ is 2-connected, and by the

minimality of G, G′ must have a proper l-residue colouring c with at most 20l2+A(l)l+1

colours. Since the vertices of f are different colours, and each other face in G has its

counterpart in G′, then c is also a proper l-residue colouring of G. If e1 and e2 are not

the two edges of a digon, let G1 and G2 be graphs formed by deleting the interior and

exterior of e1e2 respectively. As both these graphs are 2-connected and smaller than

G with respect to order, they have proper l-residue colourings c1 and c2 respectively

with at most 20l2 + A(l)l + 1 colours, chosen such that the end vertices of e1 are the
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same colour in c1 and c2. Then c = c1 ∪ c2 is a proper l-residue colouring with at most

20l2 + A(l)l + 1 colours.

For property (3), if there exists a chain of 2-vertices x1x2x3 . . . x2l, let v1 (respectively

v2l) be the other neighbour of x1 (respectively x2l). The vertices v1 and v2l are distinct

from all xi, 1 ≤ i ≤ 2l, otherwise the facial walk would contain at most 2l + 1 vertices,

and as G is 2-connected, the vertices of this facial walk would be the only vertices of

G, contradicting property (1). Let G′ = G[V (G) − {xi : 1 ≤ i ≤ 2l}] + v1v2l. Then G′

has a proper l-residue colouring c with at most 20l2 + A(l)l + 1 colours. If we assign

the colour c(v1) to the even indexed vertices of the chain, and the colour c(v2l) to the

odd indexed vertices of the chain, the result is a proper l-residue colouring of G with at

most 20l2 + A(l)l + 1 colours.

To show property (4), let G′ be the graph created from G by the annihilation of

v. From properties (1) and (2) and Lemma 5.2.2, G′ is 2-connected. Thus, by the

minimality of G, G′ has a proper l-residue colouring c with at most 20l2 + A(l)l + 1

colours. Extend c to G by assigning v a colour not used on any vertex in NF
G (v), which

is possible as by assumption, dF (v) ≤ 20l2 +A(l)l. Then c is an l-residue colouring of G

with at most 20l2 + A(l)l + 1 colours. By Observation 5.2.1, the only faces of G whose

boundary vertices differ from the corresponding face in G′ are the elements of FG(v).

Since the colour of v is not used by any other vertex incident with one of these faces by

construction, c is a proper l-residue colouring of G, a contradiction.

To show property (5), suppose the opposite is true. We construct a graph G1 by the

annihilation of u1. From properties (1) and (2) and Lemma 5.2.2, G1 is 2-connected.

Also, since for any i and j such that 1 ≤ i < j ≤ l, ui and uj have exactly one

common incident face, and since G is 2-connected, they are not adjacent. Therefore
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the annihilation of any ui creates no parallel edges at any other uj such that i < j.

Therefore, for each i such that 2 ≤ i ≤ l, we construct a graph Gi from the graph Gi−1

by the annihilation of ui, and by the previous observation and the fact that any Gi has

at least 20l2 +A(l)l+ 1− i vertices, it follows from Lemma 5.2.2 that Gi is 2-connected.

Thus, the graph Gl is smaller than G with respect to order. By the minimality of

G, Gl has a proper l-residue colouring c′ with at most 20l2 + A(l)l + 1 colours. We

extend the colouring to G as follows. If there exists a colour used by c′ on a vertex

in VG(f) −
⋃l

i=1N
F
G (ui, f) but on no vertex in

⋃l
i=1N

F
G (ui, f), we assign this colour to

each ui. If the opposite is true, every colour used in VG(f) −
⋃l

i=1N
F
G (ui, f) is used in⋃l

i=1N
F
G (ui, f) by c′, we colour each ui with a different colour not used by c′ on any

vertex in
⋃l

i=1N
F
G (ui, f), but, if possible, appearing in c′. Such a colouring is possible

as, by assumption, at most
∑l

i=1 d
F (ui, f) ≤ 20l2 + (A(l)− 1)l colours are used by c′ on⋃l

i=1N
F
G (ui, f) and thus G may be coloured using at most 20l2 + A(l)l colours. Both

cases yield a colouring c.

We show that c is a proper l-residue colouring of G. If g is a face in
⋃l

i=1 F (vi)−{f},

then there is only one vertex ui incident with g, and since ui is assigned a colour not

used by this face, the face has a proper l-residue colouring. For f , either the same colour

already occurring on f is assigned to each ui, or each ui is assigned a distinct colour not

already used by a vertex of f . This maintains a proper l-residue colouring of f . The

remaining faces have the same boundary in both G and G′. Therefore, c is a proper

l-residue colouring of G.

A graph that contradicts Lemma 5.3.1 is defined to be reducible. We now prove the

following bounds for the (reduced) face degree of a vertex in G in terms of the sum of

its (reduced) configuration.
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Lemma 5.3.2. Let v be a vertex of a minimal counterexample G.

(1) Let the faces incident with v be f0, f1, f2, . . . , fd(v)−1 (and take subscripts modulo

d(v) when required). Then:

(a) If d(v) = 2, then dF (v) ≤ 2l(w(f0) + w(f1))− 2l − 2;

(b) If d(v) ≥ 3, then dF (v) ≤ 2l
∑d(v)−1

i=0 w(fi)− (2l+ 1)d(v)− (2l− 1)σ, where σ is

the number of all i with the property that w(fi) + w(fi+1) ≤ 10l + 1
2
A(l) + 1;

(c) If d(v) = 3, w(f0) = 3, w(f1) ≤ 10l + 1
2
A(l)− 2, and w(f2) ≤ 10l + 1

2
A(l)− 2,

then w(f1) + w(f2) ≥ 10l + 1
2
A(l) + 4.

(2) Let f0 be a face of G incident with v. Let the other faces incident with v be

f1, f2, . . . , fd(v)−1. Then:

(a) If d(v) = 2, then dF (v, f0) ≤ 2lw(f1)− 1;

(b) If d(v) ≥ 3, then dF (v, f0) ≤ 2l
∑d(v)−1

i=1 w(fi)− (2l+ 1)d(v) + 4l+ 1− (2l− 1)σ,

where σ is the number of all i (1 ≤ i ≤ d(v)− 2) with the property that w(fi) +

w(fi+1) ≤ 10l + 1
2
A(l) + 1.

Proof. Assume the faces incident with v are enumerated in clockwise order. Suppose

d(v) = 2, and let v0 and v1 be the neighbours of v. As every vertex incident with the

same faces has the same face degree, we can assume without loss of generality that

d(v0) ≥ 3. Let P be the walk from (but not including the ends of) v to v1 obtained by

concatenating the path from v to v1 incident with both f0 and f1 and the portions of

the facial walks of f0 and f1 from v0 to v1. Then P consists of w(f0) +w(f1)−2 vertices

of degree at least three, and w(f0) + w(f1) − 1 segments of at most 2l − 1 2-vertices,
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the first of which includes v. Hence, dF (v) ≤ 2l(w(f0) + w(f1))− 2l − 2, which verifies

statement (1a).

Now suppose d(v) ≥ 3 and let vi be the other vertex of degree greater than 2 incident

with both fi and fi+1. Let P (v, fi) be the portion of the facial walk of fi between (but

not including) v and vi−1 that includes vi. Then dF (v) ≤
∑d(v)−1

i=0 |P (v, fi)|. Suppose

w(fi) +w(fi+1) ≤ 10l+ 1
2
A(l) + 1 and let u be the vertex of P (v, fi) adjacent to v. Then

u is incident with fi and fi+1. If d(u) = 2, then by statement (1a), dF (v) ≤ 20l2 +

A(l)l− 2, which contracts Lemma 5.3.1 (4). Hence, if w(fi) +w(fi+1) ≤ 10l+ 1
2
A(l) + 1,

d(u) ≥ 3, and the segment between v and vi contains no 2-vertices. Let σi = 1 if

w(fi) + w(fi+1) ≤ 10l + 1
2
A(l) + 1 and σi = 0 otherwise. Notice that σ =

∑d(v)
i=1 σi. As

P (v, fi) = V (fi)−P (v, vi), |P (v, fi)| ≤ 2lw(fi)−2l−1−(2l−1)σi. Since P (v, fi) covers

all the vertices of NF (v), we have

dF (v) ≤
d(v)−1∑
i=0

|P (v, fi)| ≤ 2l

d(v)−1∑
i=0

w(fi)− (2l + 1)d(v)− (2l − 1)σ,

which verifies statement (1b).

Suppose d(v) = 3, w(f0) = 3, w(f1) ≤ 10l+ 1
2
A(l)− 2, w(f2) ≤ 10l+ 1

2
A(l)− 2, and

w(f1)+w(f2) ≤ 10l+1
2
A(l)+3. Let vi be the other vertex of degree greater than 2 incident

with both fi and fi+1 and let ui be the vertex adjacent to v incident with both fi and fi+1.

We prove for all i, ui = vi, that is, v is adjacent to no 2-vertex. If ui 6= vi for some i, then

d(ui) = 2. If d(u0) = 2 or d(u2) = 2, then by statement (1a), dF (u2) ≤ 20l2 +A(l)l − 2,

which contradicts Lemma 5.3.1 (4). Suppose d(u1) = 2. As v and v1 are incident with

both f1 and f2 and w(f1) + w(f2) ≤ 10l + 1
2
A(l) + 3, there are at most 10l + 1

2
A(l) + 1

vertices of degree at least three in the closed face-vertex neighbourhood of u1, but by

the previous argument, v is adjacent to v0 and v2. Therefore the closed face-vertex

neighbourhood of u1 contains at most 10l + 1
2
A(l) + 1 segments of 2-vertices between
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vertices of degree at least three. Hence, there are 10l + 1
2
A(l) + 3 vertices of degree at

least three in the face-vertex neighbourhood of u1, but at most 10l + 1
2
A(l) segments

of two vertices, one of which includes u1, so dF (u1) ≤ 20l2 + A(l)l, which contradicts

Lemma 5.3.1 (4). Therefore, we correct our bound obtained in the proof of statement

(1b) by removing the 2-vertices between v and v1, and obtain dF (v) ≤ 20l2 + A(l)l,

which contradicts Lemma 5.3.1 (4) and verifies statement (1c).

Statements (2a) and (2b) follow immediately from statements (1a) and (1b) respec-

tively. Assuming f0 is between fd(v)−1 and f1 with u0 the other vertex of degree greater

than 2 incident with both f0 and f1, we need simply remove the vertices counted in the

facial walk of f0 between vd(v)−1 and u0. If d(v) = 2, there are w(f0)−2 vertices of degree

at least three between vd(v)−1 and u and w(f0)− 1 segments of at most 2l− 1 2-vertices,

so the number of such vertices counted is 2lw(f0)−2l−1. If d(v) ≥ 3, there are w(f0)−3

vertices of degree at least three between vd(v)−1 and u0 and w(f0) − 2 segments of at

most 2l − 1 2-vertices, so the number of such vertices counted is 2lw(f)− 4l − 1.

5.3.2 Discharging

Now that we have determined some of the properties of the minimal counterexample G,

we derive a contradiction through the use of the discharging method.

To start, the following charges are assigned:

• Each vertex v is given d(v)− 6 units of charge;

• Each face f is given 2|V (f)| − 6 units of charge.

The following observation is easily derived through use of Euler’s formula.

Observation 5.3.3. The sum of the charges of the graph G is −12.
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Next, the defined rules 1 through 3 are applied sequentially. These rules are based

on those of [36]. In our case, a face is large if

w(f) ≥



20 if l = 2,

d8.5l + 4.7e if l = 3, 4,

d9.25l + 5.75e if l ≥ 5,

otherwise, it is small.

Rule 1: Every face not being a pseduodigon sends two units of charge to each incident

2-vertex. Each pseudodigon does the same, except that one of the respective 2-

vertices receives no charge.

Rule 2: Every small face distributes its remaining charge evenly to all incident vertices

of degree at least 3. Every large face sends 1.5 units of charge to all incident vertices

of degree at least 3.

Rule 3: Every large face sends each incident vertex vi with a negative charge ci a

charge of −ci.

This discharging method is designed to obtain nonnegative charges for all vertices

and all faces, contradicting Observation 5.3.3. Let c0(v) and c0(f) be the initial charge

assigned to vertex v and face f respectively, and let ci(v) and ci(f) be the charge on

vertex v and face f after Rule i is applied. The charges are examined after the application

of each rule.

Observation 5.3.4. After the application of Rule 1, each face has a charge of c1(f) =

2w′(f)− 6.
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Proof. If f is not a pseudodigon, c1(f) = c0(f) − 2(|V (f)| − w(f)) = 2|V (f)| − 6 −

2(|V (f)| − w(f)) = 2w(f) − 6 = 2w′(f) − 6. If f is a pseudodigon, c1(f) = c0(f) −

2(|V (f)|−w(f))+2 = 2|V (f)|−6−2(|V (f)|−w(f))+2 = 2w(f)−4 = 2w′(f)−6.

Since w′(f) ≥ 3, 2w′(f) − 6 ≥ 0, thus the charge of each face is nonnegative by

Observation 5.3.4. If f is a large face, w′(f) ≥ 20, so c2(f) = c1(f) − 1.5w′(f) =

0.5w′(f)− 6 ≥ 4, thus each large face has a positive charge after the application of Rule

2.

Observation 5.3.5. After the application of Rule 2, each vertex v has the following

charge:

c2(v) = 3d(v)− 6−

(
6
∑

fi small

(
1

w′(fi)

))
−

( ∑
fi large

1

2

)
.

Proof. By Rule 2, each small face f sends c1(f)
w(f)

to each of its incident vertices of degree

at least three, and each large face f sends 3
2

to each of its incident vertices of degree at

least three. Thus, for each vertex v of degree at least three:

c2(v) = c1(v) +
∑

fi small

(
c1(fi)

w(fi)

)
+
∑

fi large

3

2

= d(v)− 6 +
∑

fi small

(
2w′(fi)− 6

w(fi)

)
+
∑

fi large

3

2

= d(v)− 6 +
∑

fi small

(
2− 6

w′(fi)

)
+
∑

fi large

(
2− 1

2

)

= 3d(v)− 6−

(
6
∑

fi small

(
1

w′(fi)

))
−

( ∑
fi large

1

2

)
,

as required.

We can now consider the application of Rule 3. If c2(v) < 0, then v is referred to as

a special vertex. Let d′(v) be the number of large faces incident with v. The following

two claims are established.
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Claim 5.3.6. Every special vertex has degree at most 5 and is incident with a large face.

Proof. If d(v) ≥ 6, then c2(v) ≥ 3d(v)−6−2(d(v)−d′(v))−d′(v)/2 ≥ 3d(v)−6−2d(v) ≥

d(v)− 6 ≥ 0. Thus every special vertex has degree at most 5.

We now proceed by contradiction. Let v be a special vertex. If d(v) = 2, at least one

of the faces, say f0, is a pseudodigon, and since f1 is small, w(f1) ≤ 9.25l+ 5.75. Hence,

by Lemma 5.3.2 (1a), dF (v) ≤ 18.5l2 − 9.5l − 2, which contradicts Lemma 5.3.1 (4).

Therefore, v is a special vertex of degree d ≥ 3. Let the faces incident with v be

f0, f1, f2, . . . , fd(v)−1, ordered so that w′(f0) ≤ w′(f1) ≤ w′(f2) ≤ · · · ≤ w′(fd(v)−1). By

Observation 5.3.5, c2(v) = 3d(v) − 6 − 6
∑

i 1/w′(fi) < 0, which implies the following

inequality:

∑
i

1/w′(fi) > d/2− 1 (5.1)

Assume v is of degree 3. By (5.1), w′(f0) ≤ 5. Suppose w′(f0) = 3. We show

w′(f0) + w′(f2) < 10l + 1
2
A(l) + 1, by using the fact that f2 is a small face:

l = 2

l = 3, 4

l = 5, 6

l = 7

l = 8

l = 9, 10

l ≥ 11

w′(f0) + w′(f2) < 23 ≤ 25

w′(f0) + w′(f2) < 8.5l + 7.7 ≤ 10l + 5

w′(f0) + w′(f2) < 9.25l + 8.75 ≤ 10l + 5

w′(f0) + w′(f2) < 9.25l + 8.75 ≤ 10l + 4

w′(f0) + w′(f2) < 9.25l + 8.75 ≤ 10l + 3

w′(f0) + w′(f2) < 9.25l + 8.75 ≤ 10l + 2

w′(f0) + w′(f2) < 9.25l + 8.75 ≤ 10l + 1

Then by Lemma 5.3.2 (1b), dF (v) ≤ 2l
∑

iw
′(fi) − 10l − 1, which, together with
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Lemma 5.3.1 (4), implies the following inequality:

∑
i

w′(fi) ≥ 10l +
1

2
A(l) + 6. (5.2)

For l ≥ 5, if w′(f1) ≤ 6, then by (5.2), the modified configuration of v is (3, 6, 10l+ 1
2
A(l)−

3), which contradicts Lemma 5.3.2 (1c) and if w′(f1) ≥ 7 then, by Lemma 5.2.3 applied to

the tuples (3, 7, 42) and the modified configuration of v, it must hold that
∑

i 1/w′(fi) ≤

1/2 or
∑

iw
′(fi) ≤ 52 < 10l + 1

2
A(l) + 6, which contradicts either (5.1) or (5.2). For

l = 3, 4, if w′(f1) ≤ 7, then l = 3, and the modified configuration of v is (3, 7, 30), which

contradicts Lemma 5.3.2 (1c), and if w′(f1) ≥ 8 then, by Lemma 5.2.3 applied to the

tuples (3, 8, 24) and the modified configuration of v, it must hold that
∑

i 1/w′(fi) ≤ 1/2

or
∑

iw
′(fi) ≤ 35 < 10l + 1

2
A(l) + 6, which contradicts either (5.1) or (5.2). For l = 2,

if w′(f1) ≤ 9, then the modified configuration of v is either (3, 8, 19), which contradicts

Lemma 5.3.2 (1c), or (3, 9, 18) or (3, 9, 19), which contradict (5.1), and if w′(f1) ≥ 10

then, by Lemma 5.2.3 applied to the tuples (3, 10, 15) and the modified configuration

of v, it must hold that
∑

i 1/w′(fi) ≤ 1/2 or
∑

iw
′(fi) ≤ 28 < 10l + 1

2
A(l) + 6, which

contradicts either (5.1) or (5.2).

Suppose w′(f0) = 4. Then w′(f1) ≤ 7, so by Lemma 5.3.2 (1b), dF (v) ≤ 2l
∑

iw
′(fi)−

8l − 2, which, together with Lemma 5.3.1 (4), implies the following inequality:

∑
i

w′(fi) ≥ 10l +
1

2
A(l) + 5. (5.3)

If w′(f1) = 4, then the modified configuration of v is (4, 4, 10l + 1
2
A(l) − 3), which

contradicts Lemma 5.3.2 (1b). If l ≥ 3 and w′(f1) ≥ 5 then, by Lemma 5.2.3 applied to

the tuples (4, 5, 20) and the modified configuration of v, it must hold that
∑

i 1/w′(fi) ≤

1/2 or
∑

iw
′(fi) ≤ 29 < 10l+ 1

2
A(l) + 6, which contradicts either (5.1) or (5.3). If l = 2

and w′(f2) = 5, then by (5.3), v is incident with a large face. If l = 2, w′(f1) ≥ 6 and by
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Lemma 5.2.3 applied to the tuples (4, 6, 12) and the modified configuration of v, it must

hold that
∑

i 1/w′(fi) ≤ 1/2 or
∑

iw
′(fi) ≤ 22 < 10l + 1

2
A(l) + 6, which contradicts

either (5.1) or (5.3).

Suppose w′(f0) = 5. Then w′(f1) ≤ 6, so by Lemma 5.3.2 (1b), dF (v) ≤ 2l
∑

iw
′(fi)−

8l − 2, which, together with Lemma 5.3.1 (4), again implies (5.3). By Lemma 5.2.3 ap-

plied to the tuples (5, 5, 10) and the modified configuration of v, it must hold that∑
i 1/w′(fi) ≤ 1/2 or

∑
iw
′(fi) ≤ 20 < 10l + 1

2
A(l) + 5, which contradicts either (5.1)

or (5.3).

If v is of degree 4, then by Lemma 5.3.2 (1b) and Lemma 5.3.1, we again have

(5.3). If w′(f0) = w′(f1) = w′(f2) = 3, then by (5.3), the modified configuration of v

is (3, 3, 3, 10l + 1
2
A(l) − 4), which, by Lemma 5.3.2 (1b), contradicts Lemma 5.3.1 (4).

Thus, by Lemma 5.2.3 applied to the tuples (3, 3, 4, 12) and the modified configuration

of v, it must hold that
∑

i 1/w′(fi) ≤ 1 or
∑

iw
′(fi) ≤ 22 < 10l + 1

2
A(l) + 5, which

contradicts either (5.1) or (5.3).

If v is of degree 5, then by Lemma 5.3.2 (1b) and Lemma 5.3.1, we have (5.2). By

Lemma 5.2.3 applied to the tuples (3,3,3,3,6) and the modified configuration of v, it must

hold that
∑

i 1/w′(fi) ≤ 3/2 or
∑

iw
′(fi) ≤ 18 < 10l + 1

2
A(l) + 6, which contradicts

either (5.1) or (5.2).

Claim 5.3.7. Every large face has a nonnegative charge after the application of Rule 3.

Proof. Let f be an arbitrary large face of G. For each special vertex v incident with

f , we establish that it is incident with exactly one large face and list its the possible

f -reduced or modified f -reduced configurations. For each case, we find an upper bound

on the charge of these vertices. The results are summarized in Table 5.1.

If v is a 2-vertex, then, by Rule 1, its f -reduced configuration is the 1-tuple (2) and
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its charge is −2.

Suppose now that v has degree d ≥ 3. Let the other faces incident with v be

f1, f2, . . . , fd(v)−1, ordered so that w′(f1) ≤ w′(f2) ≤ · · · ≤ w′(fd(v)−1), and let d′ denote

the number of large faces incident with v. By Claim 5.3.6, d ≤ 5. By Observation 5.3.5,

c2(v) = 3d(v)− 6−

(
6
∑

fi small

(
1

w′(fi)

))
−

( ∑
fi large

1

2

)
.

Since v is a special vertex, its charge is negative, so we obtain that

3d− 6−

(
6
∑

fi small

(
1

w′(fi)

))
− d′/2 < 0 (5.4)

Furthermore, w′(fi) ≥ 3, and hence

d− 6 + (3/2) d′ = 3d− 6− 2(d− d′)− d′/2 < 0.

From this, it immediately follows that d ≤ 4 and d′ = 1, i.e, f is the only large face

incident with v.

Assume first that d = 3. Then from (5.4), we have 5/2− 6(1/w′(f1) + 1/w′(f2)) < 0,

so either w′(f1) = 3 and w′(f2) ≤ 11, or w′(f1) = 4 and w′(f2) ≤ 5. Now, if d = 4, then

we have 11/2 − 6
∑

i 1/w′(fi) < 0, and if some w′(fi) were greater than or equal to 4,

this inequality would not hold, so the modified f -reduced configuration of v is (3, 3, 3).

In each case a bound on the charge on v after the application of Rule 1 and Rule 2 can

be found by applying (5.4). The results are summarized in Table 5.1.

We now consider the sum of the charges of the special vertices incident with f .

For l ≥ 5, let S ′ denote the set of special vertices incident with f with the f -reduced

configuration (3, 10) or (3, 11), for l = 3, 4, let S ′ denote the set of special vertices

incident with f with the f -reduced configuration (3, 11), and for l = 2, let S ′ = ∅. Let

S denote the set of all the special vertices incident with f not in S ′. We observe the

following:
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(modified) f -reduced configuration charge

(2) −2

(3, x), x ≤ 11 1/2− 6/x ≥ −3/2

(4, x), x ≤ 5 1− 6/x ≥ −1/2

(3, 3, 3) −1/2

Table 5.1: The possible f -reduced or modified f -reduced configuration of special

vertices incident with f , and their charges.

Observation 5.3.8. In every subset {u1, u2, . . . , ul} of vertices of S, there exist two

vertices incident with at least two common faces.

Proof. Suppose the contrary, that is, there exists a subset U ′ = {u′1, u′2, . . . , u′l} such

that no two vertices are incident with two common faces, i.e., the only common face of

each pair of vertices is f . Consider each of the possible f -reduced or modified f -reduced

configurations of each ui given by Table 5.1. If the f -reduced configuration of ui is (2),

then by Lemma 5.3.2 (2a), dF (ui, f) ≤ 4l − 1. If the modified f -reduced configuration

of ui is (3, x), then by Lemma 5.3.2 (2b), dF (ui, f) ≤ 2l(3 + x)− 4l− 1. If l ≥ 5, x ≤ 9,

so dF (ui, f) ≤ 20l − 1; if l = 3, 4, x ≤ 10, so dF (ui, f) ≤ 22l − 1; and if l = 2, x ≤ 11,

so dF (ui, f) ≤ 24l − 1. If the modified f -reduced configuration of ui is (4, x), x ≤ 5,

then by Lemma 5.3.2 (2b), dF (ui, f) ≤ 2l(4 + x) − 4l − 1 ≤ 12l − 1. If the modified

f -reduced configuration of ui is (3, 3, 3), then by Lemma 5.3.2 (2b), dF (ui, f) ≤ 14l− 3.

Therefore, if l ≥ 5, dF (ui, f) ≤ 20l − 1 and
∑l

i=1 d
F (ui, f) ≤ 20l2 − l, if l = 3, 4,

dF (ui, f) ≤ 22l − 1 and
∑l

i=1 d
F (ui, f) ≤ 22l2 − l ≤ 20l2 + 7l + 1, and if l = 2,

dF (ui, f) ≤ 47 and
∑l

i=1 d
F (ui, f) ≤ 94. A contradiction follows from Lemma 5.3.1
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(5).

Let G∗ be formed from G by sequentially deleting each 2-vertex of G and adding an

edge between its neighbours. Let T be a subset of S defined as follows. For i ≥ 1, let ti

be a vertex chosen from S \
⋃i−1

j=1 Sj (where Si is the set of special vertices in the closed

f -reduced face-vertex neighbourhood of ti minus the set
⋃i−1

j=1 Sj) with the following

priority:

1. a 2-vertex,

2. a 4-vertex,

3. a 3-vertex for which all special face-vertex neighbours in S \
⋃i−1

j=1 Sj are 3-vertices

and incident with a common small face,

4. a 3-vertex with at most one neighbour in G∗ which is also in the set S\
⋃i−1

j=1 Sj and

not all special face-vertex neighbours in S \
⋃i−1

j=1 Sj are incident with a common

small face

5. a 3-vertex with more than one neighbour in G∗, each of which is also in the set

S \
⋃i−1

j=1 Sj and not all special face-vertex neighbours in S \
⋃i−1

j=1 Sj are incident

with a common small face.

Then T = {ti} and every pair of vertices ti and tj are incident with only one common

face, namely f . Hence, by Observation 5.3.8, |T | ≤ l − 1. We establish the following

claim.

Claim 5.3.9. Let Ri denote the total charge of the vertices in Si after Rule 1 and Rule

2 have been applied. Then Ri is at least −4.
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Proof. Suppose Ri < −4. We consider the following cases.

Case 1: d(ti) = 2. Then all vertices in Si are incident with the same pseudodigon, and

hence Si ⊆ {ti, v1, v2}, where v1 and v2 are the two vertices of degree at least 3

on the pseudodigon. By Table 5.1, S = {ti, v1, v2}, and d(v1) = d(v2) = 3. Hence

F (v1) = F (v2), and so v1 and v2 each have the modified f -reduced configuration

(3, 3). Then v1 and v2 form a small face of weight 3 with v3, but v3 is a cut-vertex.

Hence Ri ≥ −4.

Case 2: d(ti) = 4. Then the f -reduced configuration of ti is (3, 3, 3). By the priority

we have chosen the vertices, Si ⊆ NG∗ [ti]. Suppose NG∗ [ti] = {a, b, c, d} and b

and c each share two faces of weight 3 with ti. By Table 5.1, Si contains at least

four vertices. If all five vertices are incident with f , then d(b) = d(c) = 4. Hence,

a and d have the f -reduced configuration (3, 3) and b and c have the f -reduced

configuration (3, 3, 3). But then if e is the third vertex of degree at least three of

the weight 3 face with c and d but not ti, then e is a cut vertex. Hence, only four

vertices are incident with f , then without loss of generality, b is not incident with

f . But then d(c) ≥ 4, so Ri ≥ −4.

Case 3: d(ti) = 3 and all face-vertex neighbours in S \
⋃i−1

j=1 Sj are incident with

a common small face f ′. If w(f ′) = 3, then each vertex in Si has the f -reduced

configuration (3, 3). As with Case 1, this configuration creates a cut-vertex. Hence,

w(f ′) ≥ 4, so Ri ≥ w(f ′)(1
2
− 6

w(f ′)
) ≥ −4.

Case 4: d(ti) = 3 and ti has at most one neighbour in G∗ which is also in

the set S \
⋃i−1

j=1 Sj. Let f1 and f2 be the two small faces incident with ti such

that w(f1) ≤ w(f2) and w(f1) ≤ 4. Let Si2 be the set of vertices in Si incident
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with f2 and let Si1 = Si \ Si2 . If Rij is the total charge of the vertices of Sij ,

then Ri = Ri1 + Ri2 . If ti has a neighbour in G∗ which is also in the set S \⋃i−1
j=1 Sj and incident with f2, then Ri2 ≥ (w(f2) − 1)(1

2
− 6

(w(f2)
) ≥ −3, and

Ri1 = (w(f1)−3)(1
2
− 6

w(f1)
) ≥ −1. Hence Ri ≥ −4. Otherwise ti has no neighbour

in G∗ which is also in the set S \
⋃i−1

j=1 Sj and incident with f2. If w(f2) 6= 5,

then Ri2 ≥ (w(f2) − 2)(1
2
− 6

(w(f2)
) ≥ −2, and Ri1 = (w(f1) − 2)(1

2
− 6

w(f1)
) ≥ −2

and the result follows. If w(f2) = 5 and w(f1) = 3, a similar calculation shows

Ri2 ≥ −2.1 and Ri1 ≥ −1.5, and the result follows. If w(f2) = 5 and w(f1) = 4,

then Ri2 ≥ c(v) + (w(f2) − 3)(1
2
− 6

(w(f2)
) = −0.2 + (5 − 3)(1

2
− 6

5
) ≥ −1.6 and

Ri1 ≥ −2 and the result follows.

Case 5: d(ti) = 3 and ti has multiple neighbours in G∗, each of which is also

in the set S \
⋃i−1

j=1 Sj. Then every vertex in S \
⋃i−1

j=1 Sj has this property.

Hence, there exists a cycle of these vertices, the exterior of which is f , and since

|T | ≤ l− 1, there are at most 2l− 1 vertices on the cycle. But then w(f) ≤ 2l− 1,

which contradicts that f is a large face. Hence, there are no such vertices in T .

For |T | < i < l, Si = ∅. Let S∗i be formed by adding as many vertices of S ′ to Si as

possible such that the charge of the vertices in S∗i is at least −4 so that the collection of

sets S∗i are mutually disjoint. We now consider the number of vertices in S ′ \
⋃l−1

i=1 S
∗
i .

Claim 5.3.10. |S ′ \
⋃l−1

i=1 S
∗
i | ≤ w(f)− 3(l − 1).

Proof. If S ′ \
⋃l−1

j=1 S
∗
i is empty, then the result is obvious. Suppose some S∗i contains

fewer than three vertices of degree at least three. Note that any vertex of S∗i \ Si has

(negative) charge at least −1/10 and hence the sum of the charges of the vertices in S∗i

is less than −3.9. By Table 5.1, S∗i contains a 2-vertex, and the two vertices of degree at
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least three each have degree three. Hence, they must have the same modified f -reduced

configuration, which must be (3, 4) (otherwise G has a cut vertex). Suppose some vertex

of degree at least three on the 4-face but not the pseudodigon is special. Then this vertex

is degree 3, and has modified f -reduced configuration (4, x), 4 ≤ x ≤ 5. Then this vertex

shares no face with a special 2-vertex, so it is in some S∗j , and by Table 5.1, S∗j contains

at least four vertices. Otherwise, every such S∗i without a special vertex of degree at least

3 on the 4-face but not the pseudodigon can be assigned a unique non-special vertex

from its 4-face, which is clearly not in S ′. The result follows.

We conclude by computing c3(f). For l ≥ 5, each vertex in S ′ has charge at least

−1/10, so the charge required for S ′ \
⋃l−1

i=1 S
∗
i is at most 1

10
(w′(f)− 3(l − 1)), and

c3(f) =
1

2
w′(f)− 6− 4(l − 1)− 1

10
(w′(f)− 3(l − 1))

c3(f) =
2

5
w′(f)− 37

10
l − 17

10

c3(f) ≥ 37

10
l +

23

10
− 37

10
l − 17

10

c3(f) ≥ 3

5
.

For l = 3, 4, each vertex in S ′ has charge at least −1/22, so the charge required for

S ′ \
⋃l−1

i=1 S
∗
i is at most 1

22
(w′(f)− 3(l − 1)), and

c3(f) =
1

2
w′(f)− 6− 4(l − 1)− 1

22
(w′(f)− 3(l − 1))

c3(f) =
5

11
w′(f)− 85

22
l − 41

22

c3(f) ≥ 85

22
l +

47

22
− 85

22
l − 41

22

c3(f) ≥ 3

11
.
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For l = 2, there are no vertices in S ′, so

c3(f) =
1

2
w′(f)− 6− 4(l − 1)

c3(f) =
1

2
w′(f)− 10

c3(f) ≥ 10− 10

c3(f) ≥ 0.

Thus every large face has a nonnegative charge after the application of Rule 3,

completing the proof of Claim 5.3.7.

We now complete the proof of Theorem 5.1.2.

Theorem 5.1.2. Every 2-connected plane graph has a proper l-residue colouring with

at most 20l2 + A(l)l + 1 colours, where

A(l) =



8 if 2 ≤ l ≤ 6,

6 if l = 7,

4 if l = 8,

2 if l = 9, 10,

0 if l ≥ 11.

Proof. By Claim 5.3.6, every special vertex of a minimum counterexample G finishes

with a nonegative charge after the application of the discharging rules, and hence every

vertex finishes with a nonnegative charge; and by Claim 5.3.7, the charge of every face

is also nonegative, which is a contradiction to Observation 5.3.3. The result follows as

no minimal counterexample exists.
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5.4 Toroidal Graphs

The proof of Theorem 5.1.3 follows almost immediately from the proof of Theorem 5.1.2.

We proceed by contradiction; take a minimal counterexample G with respect to the

number of vertices first and to the number of edges next. The structural conditions that

G must satisfy are identical to those of Section 5.3.1 with A(l) replaced by B(l). We

derive a contradiction through the use of the discharging method.

To start, the following charges are assigned:

• Each vertex v is given d(v)− 6 units of charge;

• Each face f is given 2|V (f)| − 6 units of charge.

The following observation is easily derived through use of Euler’s formula.

Observation 5.4.1. The sum of the charges of the graph G is 0.

Next, the defined rules 1 through 3 are applied sequentially and are the same as the

proof for plane graphs. Here, a face is large if

w(f) ≥



21 if l = 2,

d8.5l + 4.7e if l = 3, 4,

d9.25l + 5.75e if l ≥ 5,

otherwise, it is small.

This discharging method is designed to obtain nonnegative charges for all vertices

and all faces, and a positive charge for at least one face, contradicting Observation 5.4.1.

Let c0(v) and c0(f) be the initial charge assigned to vertex v and face f respectively,

and let ci(v) and ci(f) be the charge on vertex v and face f after Rule i is applied. The
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charges are examined after the application of each rule. As the rules were not changed,

Observations 5.3.4 and 5.3.5 still apply.

We can now consider the application of Rule 3. If c2(v) < 0, then v is referred to as

a special vertex. Let d′(v) be the number of large faces incident with v. The following

three claims are established.

Claim 5.4.2. There exists a special vertex.

Proof. Suppose there are no special vertices. Then every vertex has nonnegative charge,

and by Rule 2, every face has nonnegative charge. Hence, by Observation 5.4.1, every

vertex and every face has zero charge, so every vertex has degree at most six and every

face is small.

Let v be a vertex of degree d ≥ 3. Let the faces incident with v be f0, f1, f2, . . . , fd−1,

ordered so that w′(f0) ≤ w′(fi) ≤ w′(f2) ≤ · · · ≤ w′(fd−1). As c2(v) = 0, Observa-

tion 5.3.5 implies the following inequality

∑
i

1/w′(fi) = d/2− 1.

Hence, the modified configuration of v is one of (3, 7, 42), (3, 8, 24), (3, 9, 18), (3, 10, 15),

(3, 12, 12), (4, 5, 20), (4, 6, 12), (4, 8, 8), (5, 5, 10), (6, 6, 6), (3, 3, 4, 12), (4, 4, 4, 4), (3, 3, 3, 3, 6),

(3, 3, 3, 3, 3, 3). Each of these configurations contradict Lemma 5.3.1 (4) by applying

Lemma 5.3.2 (1b); note that 42 is a small face only if l ≥ 4 and 24 is a small face only if

l ≥ 3. Hence, every vertex in G is a 2-vertex, so G is a cycle of at most 2l−1 vertices by

Lemma 5.3.1 (3), contradicting Lemma 5.3.1 (1). Therefore, G contains a special vertex

as required.

Claim 5.4.3. Every special vertex has degree at most 5 and is incident with a large face.
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Proof. The result follows from Claim 5.3.6 except when l = 2, a face of weight 20 is

now a small face. If v is of degree 3, and w′(f0) = 3, then w′(f0) + w′(f2) ≤ 23 < 26.

If w′(f1) ≤ 9, then the modified configuration of v is either (3, 8, 20), which contradicts

Lemma 5.3.2 (1c), or (3, 9, 19) or (3, 9, 20), which contradicts (5.1). Otherwise, the result

follows from Claim 5.3.6.

Claim 5.4.4. Every large face has a positive charge after the application of Rule 3.

Proof. The result follows from Claim 5.3.7 except when l = 2 and w(f) = 20. But then

f is not a large face, which completes the proof.

We now complete the proof of Theorem 5.1.3.

Theorem 5.1.3. Every closed 2-cell embedding of a toroidal graph has a proper l-residue

colouring with at most 20l2 +B(l)l + 1 colours, where

B(l) =


10 if l = 2,

A(l) if l ≥ 3.

Proof. By Claim 5.4.3, every special vertex of a minimum counterexample G finishes

with a nonegative charge after the application of the discharging rules, and hence every

vertex finishes with a nonnegative charge. By Rule 2, the charge of every small face

is nonnegative. By Claim 5.4.2, there exists a special vertex, so by Claim 5.4.3, there

exists a large face, and by Claim 5.4.4, the charge of every large face is positive. Hence,

the sum of the charges is positive, which is a contradiction to Observation 5.4.1. The

result follows as no minimal counterexample exists.
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5.5 Lower Bound

In this section, we give an example showing that the sharp upper bound on the number

of colours required for a proper l-residue colouring is at least 2l2 + l. Let Ql be the graph

on 2l2 + l vertices constructed as follows. Take l disjoint cycles of length 2l + 1, and

label each vertex zi,j, where i corresponds to the copy of C2l+1 and j to the position of

the vertex in that cycle. For each i, add an edge between zi,2l+1 and zi+1,1, and embed

the graph such that it is outerplane, that is, the outerface contains every vertex. The

graph is depicted in Figure 5.5.1.

· · ·

......

· · ·

C2l

C2l+1

C2l+1C2l+1

z2,1

z1,2l+1z1,1

zl,2l+1

zl,1

zl−1,2l+1 z3,1

z2,2l+1

z1,2 z1,2l

z2,2l

z2,2

zl,2

zl,2l

Figure 5.5.1: Graph Ql

Theorem 5.5.1. A proper l-residue colouring of Ql requires 2l2 + l colours.

Proof. We show that each vertex of Ql must be a different colour. No colour can appear

l+ 1 times on any of the cycles of length 2l+ 1, thus it can occur at most once on each

cycle. Now, considering the outer face, any colour can occur a maximum of l times, thus
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it can only occur once on the graph. Therefore, each vertex must be assigned a different

colour.

Since we do not make use of the 2l-face in the proof of the previous theorem, we

can take any closed 2-cell embedded graph with a 2l-face and replace such a face with a

copy of Ql to produce a graph, the proper l-residue colouring of which requires at least

2l2 + l colours.

For proper strong parity vertex colouring, the graph Q2 is precisely the graph H0

depicted in Figure 4.5.1. We now consider the order of the sharp upper bound on the

proper l-residue chromatic number.

Theorem 5.5.2. For closed 2-cell embedded plane or toroidal graphs, the sharp upper

bound on the proper l-residue chromatic number is Θ(l2).

Proof. By Theorems 5.1.2 and 5.1.3, the sharp upper bound is at most 20l2 +A(l)l + 1

and 20l2 +B(l)l+ 1 respectively, so the sharp upper bound is O(l2). By Theorem 5.5.1,

the sharp upper bound is at least 2l2 + l, so the sharp upper bound is Ω(l2). The result

follows.

Thus the sharp upper bound is on the order of l2, and has been determined to within

a factor of 10.
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Chapter 6

Conclusion

The Four Colour Conjecture was first posed in 1852 and its validity was finally confirmed

in 1976. Work on this problem of the upper bound of proper vertex colourings inspired

further variations of colouring the vertices of planar graphs, which have been central

to the development of graph theory. The solution also provided a useful approach,

the Discharging Method, used to prove many of the upper bounds of vertex colouring

problems.

In comparison to the proof of the Four Colour Theorem, which required 633 reducible

configurations and 32 discharging rules, the proofs of the upper bounds of the restricted

colouring problems are less complex. The proof of Theorem 3.2.9, the upper bound of

the cyclic chromatic number, involved 5 reducibility lemmas and 7 discharging rules.

Similarly, the proof of Theorem 3.2.12, the upper bound for 3-connected plane graphs,

involved 5 reducibility rules and 13 discharging rules. In the case of strong parity vertex

colourings, the proof of Theorem 4.3.7 involved 5 reducibility claims and 3 discharg-

ing rules. It is likely that more complex proofs involving more reducibility rules and

more discharging rules will be required to determine the sharp upper bound for these
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restricted colouring problems. Future consideration of expanded sets of reducible con-

figurations and discharging rules should lead to tighter bounds on the proper `-residue

vertex chromatic number; the lower and upper bounds are currently separated by a

factor of 10.

Further extending the idea of proper `-residue vertex colourings, it would be inter-

esting to consider the problem for non-arithmetic sequences of values a colour is allowed

to occur on a face. It is clear that the number 1 must be present in any such sequence,

otherwise any graph with a 3-face or a 5-face cannot be assigned such a colouring. Nat-

ural choices of sequences would also be recursive, including geometric sequences or the

Fibonacci sequence. Some of the arguments are lost for non-arithmetic sequences, how-

ever, by being unable to add a constant number of vertices with a colour to a face on

which that colour is already used. A new approach would be required.
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