Query Complexity

Task: given $x \in S \subseteq \{0,1\}^n$, compute $f(x)$

$S = \{0,1\}^n$: f is a "total function"

$S \neq \{0,1\}^n$: f is a "partial function"

Input x is given via oracle

$1 \leq i \leq n$

$1 \leq i \leq \log_2 n$
Sometimes you might see a "phase oracle" \(\hat{O}_x \) defined by

\[
\hat{O}_x \left| i > 1 b > \right. = (-1)^{x_i b} \left| i > 1 b > \right.
\]

To implement \(O_x \) using \(\hat{O}_x \):

\[
(I \otimes H) \hat{O}_x (I \otimes H) \left| i > 1 b > \right.
\]

\[
= (I \otimes H) \hat{O}_x \left| i > 7 \left(\frac{107 + (-1)^b \left| 1 b > \right.}{\sqrt{2}} \right) \right.
\]

\[
= (I \otimes H) \left| i > 7 \left(\frac{1x_i \left| 7 + (-1)^b \left| 1 \right. \otimes x_i \left| 7 \right.}{\sqrt{2}} \right) \right.
\]

\[
= \left\{ \begin{array}{l}
\left| i > 1 b > \right., \quad x_i = 0 \\
-\left| i > 1 b > \right., \quad x_i = 1
\end{array} \right.
\]
14_L> = \mathbf{V}_{l+1} O_x \mathbf{V}_L \ldots O_x \mathbf{V}_2 O_x \mathbf{V}_1 10^m 7

followed by measurement.

define

Q_\varepsilon (f) = \min \# of quantum queries required to compute f in worst-case failure probability \leq \varepsilon.

R_\varepsilon (f) = \min \# of classical queries to f to compute f w/ failure prob \leq \varepsilon using a randomized alg.

D(f) = "deterministic classical alg."
Examples

\[Q(OR_n) = O(\sqrt{n}) \quad \text{Grover} \]
\[Q(OR_n) = \Omega(\sqrt{n}) \quad \text{HW} \]

\[D(OR_n) = n \]
\[R(OR_n) = \Theta(n) \]

2 Multivariable polynomials

Let \(f : \Sigma_0 \Sigma^n \rightarrow \Sigma_0 \Sigma^n \)

Claim: \(f \) has a unique representation as a multilinear polynomial in \(x_1, \ldots, x_n \) with real coefficients.

\[
f(x_1, x_2, \ldots, x_n) = \sum_{S \subseteq [n]} \alpha_S X(S)
\]

Proof: functions \(f : \Sigma_0 \Sigma^n \rightarrow \mathbb{R} \) form a vector space of dim \(2^n \). Boolean functions are a subset. Monomials \(X(S) \) independent for each \(S \subseteq [n] \), form a basis.
Expanded

Let $z_i = 1 - 2x_i \in \{0, 1\}$

$$f(z_1, \ldots, z_n) = \sum_{s \in \{0, 1\}^n} \beta_s \ Z(s)$$

$$\beta_s = \frac{1}{2^n} \sum_{t \in \{0, 1\}^n} f(t) \ Z(s)$$

$$Z(s) = \prod_{i \in s} z_i$$

$$= \sum_{T \subseteq S} (-2)^T X(T)$$

Bottom line: for any $f: \{0, 1\}^n \to \{0, 1\}$ we can define

$$\text{deg}(f) = \text{degree of multivariate polynomial representation of } f$$
Claim: Consider the state of an L-query quantum alg.

\[14_L > = V_{L+1} O_x V_L \ldots O_x V_1 10^{-7} \]

Then $<z|14_L>$ is a polynomial in x_1, x_2, \ldots, x_n of degree at most L for all $z \in \mathbb{F}_{0,1,2}^m$.

Proof: Induction on L

Base case $L = 0$ $<z|14_L> = <z|V_1 10^{-7}$ has no dependence on x_1, x_2, \ldots, x_n.

Induction step: $14_{L-1} > = V_L O_x \ldots O_x V_1 10^{-7}$

$O_x 14_{L-1} > = \sum_{x \in [i,b,y]} (-1)^b \rho^x_L (x) 127$ $= \sum_{z} \left(1 - 2bx_i \right) \rho^x_{L-1} (x) 127$
Corollary: Suppose \(\text{alg.} \) outputs \(1 \) with prob

\[
p_1 = \langle \mathcal{A}_1, M \rangle
\]

Then \(p_1 \) is a polynomial \(x_1, x_2, \ldots, x_n \) of deg. \(\leq 2L \)

If \(\text{alg.} \) has worst case success prob \(\geq 1-\varepsilon \)

then \(p_1(x) \) satisfies

\[
\begin{align*}
|p_1(x) - f(x)| &\leq \varepsilon & \forall x \in \mathbb{F}_2^n \setminus \{y \}
\end{align*}
\]

An \(L \)-query \(\text{alg.} \) succeeds if degree \(\leq 2L \) polynomial \(p_1 \) satisfying (2).
Approximate degree

\[\tilde{\deg}(f) = \min \{ \deg(p) : |p(x) - f(x)| \leq \epsilon \ \forall x \in \{0,1\}^n \} \]

\[\tilde{\deg}(f) \overset{\text{def}}{=} \tilde{\deg}_\frac{1}{2}(f) \]

Lower bounds on query complexity \(Q(f)\)

Follow from \(LB\) on \(\tilde{\deg}(f)\)

 Aside: Symmetric functions

Suppose \(f : \{0,1\}^n \to \{0,1\} \) is symmetric

\[f(x_1, x_2, \ldots, x_n) = f(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}) \]

\[\forall \ \pi \in S_n \]

\[\iff f(x) \text{ depends only on } |x| = \sum_{i=1}^{n} x_i \]

"Hamming weight"
Let \(F(K) = f \left(\frac{111 \cdots 100 \cdots 0}{K} \right) \) for \(0 \leq K \leq n \).

Claim: \(F(K) \) is a polynomial of degree \(\leq \deg(f) \).

Proof:

\[
F(k) = \sum_{\substack{\text{1x}_1=k \\ \text{1x}_1=k}} \left[\sum_{s \in [n]} \alpha_s \times (s) \right] \\
= \sum_{s \in [n]} \alpha_s \times \left[\prod_{\substack{\text{1x}_1=k \\ \text{from}s}} \times_i \right] \\

\]

Choose some \(k - 1 \) elements of \(X \) to be \(+1 \) or \(x \) to be \(0 \).

Choose \(s \) plus \(k - 1 \) of \(x \) to be \(+1 \).

\[
\sum = \binom{n-151}{k-151} = \frac{(n-151)!}{(k-151)!(n-k)!} + \frac{k! (n-k)!}{n!} \\

\]

only if \(s \leq k \) or \(151 \) such that \(x \).