Today:

1. Facts from complexity theory
2. Hardness of exactly simulating quantum computation
3. Hardness of approximately simulating QC

The polynomial hierarchy

$$\mathsf{PH} = \bigcup_{k=0,1,2,\ldots} \Sigma_k$$

where

- $$\Sigma_0 = \mathsf{P}$$
- $$\Sigma_1 = \mathsf{NP}$$
- $$\Sigma_2 = \mathsf{NP}^{\mathsf{NP}}$$
- $$\vdots$$
- $$\Sigma_k = \mathsf{NP}^{\Sigma_{k-1}}$$

If $$\Sigma_i = \Sigma_{i+1}$$ for some $$i$$,

then $$\mathsf{PH} = \Sigma_i$$ and this "polynomial hierarchy collapse" is thought to be extremely unlikely.

Refs:
- [Bremner Jozsa Shepherd 10]
- [Terhal Divincenzo 02]
- [Fenner Green Homer Zhang 03]
- [Aaronson 04]
Post BQP

A decision problem \(L \in \text{postBQP} \) if \(\exists \) a uniformly generated polynomial-size circuit family \(\{ C_n \}_{n \in \mathbb{N}} \) s.t.

\[
\begin{align*}
 x \in L & \implies \Pr \left[z = 1 \mid y = 0 \right] \geq \frac{2}{3} \\
 x \notin L & \implies \Pr \left[z = 1 \mid y = 0 \right] \leq \frac{1}{3}
\end{align*}
\]

Can likewise define \(\text{postBPP} \) by replacing the BQP circuit with a BPP circuit.

Can also define \(\text{post A} \) for any restricted family \(A \) of BQP circuits.
Fact: Quantum postselection \Rightarrow classical postselection

$p_{postBPP} \subseteq \Sigma_3$ \cite{Han, Hemaspaandra, Thierauf 97}

$p_{postBQP} \subseteq PH$ \cite{Aaronson 2005} + Today's Thm

\Rightarrow If postBPP contains postBQP then PH collapses!

2) Classical hardness of exact simulation \cite{see Brenner Jozsa Shepherd 10}

Claim: Suppose A is a restricted circuit family such that

$$post A = postBQP$$

Suppose that is an efficient classical alg. that, given a circuit in A, samples from the distribution

$$p(x, y, r)$$

(see (8))

Then PH collapses.
Pf: Take the efficient (BPP) circuit that samples \(P_{(x,y,r)} \) and then postselect on \(y \). This gives a postBPP circuit that exactly simulates the post-selected \(q \) circuit.

\[
\text{post-BQP} = \text{post-A} \leq \text{post-BPP} \Rightarrow \text{PH} \subseteq \Sigma_3
\]

Restricted circuit families \(A \) s.t. \(\text{post-A} = \text{post-BQP} \) can be much less powerful than BQP.

Examples

\(A = \text{depth 3 circuits} \) [Terhal Divincenzo 2002]
\(A = \text{IQP circuits} \) [Bremner Jozsa Shepherd 2010]
\(A = \text{QAOA circuits} \) [Farhi Harrow 2016]
Want to show \(\text{postselected} (\text{depth 3}) = \text{post BQP} \)

An \(n \)-qubit state can be teleported using \(n \) parallel copies of the above:
Suppose we have a q. circuit measurement + postselected

We can insert postselected teleportation after the 1st gate to get an equivalent circuit:

Now insert postselected teleportation after 2nd, 3rd, ..., m-1st gates:
This is a depth-3 postselected circuit that simulates the given postselected circuit with m gates.

No efficient classical algorithm can exactly sample from output of depth 3 poly-size quantum circuits, unless PH collapses.

Depth 2 circuits can be efficiently simulated, see homework.
IQP circuits

"Instantaneous Quantum polynomial time" [Brenner Jozsa Shepherd 2010]

\[
D = \left(\prod_{j<k} \exp \frac{i \pi}{8} \omega_{jk} z_j z_k \right) \left(\prod_{l=1}^n \exp \frac{i \pi}{8} \nu_l z_l \right)
\]

2-qubit gates

\[\omega_{jk}, \nu_l \in \mathbb{R}, \ell \geq 3\]