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Introduction
The quadratic assignment problem, QAP, in the trace
formulation is

(QAP ) p∗ := min
X∈Πn
〈AXB− 2C, X〉, (1)

where A,B ∈ Sn are real symmetric n×n matrices, C is
a real n×n matrix, 〈· , ·〉 denotes the trace inner product
and Πn denotes the set of n × n permutation matrices.
A typical objective of the QAP is to assign n facilities to
n locations while minimizing total cost. The assignment
cost is the sum of costs using the flows in Aij between
a pair of facilities i, j multiplied by the distance in Bst
between their assigned locations s, t and adding on the
location costs of a facility i in a position s given in Cis.

The new derivation
We start the derivation from the following equivalent
quadratically constrained quadratic problem

min
X
〈AXB− 2C, X〉

s.t. XijXik = 0, XjiXki = 0, ∀i, ∀j 6= k,
X2ij − Xij = 0, ∀i, j, (2)
n∑
i=1

X2ij − 1 = 0, ∀j,
n∑
j=1

X2ij − 1 = 0, ∀i.

The Lagrangian for (2) is
L0(X,U, V,W,u, v) = 〈AXB− 2C, X〉+

n∑
i=1

∑
j 6=k
U

(i)
jkXijXik

+
n∑
i=1

∑
j 6=k
V

(i)
jk XjiXki +

∑
i,j

Wij(X
2
ij − Xij)

+
n∑
j=1

uj


n∑
i=1

X2ij − 1

 +
n∑
i=1

vi


n∑
j=1

X2ij − 1

 .

The dual problem is a maximization of the dual functional
d0,

max d0(U,V,W,u, v) := min
X
L0(X,U, V,W,u, v). (3)

To simplify the dual problem, we homogenize L0 by mul-
tiplying the degree-one terms in X by a scalar variable
x0 and adding the single constraint x20 = 1 to the dual
functional. We add the additional dual variable w0 and
let

L1(X, x0, U, V,W,w0, u, v) = 〈AXB− 2x0C,X〉

+
n∑
i=1

∑
j 6=k
U

(i)
jkXijXik +

n∑
i=1

∑
j 6=k
V

(i)
jk XjiXki +

∑
i,j

Wij(X
2
ij − x0Xij)

+
n∑
j=1

uj


n∑
i=1

X2ij − 1

 +
n∑
i=1

vi


n∑
j=1

X2ij − 1

 +w0(x
2
0 − 1).

This homogenization technique is the same as that in [3].
The new dual problem is
max d1(U,V,W,w0, u, v) := min

X,x0
L1(X, x0, U, V,W,w0, u, v).

Definition: Given n2 matrices Ỹij for i = 1, . . . , n and
j = 1, . . . , n that satisfy Ỹij = Ỹ>ji , let Ȳ be the n × n
block matrix with Ỹij as the (i, j)-th block. We form the
symmetric block matrix

Y =


y00 y

>
0

y0 Ȳ

 , (4)

where y00 is a scalar, and y0 is a vector in Rn2. The
SDP relaxation of (2) is:

min 〈LQ, Y〉
s.t. GJ(Y) = E00

diag(Ȳ) = y0
trace(Ỹii) = 1, ∀i∑n
i=1 Ỹii = I

Y � 0,

(5)

where

GJ(Y)ij =

{
Yij if (i, j) ∈ J or (j, i) ∈ J
0 otherwise.

LQ =


0 − vec(C)>

− vec(C) B⊗A

 .

The SDP relaxation of QAP presented in [3] uses facial
reduction to guarantee strict feasibility is:

p∗R := minR 〈LQ, V̂RV̂>〉
s.t. GJ(V̂RV̂>) = E00

R � 0.
(6)

A New ADMM Algorithm for the
SDP Relaxation

We can write (6) equivalently as
min
R,Y
〈LQ, Y〉 s.t. GJ(Y) = E00, Y = V̂RV̂>, R � 0.

(7)
The following theorem from [3] shows the equivalence be-
tween (5) and (7).
Theorem: A matrix Y is feasible for (5) if, and only if,
it is feasible for (7).
Therefore we can work with (7). The augmented La-
grange of (7) is

LA(R, Y, Z) = 〈LQ, Y〉+ 〈Z, Y − V̂RV̂>〉+
β

2
‖Y − V̂RV̂>‖2F. (8)

Recall that (R, Y, Z) are the primal reduced, primal,
and dual variables respectively. We denote (R, Y, Z) as
the current iterate. Our new algorithm, an application
of ADMM, uses the augmented Lagrangian in (8) and
performs the following updates to obtain a new iterate
(R+, Y+, Z+):

R+ = arg min
R∈Sn+

LA(R, Y, Z), (9a)

Y+ = arg min
Y∈Pi

LA(R+, Y, Z), (9b)

Z+ =Z+ γ · β(Y+ − V̂R+V̂
>), (9c)

where the simplest case for the polyhedral constraints Pi
is the linear manifold from the gangster constraints:

P1 = {Y ∈ Sn+2 : GJ(Y) = E00}.

We use this notation as we add additional simple polyhe-
dral constraints. The second case is the polytope:

P2 = P1 ∩ {0 ≤ Y ≤ 1}.

Let V̂ be normalized such that V̂>V̂ = I. Then the R-
subproblem can be explicitly solved by
R+ = arg minR�0〈Z, Y − V̂RV̂>〉+ β

2
‖Y − V̂RV̂>‖2F

= arg minR�0
∥∥∥∥∥∥∥Y − V̂RV̂> + 1

β
Z

∥∥∥∥∥∥∥
2

F

= arg minR�0
∥∥∥∥∥∥∥R− V̂>

Y + 1
β
Z

V̂
∥∥∥∥∥∥∥
2

F

= PS+
V̂>

Y + 1
β
Z

V̂
 ,

where S+ denotes the SDP cone, and PS+ is the orthog-
onal projection onto S+. For any symmetric matrix W,
we have PS+(W) = U+Σ+U

>
+, where (U+, Σ+) contains

the positive eigenpairs of W; we let (U−, Σ−) be for the
negative eigenpairs.
If i = 1 in (9b), the Y-subproblem also has a closed-form
solution:
Y+ = arg min

GJ(Y)=E00
〈LQ, Y〉+ 〈Z, Y − V̂R+V̂

>〉+ β
2
‖Y − V̂R+V̂

>‖2F

= arg min
GJ(Y)=E00

∥∥∥∥∥∥∥∥∥Y − V̂R+V̂
> +

LQ + Z

β

∥∥∥∥∥∥∥∥∥
2

F

=E00 + GJc
V̂R+V̂> −

LQ + Z

β

 .

One major advantage of using ADMM is that the com-
plexity increases marginally when we add constraints to
(6) and tighten the SDP relaxation. If 0 ≤ V̂RV̂> ≤ 1
is added in (6), then we simply add the constraints
0 ≤ Y ≤ 1 to (7). This yields the new problem
p∗RY := min

R,Y
{〈LQ, Y〉 : GJ(Y) = E00, 0 ≤ Y ≤ 1, Y = V̂RV̂>, R � 0}.

The ADMM for solving p∗RY has the same R-update and
Z-update as those in (9). The Y-update is changed to

Y+ = E00 +min
1, max

0, GJc
V̂R+V̂> −

LQ + Z

β




 .

The nonnegativity constraint means that the ≤ 1 con-
straint is redundant. But the inclusion makes the algo-
rithm converge faster and avoid roundoff error.

Result and discussions

The proposed methods was code in MATLAB on a PC
with 16 Gigabyte memory running Window 7.

0. 1. 2. 3. 4. 5. 6. 7. ADMM
Instance opt Bundle HKM-FR ADMM feas ADMM vs Bundle
name value LowBnd LowBnd LowBnd UpBnd %gap %Impr LowBnd
Esc16a 68 59 50 64 70 8.82 7.35
Esc16b 292 288 276 290 294 1.37 0.68
Had18 5358 5317 5287 5358 5358 0.00 0.77
Had20 6922 6885 6848 6922 6930 0.12 0.53
Kra30a 88900 77647 -1111 86838 105650 21.16 10.34
Kra30b 91420 81156 -1111 87858 102370 15.87 7.33
Kra32 88700 79659 -1111 85773 103070 19.50 6.89
Nug21 2438 2323 2386 2382 2748 15.01 2.42
Nug22 3596 3440 3396 3529 3860 9.20 2.47
Nug28 5166 4901 -1111 5026 5492 9.02 2.42
Nug30 6124 5803 -1111 5950 6720 12.57 2.40
Rou15 354210 333287 323235 350217 367782 4.96 4.78
Rou20 725522 663833 642856 695181 765390 9.68 4.32
Scr15 51140 48836 42204 51140 55760 9.03 4.51
Scr20 110030 94998 83302 106801 124522 16.11 10.73
Tai20a 703482 637300 619092 671675 750450 11.20 4.89
Tai25a 1167256 1041337 -1111 1096657 1271696 15.00 4.74
∗Tai30a 1818146 1652186 -1111 1706871 1942086 12.94 3.01
Tho30 149936 136059 -1111 143576 162882 12.88 5.01

Table 1: Results of lower and upper bounds for each instance in
QAPLIB Instances I. Failure of an algorithm is marked by −1111

and the optimal value of the instance marked by ∗ is still unknown.

Summary and conclusions

We have shown the efficiency of using the ADMM ap-
proach in solving the SDPrelaxation of the QAP prob-
lem. In particular, we have shown that we can obtain high
accuracy solutions of the SDP relaxation in less signifi-
cantly less cost than current approaches. In addition, the
SDP relaxation includes the nonnegativity constraints at
essentially no extra cost. This results in both a fast solu-
tion and improved lower and upper bounds for the QAP.
In future work we plan to apply ADMM to the binary
quadratic knapsack problem:

(QKP )
max xTQx
s.t. wTx ≤ c

x ∈ {0, 1}n,

where Q ∈ Sn is a symmetric n×n nonnegative integer
matrix indicating profit for selected items, w ∈ Zn+ are
positive integer weights for the items, and c ∈ Z+ is a
positive, integer knapsack capacity. The binary variable x
indicates whether an item is chosen or not.
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