PMath 441/641 - Homework 1
Due 11:59pm on Wednesday, May 15 on Crowdmark

1. Let $M=\mathbb{Z}^{3}$ and $N=\mathbb{Z}^{2}$, both \mathbb{Z}-modules. Let $\varphi: M \rightarrow N$ be the \mathbb{Z}-module homomorphism $\varphi(a, b, c)=(2 a+b, 3 b+2 c)$. Find generators for the \mathbb{Z}-module $\operatorname{ker} \varphi$.
2. Prove that $\frac{1}{3}\left(1+10^{1 / 3}+10^{2 / 3}\right)$ is an algebraic integer.
3. Prove that $a=\frac{1+\sqrt{-5}}{2}$ is not integral over \mathbb{Z}.
4. Let $\alpha \in \mathbb{C}$ be a root of $x^{3}-x+1$. Compute the cardinality of the ring $\mathbb{Z}[\alpha] /(\alpha+2)$. Is the ideal $(\alpha+2)$ prime?
5. Let K be a number field of degree d over \mathbb{Q}, and let P be a nonzero prime ideal of the ring of integers \mathcal{O}_{K} of K. Prove that P contains a prime integer p (that is, $p \in \mathbb{Z} \cap P$), and that \mathcal{O}_{K} / P contains at most p^{d} elements.
6. Prove that the ring of integers of $\mathbb{Q}(\sqrt{33})$ is $\mathbb{Z}\left[\frac{1+\sqrt{33}}{2}\right]$. This is a special case of the general fact that the ring of integers of $\mathbb{Q}(\sqrt{d})$ is (assuming d is squarefree):
$\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \quad$ if $d \equiv 1(\bmod 4)$ $\mathbb{Z}[\sqrt{d}] \quad$ otherwise
You don't have to do the general case. Just $d=33$.
In fact, do not do the general case. I will take off marks if you do.
