PMath 441/641 – Homework 1 Due 11:59pm on Wednesday, May 15 on Crowdmark

1. Let $M = \mathbb{Z}^3$ and $N = \mathbb{Z}^2$, both \mathbb{Z} -modules. Let $\varphi \colon M \to N$ be the \mathbb{Z} -module homomorphism $\varphi(a, b, c) = (2a + b, 3b + 2c)$. Find generators for the \mathbb{Z} -module ker φ .

2. Prove that $\frac{1}{3}(1 + 10^{1/3} + 10^{2/3})$ is an algebraic integer.

3. Prove that $a = \frac{1+\sqrt{-5}}{2}$ is not integral over \mathbb{Z} .

4. Let $\alpha \in \mathbb{C}$ be a root of $x^3 - x + 1$. Compute the cardinality of the ring $\mathbb{Z}[\alpha]/(\alpha + 2)$. Is the ideal $(\alpha + 2)$ prime?

5. Let K be a number field of degree d over \mathbb{Q} , and let P be a nonzero prime ideal of the ring of integers \mathcal{O}_K of K. Prove that P contains a prime integer p (that is, $p \in \mathbb{Z} \cap P$), and that \mathcal{O}_K/P contains at most p^d elements.

6. Prove that the ring of integers of $\mathbb{Q}(\sqrt{33})$ is $\mathbb{Z}\left[\frac{1+\sqrt{33}}{2}\right]$. This is a special case of the general fact that the ring of integers of $\mathbb{Q}(\sqrt{d})$ is (assuming *d* is squarefree):

$$\mathbb{Z}\begin{bmatrix}\frac{1+\sqrt{d}}{2}\end{bmatrix} \quad \text{if } d \equiv 1 \pmod{4}$$
$$\mathbb{Z}[\sqrt{d}] \qquad \text{otherwise}$$

You don't have to do the general case. Just d = 33.

In fact, do not do the general case. I will take off marks if you do.