
PMath 441/741 – Homework 10 Solutions

1. Let K be a number field of degree 3 over Q, with ring of integers OK . If
the unit group O∗

K is isomorphic to (Z/2Z)×Z2, how many real embeddings
does K have?

Solution: Well, we know that r+2s = 3 (because r+2s is the degree), and
r + s − 1 = 2 (because the unit group has rank two). The second equation
gives r + s = 3, so obviously s = 0 and r = 3. So K has 3 real embeddings.
♣

2. Let K = Q(
√
−10), and let L ̸= K be a number field containing K. Prove

that O∗
K ̸= O∗

L.

Solution: For K, we have rK + sK − 1 = 0 + 1 − 1 = 0, so the unit group
has rank zero. (In fact, it’s not too hard to see that it’s ±1.) If L is a
number field containing K, then we must have sL ≥ 1 (because the complex
embedding of K will extend to a complex embedding of L).

But the degree of L is strictly larger than the degree ofK, so rL+2sL > 2.
This means either rL > 0 or sL > 1, and in either case, we get rL + sL > 1.
So the unit group O∗

L of L has infinite order, and is therefore different from
O∗

K . ♣

3. Let L and K be number fields with rings of integers OK and OL, respec-
tively. Is it possible to have L ̸= K but O∗

K = O∗
L? If no, then prove it. If

yes, then give a specific counterexample.

Solution: Sure, this is easy. Pick K = Q and L = Q(
√
−13). Both have

finite unit groups (because in both cases, r + s− 1 = 0), so we just need to
compute the roots of unity in each field. For Q, that’s obviously just ±1. For
Q(

√
−13), that’s slightly trickier. If you’ve seen the argument before, then

you can stop here. But just in case you haven’t, I’ve reproduced it below.
Say that a primitive nth root of unity ζn is contained in Q(

√
−13). We

want to show that n = 1 or n = 2.
Well, Q(

√
−13) has degree two over Q, so that means ζn also has degree

two (or one, but that’s not an interesting possibility). But the degree of ζn
over Q is ϕ(n), where ϕ is the Euler totient function. And we know that if
n = pa11 . . . parr is a prime factorization of n, then

ϕ(n) = (p1 − 1)pa1−1
1 . . . (pr − 1)par−1

r



In particular, if p is a prime factor of n, then p− 1 divides ϕ(n).
In our case, ϕ(n) = 2. So there can’t be any prime factors of n larger

than 3. A slightly closer analysis reveals that 9 can’t be a factor of n either,
nor can 8 be a factor. This – plus a couple of quick checks – narrows down
the possibilities for n to a finite list:

n ∈ {1, 2, 3, 4, 6}

For n = 1 and n = 2, we get ζn = ±1, which is fine.
For n = 3 and n = 6, ζn generates the field Q(

√
−3). Which isn’t L.

For n = 4, we get ζn = ±i, which obviously generates the field Q(i).
Which is again, not L.

So L doesn’t actually contain any roots of unity other than ±1. So
OL = OK . ♣

4. Find all the roots of unity contained in K = Q( 4
√
−7).

Solution: The roots of unity in K are just ±1.
Any root of unity contained in Q( 4

√
−7) must generate a field of de-

gree 1, 2, or 4 over Q. There’s a short list of these: they are ζn for
n ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}, giving the following list of fields:

Q, Q(
√
−3), Q(i), Q(ζ5), Q(ζ8), Q(ζ12)

Obviously K contains Q, so it contains the roots of unity ±1.
All of these fields are galois over Q, while K is not. So K cannot equal

any of them, and so in particular K cannot contain ζn for n ∈ {5, 8, 10, 12}.
It’s not too hard to see that K contains the quadratic field Q(

√
−7). If

K were to contain a different quadratic field Q(
√
d) as well, then it would

also have to contain the quartic field L = Q(
√
−7,

√
d).

But L has degree four over Q, so if L ⊂ K, we get L = K. Since L is
galois, this is impossible.

So K doesn’t contain ζ3, ζ4, or ζ6 either. That leaves just ±1. ♣

5. Find generators for the group of units of the ring Z[
√
26]. Be sure to give

a careful proof that your generators do indeed generate.

Solution: First, the Dirichlet Unit Theorem tells us that since Q(
√
26)

has two real embeddings and no complex ones, the unit group of Z[
√
26] is

isomorphic to {±1}×Z. (The real embedding means that the roots of unity



are just ±1.) All we need to do is find a unit u of infinite order that is not
a power of any other unit, and we’ll know that Z[

√
26]∗ ∼= {±1} × ⟨u⟩.

The next thing to notice is that 5 +
√
26 is a unit, because its norm is

−1. It’s easy to see that it has infinite order (because it’s real and isn’t ±1).
Let’s check to see if this unit is a power of any other units.

The unit 5 +
√
26 corresponds (roughly) to the vector (10.1,−.1). If u is

a nontrivial power of another vector (x, y) ∈ R2, then 0 < x < 4 (because
42 > 5+

√
26) and −1 < y < 1. (We don’t have to worry about the negative

values of x, because if x is negative, any odd power of (x, y) will have negative
first coordinate, and any even power will have positive second coordinate.)
In particular, the length of (x, y) is at most

√
42 + (−1)2 =

√
17, which is

less than 4.2.
An integral basis of Z[

√
26] is {1,

√
26}, corresponding to the vectors (1, 1)

and (
√
26,−

√
26). Since these two vectors are orthogonal to each other, the

length of the vector a(1, 1)+b(
√
26,−

√
26) is just

√
a2
√
2 + b2(2

√
13). Since

2
√
13 >

√
17, this length is less than

√
17 only when b = 0, so the only

elements of Z[
√
26] in this box are elements of Z. Since those can’t be units

of infinite order, we know that 5 +
√
26 is not a nontrivial power of another

element of Z[
√
26], so Z[

√
26]∗ ∼= {±1} × ⟨5 +

√
26⟩. ♣

6. Find an extension of number fields L/K, with rings of integers OK and
OL, respectively, such that O∗

L contains a unit of infinite order that is not
contained in O∗

K , but that the rank of O∗
L is the same as the rank of O∗

K .

Solution: We need K and L to have the same value of r + s− 1. But they
can’t be the same field. Hmm.

We also need the degree of K/Q to divide evenly into the degree of L/Q,
becauseK ⊂ L. How can we do that and still have the same value of r+s−1?

The degree of K over Q is rK + 2sK . The degree of L is rL + 2sL. But
we also have

rK + sK = rL + sL

So we actually know that rK +2sK is a divisor of rK +sK +sL. The quotient
is:

rK + sK + sL
rK + 2sK

=
rK + sK
rK + 2sK

+
sL

rK + 2sK

where that first fraction is obviously at most 1, and the second fraction is
less obviously at most one, because sL = rK + sK − rL ≤ rK + sK .



But the whole thing has to be at least two! So each fraction individually
must be exactly one, meaning sK = 0 and rL = 0. In other words, K is
totally real (has only real embeddings), and L is totally imaginary (has only
complex embeddings). And L is a quadratic extension of K.

The easiest case to try is the case r + s− 1 = 0. Sadly, this won’t work,
because then the unit groups have rank zero, so there aren’t any units of
infinite order in K or L.

So we try r + s− 1 = 1. This is where we hit paydirt.
In this case, K is a real quadratic extension of Q (r = 2, s = 0), and

L is a quartic extension (r = 0, s = 2). The unit groups O∗
K and O∗

L both
have rank one. All we have to do is force O∗

L to have an extra unit of infinite
order.

(Incidentally, K and L are called CM-fields. The “CM” stands for “com-
plex multiplication” – this term is used for old-timey reasons that don’t really
make sense any more. But I’m sure they did at the time.)

So here’s an idea. Let’s pick a real quadratic extension K of Q, and a
unit u in there that’s negative. Then we can define L to be K(

√
u). This L

has to be totally imaginary, because u has no real square roots. So the unit
groups have to be the same rank, and they have to be different because

√
u

is a unit of OL that’s blatantly not in O∗
K .

Thus, we could take K =
√
2, u = −1 −

√
2, and L = K(

√
−u). There

are lots of other examples, but this is the simplest one I could think of. ♣


